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Musical preference is highly individualized and is an area of active study to develop

methods for its quantification. Recently, preference-based behavior, associated with

activity in brain reward circuitry, has been shown to follow lawful, quantifiable patterns,

despite broad variation across individuals. These patterns, observed using a keypress

paradigm with visual stimuli, form the basis for relative preference theory (RPT). Here,

we sought to determine if such patterns extend to non-visual domains (i.e., audition)

and dynamic stimuli, potentially providing a method to supplement psychometric,

physiological, and neuroimaging approaches to preference quantification. For this study,

we adapted our keypress paradigm to two sets of stimuli consisting of seventeenth to

twenty-first century western art music (Classical) and twentieth to twenty-first century

jazz and popular music (Popular). We studied a pilot sample and then a separate

primary experimental sample with this paradigm, and used iterative mathematical

modeling to determine if RPT relationships were observed with high R2 fits. We further

assessed the extent of heterogeneity in the rank ordering of keypress-based responses

across subjects. As expected, individual rank orderings of preferences were quite

heterogeneous, yet we observed mathematical patterns fitting these data similar to those

observed previously with visual stimuli. These patterns in music preference were recurrent

across two cohorts and two stimulus sets, and scaled between individual and group data,

adhering to the requirements for lawfulness. Our findings suggest a general neuroscience

framework that predicts human approach/avoidance behavior, while also allowing for

individual differences and the broad diversity of human choices; the resulting framework

may offer novel approaches to advancing music neuroscience, or its applications to

medicine and recommendation systems.
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INTRODUCTION

Preference can be defined as the variable extent an individual
will approach or avoid events and objects in the world based
on their rewarding or aversive features (Lewin et al., 1935;
Schneirla, 1959; Warren, 1963). Research on preference has
emphasized the subjective nature of preferences (Kable and
Glimcher, 2007; Lau and Glimcher, 2008). In music, individual
preferences are thought to be quite heterogeneous, leading
to use of individualized stimuli for neuroimaging and the
concordant challenge of generalizing preference toward music
across individuals (e.g., Blood and Zatorre, 2001; Osuch et al.,
2009; Pereira et al., 2011; Trost et al., 2012; Salimpoor et al.,
2013). Despite individual variation in preference, there appears
to be common circuitry for emotional processing of music (e.g.,
Blood and Zatorre, 2001; Osuch et al., 2009; Pereira et al., 2011;
Trost et al., 2012; Salimpoor et al., 2013), suggesting there may be
biologically-based functions describing a general music response,
which act like a scaffold upon which individual variation occurs.

Recently, preference-based behavioral variables measuring the
intensity and patterns of keypressing to approach or avoid visual
stimuli were shown to exhibit lawful relationships in humans
(Breiter and Kim, 2008; Kim et al., 2010; Lee et al., 2015;
Viswanathan et al., 2017). These behavioral variables were further
associated with activation in brain reward circuitry by model-
based functional MRI (Perlis et al., 2008; Gasic et al., 2009;
Viswanathan et al., 2015). Lawfulness is a physics-based term
describing patterns in data that are mathematically “discrete,”
“recurrent,” “robust,” and “scalable” (Feynman, 1965; Mitra and
Bokil, 2008; Kim et al., 2010). “Discreteness” refers to patterns
having specific mathematical descriptions, while “recurrence”
indicates a pattern repeats consistently across different stimuli
and experiments. “Robustness” indicates that pattern cannot be
generated from nor easily perturbed by noise, and “scalability”
indicates that a pattern occurs at different levels of organization,
such as from an individual pattern to a group level pattern
(Sutton and Breiter, 1994; Breiter et al., 2006; Braeutigam, 2017).
Identifying lawful patterns in behavioral data helps define the
specifications that biology must fulfill (i.e., like the specs of a
car built in a factory). Such specifications facilitate meaningful
interpretation of biological measures underlying behavior (e.g.,
brain function).

Lawful equations characterizing preference with a keypress

task were initially identified using visual stimuli (Breiter and

Kim, 2008; Kim et al., 2010; Lee et al., 2015). The keypress
task was developed out of a operant framework where each
keypress action had an incremental consequence on stimulus
view time (Aharon et al., 2001; Lee et al., 2015), and has been
well-validated across multiple studies (Aharon et al., 2001; Elman
et al., 2005; Strauss et al., 2005; Levy et al., 2008; Makris et al.,
2008; Perlis et al., 2008; Gasic et al., 2009; Yamamoto et al.,
2009; Kim et al., 2010; Lee et al., 2015; Viswanathan et al.,
2015, 2017). It follows an intrinsic motivation framework devoid
of external rewards, such as food or money (Deci and Ryan,
1985; Bandura, 1997), and quantifies reward/aversion by how
much subjects approach or avoid stimuli—namely, to what extent
subjects actively keypress to increase or decrease the amount of

time they are exposed to predetermined categories of stimuli.
The keypress task is a variant of techniques used to study effort-
based decision-making (Walton et al., 2002, 2003, 2006). The
task allows computation of metrics that quantify the magnitude
and the predictability of participants’ keypress-based preference
behavior. These metrics include the mean number of keypresses
subjects make to either approach (K+) or avoid (K−) stimuli
within each category. Other metrics include the variance to
approach (σ+) or avoid (σ−) stimuli, along with the Shannon
entropy (i.e., information; see Shannon and Weaver, 1949) of
the distribution of keypress counts to approach (H+) or avoid
(H−) stimuli within each category. The Shannon entropy is a
core variable in information theory that characterizes the degree
of uncertainty across a set of responses (Shannon and Weaver,
1949). Collectively, these variables capture the decision-making
about the valence of behavior (approach or avoidance) as well as
judgments regarding its magnitude (intensity of keypressing) to
describe relative preferences (Kim et al., 2010). We refer to this
methodology and the lawful relationships it uncovers as relative
preference theory (RPT).

RPT is characterized in part by relationships between these
three sets of behavioral variables {K, H, σ }. These relationships
include: (1) A value function plotting the Shannon entropy
(H+, H−), against the mean number of keypresses (K+, K−)
for approach or avoidance toward a suite of objects. This
function is referred to as a value function given it calibrates
“wanting” against the pattern of previous judgments, and is
consistent with the prospect theory value function discussed
below. (2) A variance-mean relationship is observed between
the mean number of keypress responses (K+, K−) plotted
against the standard deviation of keypress responses (σ+, σ−).
This relationship is characterized by increasing variance up
to a peak followed by decreasing variance back to baseline.
This function describes limits to preference or its “saturation.”
(3) A trade-off function between the approach entropy (H+)
and avoidance entropy (H−) was also identified, defining how
bundles of approach decisions were balanced with bundles of
avoidance decisions as a quantifiable trade-off between approach
and avoidance. These relationships have been schematized
in Figures 1A–C. Together, RPT provides a framework for
calibrating the relative value of stimuli, with two types of control
functions around value—namely, a limit to value, and a tradeoff
between positive and negative value.

RPT relationships with {K, H, σ } have been connected
to traditional reward and aversion circuitry, genetic
polymorphisms, and neuroeconomic measures. The mean
keypress response (K+, K−) has been associated with brain
morphometry for paralimbic reward/aversion structures such as
the insula that have strong connections with subcortical reward
regions, and describe a significant abnormality between structure
and behavior in addiction (Makris et al., 2008). It has further
been associated with activity in brain regions such as the nucleus
accumbens (NAc), amygdala, insula, and other reward regions,
including when this activity in reward circuitry was associated
with genetic polymorphisms related to CREB1 and BDNF (Perlis
et al., 2008; Gasic et al., 2009). The slopes of the (K, H) value
function have also been directly connected to NAc activity
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FIGURE 1 | Schematic of relative preference curves describing keypress responses to visual stimuli, and hypothesized to occur for music stimuli. (A)

A value function plotting the Shannon entropy (H+, H−) of the subject’s keypress response patterns against the mean number of keypresses (K+, K−) to approach or

avoidance the stimuli, computed separately for each music category. This function calibrates “wanting” against the pattern of previous judgments, and has a close

resemblance to the value function in prospect theory. (B) A variance-mean relationship between the mean number of keypresses (K+, K−) plotted against the

standard deviation of the keypress response patterns (σ+, σ−) for each category. This parabolic function describes limits to preference or its “saturation” by the

intercepts on the x-axis. They further describe peaks in variability for approach (i) and for avoidance decisions (ii), respectively. These peaks represent a type of

threshold beyond which an individual makes more approach and avoidance decisions as described under Markowitz’s decision utility (dU = K− bσ , where b is a

constant). (C) A trade off function between the approach entropy (H+) and avoidance entropy (H−). This function reflects a quantifiable trade-off between approach

and avoidance decisions (i) and (ii), and also graphs the extent to which an individual has low approach and low avoidance simultaneously, resembling indifference (iii),

or high approach and high avoidance simultaneously, resembling conflict (iv).

(Viswanathan et al., 2015), consistent with other neuroeconomic
studies linking the NAc and amygdala to prospect theory-based
metrics (Tom et al., 2007; De Martino et al., 2010; Canessa et al.,
2013). The RPT value function closely resembles that observed
in prospect theory (Kahneman and Tversky, 1979; Figure 1A),
showing a convex avoidance curve, a concave approach curve,
and a steeper slope for the avoidance curve than the approach
curve, consistent with the concept of “loss aversion” (Tversky and
Kahneman, 1992), but adapted to a non-monetary framework
(Lee et al., 2015). Prospect theory has also been associated with
parametric activation in the same reward regions in humans as

RPT (Breiter et al., 2001; Glimcher and Rustichini, 2004). The
variance-mean relationship (K, σ ) is reminiscent of Markowitz’s
quantification of decision utility (Markowitz, 1952; Kim et al.,
2010; Figure 1B). Other neuroeconomic studies have directly
connected Markowitz’s decision utility to brain activation of
reward systems in humans (D’Acremont et al., 2009; Mohr et al.,
2010; Wunderlich et al., 2011).

The neuroimaging and neuroeconomics findings with
RPT directly overlap findings in music neuroscience using
psychometric, physiological, and neuroimaging methods.
For example, fundamental work established the relationship
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between music-induced emotion and reward processing,
specifically in the NAc and connected reward regions (e.g.,
Blood and Zatorre, 2001; Osuch et al., 2009; Pereira et al., 2011;
Trost et al., 2012; Salimpoor et al., 2013). Current research
continues to investigate the neural underpinnings of musical
reward through examinations of stimulus characteristics
(for reviews, see: Koelsch et al., 2006; Levitin and Tirovolas,
2009; Koelsch, 2010; Zatorre and Salimpoor, 2013), exposure
(Schellenberg et al., 2008; Margulis et al., 2009; North and
Hargreaves, 2010; Ladinig and Schellenberg, 2012), and personal
attributes such as personality traits (Rentfrow and Gosling,
2003; Chamorro-Premuzic and Furnham, 2007; Rentfrow et al.,
2011; Mas-Herrero et al., 2013; Martínez-Molina et al., 2016),
media consumption (Chamorro-Premuzic and Furnham, 2007;
Lamont and Webb, 2010; Mas-Herrero et al., 2013; Hollebeek
et al., 2016; Martínez-Molina et al., 2016) and culture (Morrison
et al., 2003, 2008; Wong et al., 2009, 2012; Berns et al., 2010),
along with how music reward relates to other types of reward
processing (Kringelbach, 2005; Berns et al., 2010; Mas-Herrero
et al., 2014). The progress made with this work to quantify
the heterogeneity and definition of musical “preference” has
been substantial and underscores the importance of continuing
efforts at quantifying musical preference, and facilitating cross-
study interpretation. The music neuroscience literature would
potentially be enhanced by further development of ways to
quantify preference, particularly as they relate to the biological
underpinnings of reward processing.

In the current study, we set out to determine if auditory
stimuli that are dynamic and highly individualized, as with music
(e.g., Blood and Zatorre, 2001), could be characterized by RPT,
both for individual preferences and any lawful mathematical
patterns. To address these questions, we adapted the RPT
keypress paradigm to quantify relative preferences toward
excerpts of seventeenth to twenty-first century western art music
(Classical) and twentieth to twenty-first century jazz and Popular
music (Popular). Our hypotheses were as follows: (1) Subjects’
patterns of keypress responses would show the three types of
lawful patterns observed previously with visual stimuli (Breiter
and Kim, 2008; Kim et al., 2010; Lee et al., 2015). (2) These three
types of patterns would be “discrete” and “recurrent” for a broad
range of music categories, and exhibit scaling between individual
subjects and group data. (3) Broad individual differences in
the relative ordering of data points on these graphs would be
observed for music preference, despite any lawful structure of the
graphs fitting the data.

MATERIALS AND METHODS

Participants
This study consisted of two phases, a pilot phase and a primary
experiment phase, each phase with a separate cohort. Sixteen
adults between the ages of 18 and 36 with a mean (±SD) age
of 27.93 ± 5.54 years participated in the pilot experiment (6
male and 10 female). Sixty-two adults participated in the primary
experiment (25 males and 37 females), with an age range between
19 and 40, and a mean (±SD) age of 27.81 ± 5.99 years.
Subjects from both cohorts were recruited by advertisements

from the greater Chicago region through online and community
placed advertisements and research registries maintained by
the Department of Psychiatry and Behavioral Sciences at
Northwestern University Feinberg School of Medicine and the
Northwestern University Clinical and Translational Sciences
Institute. Subject recruitment stopped after a set temporal
window for recruitment, where target recruitment sought 40–50
subjects who completed both the Classical and Popular music
keypress task, and whose data were complete. This resulted in
62 subjects participating in the study. Of the 62 participants,
49 completed both the Classical and Popular music keypress
tasks and produced complete data files, meeting criteria to be
included as subjects for analysis of the primary experiment. Of
the 62 participants, 57 completed a questionnaire on musical
experience. Fifteen reported no musical training. Of the 42 who
reported some form of musical training, 14 rated themselves
as beginners, 13 as intermediates, 10 as amateurs and 5 as
professionals. Recruited subjects were compensated $15 per hour
and provided with round trip transportation on public transport
when applicable. Subjects completed this 1-h study as part of a
larger suite of experiments (including experiments not presented
as part of this music study) conducted over 2 days, for ∼2 h
each day. For additional information on participant screening
procedures and demographics, please see the Supplemental
Material available online.

This study was approved by the Institutional Review Board of
Northwestern University and was conducted in accordance with
the Declaration of Helsinki. As part of the process of consent,
participants were given a printed copy of the consent form to
read at their leisure. In addition, we went through each section
of the consent form, and each phase of the experiment was
explained to them, including all potential risks and benefits.
We also reviewed the section of the consent form that included
appropriate contacts for questions or concerns at that time or in
the future. At the end of this meeting, participants were given the
options to sign the consent form at that time, to sign it at a later
date, or to choose to not participate.

Music Keypress Task
The music keypress task quantified the amount of effort in terms
of keypresses that subjects were willing to trade for listening time
to Classical and Popular music of different categories, allowing
quantification of valuation. Valuation reflected the valence of
change in stimulus exposure (positive = increased exposure,
negative = decreased exposure, or neutral = no change). It
further reflected the magnitude of effort exerted to change
the amount of exposure, quantified through the number of
keypresses. Subjects thus had a choice between four possible
behaviors: they could (a) approach the stimulus (keypress toward
longer listening time), (b) avoid the stimulus (keypress toward
shorter listening time), (c) neither approach nor avoid the
stimulus (i.e., do nothing and accept the default listening time),
or (d) both approach and avoid the stimulus (for example, if they
overshot or undershot their desired listening time or changed
their mind partway through the stimulus). This music task used
procedures and analyses performed and reported previously with
visual stimuli, including pictures of average and beautiful faces
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(Aharon et al., 2001; Elman et al., 2005; Makris et al., 2008),
pictures of emotional facial expressions (Strauss et al., 2005; Perlis
et al., 2008; Gasic et al., 2009), food stimuli and the International
Affective Picture System or IAPS (Kim et al., 2010). The aim of
the procedure was to estimate, on a subject-wise and group-wise
basis, the patterns of approach or avoidance to the music stimuli.

The keypress paradigm for each of the two stimulus sets (i.e.,
Classical and Popular music) took about 30min to complete.
Each trial included stimulus load time (2 s, and part of the
intertrial interval), a passive pre-listening stage (4 s) to allow
initial assessment of the piece, and a delay to further facilitate
assessment of the piece (2 s; Figure 2). These were followed by
the active keypress listening stage, which had a default listening
time of 15 s for each stimulus if no keypresses were made. Hence,
as schematized in Figure 2, the default listening time for a trial
after the 4-s passive pre-listening stage and the 2-s silent period
was a total of 21 s. Subjects could decrease listening time via

active avoidance keypressing close to the onset of the active
keypress listening stage, or out to 30 s (30 s + 6 s = 36 s mark
in Figure 2). Each trial was followed by a white noise mask
(3 s), which minimized carry-over effects between trials. The
total experiment duration per stimulus set had a minimum (i.e.,
maximum decrease keypressing) of 16min, and a maximum (i.e.,
maximum increase keypressing) of 32min and 48 s.

The pilot experiment used only classical music stimuli, and in
parallel with the prior visual paradigms, included six categories
of classical music with eight musical stimuli per category (see
Stimuli section for additional information). Following acceptable
results from the pilot phase (i.e., that music stimuli evoked
relative preference graphs similar to those observed with visual
stimuli), the experimental paradigm was refined in the primary
experiment such that the stimulus presentation was quasi-
randomized, and an additional keypress task with Popular music
stimuli was added. For the primary experiment, the Classical and

FIGURE 2 | Schematic of music preference keypress task. (A) Keypress trial design. Each trial began with a 4-s passive pre-listening stage to allow initial

assessment of the musical excerpt, followed by a 2-s silent period. The silent period was immediately followed by the active keypress listening stage during which the

musical excerpt was presented. This stage had a default listening time of 15 s, but ranged in duration from 9 to 30 s on each trial depending on the keypress behavior

of the subject to approach or avoid the stimulus. A 3-s masking phase was presented immediately following the active listening stage; during this stage, white noise

was presented to minimize carry-over effects between trials. Subsequent trials began immediately following the end of the masking phase of the preceding trial. (B)

Example traces of keypressing effects on listening duration during an example sequence of five trials. The vertical axis of the top panel depicts the divergence of the

total trial-wise listening durations from the default baseline (15 s + 6-s pre-listening stage and 3-s post-listening masking phase). Jumps in the listening time occur in

response to discrete keypress responses and adhere to a resistive function (Methods). The horizontal axis denotes the elapsed time in each trial. Colored bars in

bottom panel denote the times of presentation of individual musical excerpts comprising individual trials on the keypress task.
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Popular stimulus sets were presented on separate days, and the
order of presentation across the 2 days (i.e., Classical first or
Popular first) was counterbalanced across subjects. For further
details on experimental procedures, please see the Supplementary
Material available online.

Each keypress task was implemented in Matlab and run on a
personal computer in a quiet room designated for experimental
testing. The hardware setup included a Lenovo X300 Think Pad
with SoundMax HD Audio running Windows XP, with Sony
MDRZX110 ZX headphones and a ViewSonic 22’ LED monitor
set to 1,440 × 900 resolution with 16 bit color, and a full-sized
keyboard. The keyboard was modified by fixing a white sticker
sized to cover the “C,” “V,” and “B” keys, so that subjects could
find the “Z” and “X” and “N” and “M” keys with ease. Prior to
the keypress task, subjects performed a keypress speed test to
familiarize themselves with the alternating keypress skills. They
were asked to use their writing hand to press the “Z” and “X”
key in an alternating fashion as quickly as possible. Participants
were given visual feedback on their keypress speed through a
dynamic bar in the middle of the screen, and were asked to
increase their keypress speed if they observed it dropping. They
initially performed a short (10 s) practice keypress speed test
to familiarize themselves with the task, and then a longer 30 s
keypress speed task.

The participant’s writing hand was employed using an
alternating two-key keypress design (in contrast to a single
keypress design) to avoid fatigue and to enable subjects to attain
a high keypress speed throughout the duration of the task. The
keypress task was designed to capture intrinsic motivation (Deci
and Ryan, 1985; Bandura, 1997). The objective of adopting this
framework was so that the more strongly participants’ responses
reflected their true relative preferences, the less their responses
reflected random noise on the one extreme, or completely
stereotyped responses (i.e., identical responses across all stimuli)
on the other extreme. The ability to distinguish valid keypress-
based preference behavior from subjects actively attending to
the task from keypress behavior arising from a lack of task
engagement was an important consideration in our experimental
design. In previous work we rigorously considered the extent to
which we could discriminate between such behaviors (Breiter and
Kim, 2008; Kim et al., 2010). Namely, we investigated whether
subjects’ keypress response patterns reflect their true preference
behavior (e.g., as distinguishable from random noise), and found
that value functions fit from subjects’ actual response data lie
intermediate between value functions obtained from random
noise or stereotyped (uniform) responses. We interpret these
results as indirect indicators of subject task engagement and
vigilance on the keypress-based preference task (Breiter and Kim,
2008; Kim et al., 2010).

In our keypress paradigm, participants have the option
to do “nothing” and accept the default listening time, or
alternatively to modulate how long the stimulus is presented
by actively keypressing. The patterns of their responses are
quantified by RPT, but individuals not engaging in the task
who either never keypress or respond identically to every
music stimulus will exhibit unquantifiable keypress entropy (see
Relative Preference Analysis, Methods), and thus will produce

a data for which no valid value function can be computed.
Likewise, subjects who theoretically make completely random
keypress responses regardless of the presented stimulus would
tend to generate data lying far removed from the distribution
of value functions observed in subjects performing the task (see
preceding paragraph). In such cases, observing the subject’s value
function (if computable at all) conforming to the distribution
of value functions from the rest of the study sample is useful
as an indirect fidelity measure for such an individual’s low level
of engagement. However, we emphasize that there is no way to
absolutely rule out the possibility that subjects were not attending
to the music stimuli and responding in ways that do not reflect
their true musical preference. To minimize this possibility, we
informed all participants that the duration of the experiment was
independent of their keypress behavior. Subjects were told this
to reduce the possibility that their keypress behavior would be
influenced by a desire to finish the experiment more quickly.
Therefore, from the subjects’ perspective, their ability to exert
control involved prolonging exposure to stimuli they enjoyed the
most, and minimizing exposure to stimuli they enjoyed least. In
order to remain objective, we had to accept subjects’ keypress
behavior at face value rather than making subjective assumptions
about what sorts of keypress behavior would or would not reflect
sufficient vigilance to the task. Anecdotally, our experience across
multiple studies (Aharon et al., 2001; Strauss et al., 2005; Makris
et al., 2008; Perlis et al., 2008; Gasic et al., 2009; Kim et al., 2010;
Lee et al., 2015; Viswanathan et al., 2015, 2017) has been that
subjects not attending to keypress tasks tend to make stereotyped
keypress responses with similar avoidance values to all presented
stimuli (i.e., to reduce overall viewing time) (Kim et al., 2010).
Such subjects are excluded from analysis due to the inability to
compute keypress entropy and thereby fit a value function. This
was very rarely encountered in our prior experiments, nor was
it seen in the current study, as indicated by the rare incidence
of subject exclusion (see Preliminary Analysis and Relative
Preference Analysis, Methods, and Supplementary Material).

For further details on experimental procedures and tables
of valid keypress responses across all datasets, please see
Supplementary Material available online.

Musical Stimuli
The seventeenth to twenty-first century western art music
(Classical) stimulus set consisted of six categories in the
Western art music tradition, based on agreed upon time periods
in music scholarship (Baroque [years 1600–1750], Classical
[years 1751–1814], Romantic [years 1815–1895], Early twentieth
Century [years 1896–1945], Late twentieth Century [years 1946–
1999], twenty-first Century [years 2000–present]). These stimuli
comprised eight excerpts (4 vocal, 4 instrumental) in each
category for a total of 48 excerpts. The 48 music excerpts were
selected by a professional music theorist (AEB). For further
details on criteria for choosing these music excerpts, please see
the Supplementary Material available online.

The 48 Classical music excerpts were chosen based on these
criteria: (i) the excerpt was composed within the time period, (ii)
the composer is often considered to represent that time period
and its stylistic features (e.g., Bach represents and is a currently
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well-known composer of the Baroque time period while Mozart
represents and is a well-known composer of the Classical time
period), (iii) the excerpt represents stylistic features of the time
period as agreed upon in music scholarship (e.g., representative
Classical music often uses diatonic harmonies whereas
representative Romantic music often uses chromatic harmonies).
In addition, to ensure each piece had sufficient volume during
the experiment, each excerpt was linearly transformed, so that
each piece had the same maximum loudness. Of the 48 Classical
excerpts, 24 contained vocals and 24 were instrumental.

The twentieth to twenty-first century jazz and Popular
music (Popular) stimulus set also consisted of six categories
(Alternative, Metal, Adult, Classic Rock, Jazz Fusion, and Classic
Jazz), again with eight excerpts in each for a total of 48 excerpts.
The categories of Popular music were chosen to optimize
between-category variation. Within each category, we aimed
to pick excerpts that were famous and others that were less
well-known but reflected similar musical characteristics. For the
Popular music stimulus set, there were never more than two
excerpts from the same band within a genre. In addition, we
chose some more specialized categories such as heavy metal for
their polarizing nature, as well as two broad eras of jazz music.
Classic jazz includes artists from the bebop (e.g., Charlie Parker
and John Coltrane) and cool jazz eras (e.g., Miles Davis, Dave
Brubeck). We also include jazz fusion titles from the 1970s (e.g.,
Chick Corea, Pat Metheny, Jean-Luc Ponty). Of the 48 Popular
music excerpts, 11 contained vocals and 37 were instrumental.

For the pilot experiment, the 48 Classical excerpts were
presented in a fixed order. For the primary experiment, the
paradigm was refined and the 48 trials in each task (e.g.,
Classical and Popular music) were quasi-randomized. Quasi-
randomization was obtained by using a Matlab random seed
generator that produced a random ordered non-replenishing
integer between 1 and 48, which mapped to each of the 48
excerpts per stimulus set. Task order (i.e., Classical vs. Popular
music) was counterbalanced across subjects.

Preliminary Analysis
Preliminary analysis of data integrity was performed on keypress
data from all 78 subjects. Of the 78 subjects, 8 subjects were
excluded from the analysis because they failed to return to
complete the second half of the experiment. Another 5 subjects
were excluded due to corrupt (N = 1) or partial (N = 4) data
sets. A total of 114 datasets were used for analysis from 16 subjects
for the pilot and 49 subjects for the primary study.

The remaining valid data sets (16 for the pilot; 49 for Classical
and Popular music) were evaluated using range (min, max),
location (mean) and dispersion measures (standard deviation)
for the numbers of keypresses increasing viewing time (K+) and
the numbers of keypresses decreasing viewing time (K−), and
were deemed normally distributed valid data.

In addition, as an exclusion criterion, the raw data were
evaluated for cases when K = 0 for a given category (i.e., cases
where the subject made no keypresses to either approach or avoid
any stimulus in the category). Computing the Shannon entropy
(H) for a given music category requires that K > 0; therefore, H
is undefined for categories in which the subject does not keypress

for any of the stimuli. In such a situation (i.e., K = 0), the H
computation results in evaluating log(0/0), which is undefined,
necessitating data exclusion.

Furthermore, to fit models to our data, the data had to be
screened for additional inclusion criteria. The model fit inclusion
criteria were as follows: (1) valid entropy (H) calculations (see
prior paragraph); (2) sufficient number of data points to fit the
model with a computable R2; and (3) coherence of model fits
between individual and group data. This last criterion means
that the curve direction of individual subject model fits must be
consistent with the curve direction of the group level boundary
envelopes, and therefore corroborate themajority of the observed
subject data. Altogether, there were 6 types ofmodel fitting, which
included group level boundary envelopes (power-law fits with
offsets and logarithmic fits for group (K, H) value functions,
and quadratic fits for group (K, σ ) limit functions) in addition
to logarithmic and simple power-law fits for individual (K, H)
value functions, and quadratic fits for individual (K, σ ) limit
functions. Model fit analysis of individual subject data resulted
in 326 potential fits for each model, including 32 data sets for the
pilot, and 98 for Classical, 98 for Popular music and 98 for pooled
Classical and Popular music data. Model fit analysis for group
data produced 2 fits for each of 3 models fit to 4 different datasets,
leading to 24 total model fits for the group level analyses. Overall,
our reported data contained a total of 1,002 potential model fits.
Of the 1,002 potential model fits, a total of 103 data sets were
excluded. For group level fitting of boundary envelopes, there
were 0/24 fits excluded. For logarithmic fitmodeling of individual
(K, H) data, there were 15/326 data sets excluded. For the simple
power-law fit modeling of individual (K, H) data, there were
58/326 data sets excluded. Finally, for the quadratic fit modeling
of individual (K, σ ) data, there were 30/326 data sets excluded.
Model exclusions for individual subjects are tabulated in Tables
S1–S5, and detailed for each analysis in the Supplementary
Results Material available online.

Relative Preference Analysis
In carrying out the relative preference analysis, we followed
the methodology described in detail in Kim et al. (2010). We
specifically used an iterative modeling approach (Banks and
Tran, 2009) in which we sought to identify RPT patterns in
the data and three signatures of potential lawfulness, as done
previously with visual stimuli (Breiter and Kim, 2008; Kim et al.,
2010). This meant observing “discrete” mathematical fitting of
patterns within the data, “recurrence” of patterns across different
stimulus sets and experiments, and “scalability” of the observed
patterns. We utilized the datasets that met stringent criteria for
quality assurance, and assessed the graphical structure between
the following variables: mean numbers of keypresses to approach
or avoid stimuli within a music category (K+, K−), the Shannon
entropy of approach/avoidance keypressing within a category
(H+, H−), and the standard deviation (σ+, σ−) of approach
or avoidance keypressing within a category. Graphical analysis
sought to determine the presence of functions, manifolds, or
boundary envelopes to individual, and separately, group data
that followed the same form as RPT functions, manifolds, and
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boundary envelopes (Breiter and Kim, 2008; Kim et al., 2010; Lee
et al., 2015).

(K, H) Value Functions
The first relationship we considered was the relationship
between mean keypresses to approach or avoid across stimuli
within a music category (K+, K−) and the Shannon entropy
of approach/avoidance keypressing (H+, H−). We used the
following approach to compute the Shannon entropy separately
for the positive (approach) and negative (avoidance) keypress
responses in each category. First, consider an ensemble of the
numbers of either approach or avoidance keypress responses (i.e.,
numbers of keypresses) A across stimuli within a single music
category: A± = (a1, a2, . . . , an). We can then define the relative
proportions of the approach or avoidance keypress responses for
the individual stimuli, pi, such that:

pi = ai/

N
∑

j=1

aj. (1)

Using these proportions of the keypress responses, the Shannon
entropy of the keypress response pattern can be computed for an
individual music category as follows:

H±
=

∑

i

pilog2
1

pi
. (2)

After computing the values of K± and H± for each music
category, (K, H) value functions can be generated by plotting
the Shannon entropy H± against the mean keypresses K± for
all music categories in an individual subject. (K, H) data were
also plotted across multiple subjects to visualize data at the group
level.

At the group level, we assessed if (K, H) data contained
boundary envelopes that conformed well to either logarithmic
functions (H= a log10 K+ b) or power-law functions with offsets
(H = (K + a)b+ c); see the Supplementary Material available
online for details. At the individual subject level, we assessed
fits for logarithmic (H = a log10 K + b) and simple power-
law (H = b Ka) functions to the (K, H) data for approach and
avoidance across music categories for individual subjects (e.g.,
Figures 4A,C). The fits for logarithmic and power-law functions
were achieved by performing simple linear regression on H vs.
log10 K, and log10 H vs. log10K, respectively.

(K, σ ) Limit Functions
The second relationship considered was that between the mean
keypresses toward approach or avoidance (K±) and the standard
deviation of approach or avoidance keypressing across stimuli
within a music category (σ±). (K, σ ) limit functions were
generated by plotting values of σ against K for all music
categories either in an individual subject or pooling the data
together across subjects in a group analysis. At both the
individual and group level, we found that (K, σ ) limit functions
were well characterized by quadratic functions of the form
σ = a K2 + b K + c. For the group data, we fit quadratic
boundary envelopes to the (K, σ ) data much in the same manner

performed for the (K, H) value functions (see Supplementary
Material available online for further details). For individual
subject analysis, we fit quadratic functions directly to the (K, σ )
data using the polyfit function in Matlab.

(H+, H−) Trade-Off Plots
(H+,H−) trade-off (or opponency) plots were defined by plotting
the Shannon entropy for approach (H+) against the Shannon
entropy for avoidance (H−) for all music categories in a given
stimulus set. These plots were generated either across music
categories for an individual subject, or by pooling data across all
subjects in the cohort to generate a group-level plot. For both the
individual subject and group-level data, we found that (H+, H−)
data conformed to a radial distribution about the origin of the

trade-off plot, such that r =

√

(H−)2+(H+)2, or, equivalently,

H+ =

√

r2 − (H−)2. Radial fits were estimated for individual
subjects as well as the group-level data by computing the mean
radial distance, r, across all (H+, H−) data in the trade-off plot.

Relative Ordering of Categorical Preferences
Using methods developed to assess relative preference logic in
Kim et al. (2010), the relative rank orderings of Classical and
Popular music categories along the (K, H) value function were
measured for each individual, considering both logarithmic and
power-law fits. To determine rank order, the (K, H) values for
individual music categories were projected onto the fitted value
function by identifying the point on the value function with the
shortest distance to the observed (K, H) data. Then, the relative
order of music categories on the (K, H) curve was computed for
each individual, beginning with music categories falling nearest
to the origin of the value function. Determining the relative
ordering of music categories for each individual subject allowed
us to assess whether, across stimulus sets and experiments,
there were multiple subjects with the exact same rank ordering
of music categories by preference. This data was tabulated in
frequency histograms to show the numbers of subjects who share
rank orderings in common.

RESULTS

Classical Music Pilot Experiment
Group-Level (K, H), (K, σ ), and (H+, H−) Analyses
We evaluated the distributions between keypress mean, standard
deviation and pattern variables at the group level, by pooling
data across all music categories and all subjects. As a preliminary
analysis, we considered approach and avoidance keypressing
behavior within an initial cohort of 16 subjects keypressing
to six categories of Classical music. We first examined the
relationship between mean keypresses to approach or avoid
across stimuli within a music category (K), and the Shannon
entropy of the approach/avoidance keypresses within a category
(H; Methods; Figures 3A,B). Next, we examined the relationship
between K and the standard deviation of keypress responses
within categories (σ ; Figures 3C,D). Finally, we considered the
relationship between avoidance entropy for each category (H−)
and the approach entropy for each category (H+), which we refer
to as the trade-off plot (Figures 3E,F).
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FIGURE 3 | Relative preference results for pilot Classical music experiment. (A) Group value functions for (K, H) data. Symbols denote individual (K, H) data

pairs for approach and avoidance keypressing across musical categories for all subjects in cohort. Boundary envelopes to the approach and avoidance keypressing

data were well fit by logarithmic functions (light green/red) or power-law functions with an offset (dark green/red). (B) Value functions comparing mean keypress

intensity (K) to keypress entropy (H) in individual subjects. Symbols indicate K and H values computed within six Classical music categories for either approach (K+,

H+) or avoidance (K−, H−) keypressing behavior within a single representative subject. Each color denotes a Classical music category. Upward-pointing symbols

correspond to approach keypressing; downward-pointing symbols correspond to avoidance keypressing. Dark green and red traces indicate logarithmic fits to

approach and avoidance data for the representative subject; superimposed light green and red traces indicate individual log fits for remaining subjects in the cohort.

(C) Group limit functions for (K, σ ) data. Boundary envelopes to (K, σ ) were well fit by quadratic functions (red and green traces). (D) Limit functions comparing K to

the standard deviation of approach or avoidance keypressing (σ ) across Classical music categories in individual subjects. Approach and avoidance data for individual

subjects were fit to quadratic functions, such that σ = a K2+ b K + c. (E) Group trade-off plot for (H+, H−) data. Black line indicates radial fit computed for (H+, H−)

pairs across all musical categories and all subjects in the cohort. (F) Trade-off plot comparing entropy for approach (H+) and avoidance (H−) keypressing across

Classical music categories in individual subjects. Symbols denote (H+, H−) data pairs for each music category in the representative subject. Black line denotes radial

fit of (H+, H−) pairs computed for representative subject, such that r =

√

(H+)2+(H−)2; gray lines denote radial fits for remaining subjects in cohort.

Figure 3A displays group data comparing mean keypresses
(K) for each subject and music category to the keypress entropy
(H). We fit boundary envelopes to the group (K, H) data by
estimating the outward edge of the (K, H) distribution and
then fitting either a logarithmic function (H = a log K + b)
or a power-law with vertical and horizontal offsets (H = (K +

a)b + c; Methods). Both logarithmic (light traces) and power-
law (dark traces) functions effectively approximated the shape
of the boundary envelope (Figure 3A), as with the individual
subject fits (Figure 3B). We similarly fit boundary envelopes
to the group limit function comparing K and σ across music
categories (Figure 3C). The boundary envelopes for (K, σ ) data
were fit using quadratic functions, as for the individual subject
fits (Figure 3D). In addition, the group (H+, H−) data exhibited
a radial distribution around the origin of the trade-off plot (mean
radial distance = 2.63 bits), albeit with greater dispersion of the
radial distance across subjects when analyzing data at the group
level (Figure 3E) than observed when considering fits within
individual subjects (Figure 3F).

Individual Subject (K, H) Value Functions
Individual subjects’ (K, H) value functions were well fit
by logarithmic functions of the form H = a log K + b
(Figure 3B). Figure 3B illustrates these fits for a representative
subject (dark traces; symbols indicate (K, H) values for
individual music categories) and for the remaining subjects in
the cohort (light traces). All subjects demonstrated the same
logarithmic shape for both approach and avoidance curves.
Subjects’ value functions were also well fit by simple power-
law functions of the form H = b Ka (not shown). Table 1
provides goodness of fit estimates for the logarithmic (log
K, H) and power-law (log K, log H) fits to (K, H) value
functions.

Individual Subject (K, σ ) and (H+, H−) Plots
Consistently, subjects exhibited a quadratic shape to their (K,
σ ) curves, of the form σ = a K2 + b K + c. σ began
small for low values of K, at which point σ quickly rose to
a peak value at intermediate K values, before finally declining
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and returning to baseline levels (Figure 3D). The same trend
was observed for the approach and avoidance curves in this
regard, although the avoidance curves achieved much smaller
peak heights at lower magnitudes of K. Table 1 provides
goodness of fit estimates for the quadratic fits to (K, σ ) limit
functions.

Plotting the relationship between H− and H+ is informative
because it reveals tendencies of the subject toward approach vs.
avoidance (depending on the polar angle) as well as indifference
vs. conflict (depending on the radial distance) for each category
(Kim et al., 2010). Subjects showed clear tendencies toward
a radial distribution of (H+, H−) data in the trade-off plot,
such that the radial distances of the (H+, H−) pairs were
positioned roughly a constant distance from the origin across
music categories. Figure 3F displays the distribution of (H+,H−)
pairs and the mean radial fit for the representative subject (black
trace), in addition to those for the remaining subjects in the
cohort (gray traces).

Primary Classical Music Experiment
Group-Level (K, H), (K, σ ), and (H+, H−) Analyses
After establishing these consistent patterns between mean
keypress behavior and pattern variables of keypressing for
the pilot Classical music stimulus set (Figures 3A,C,E), we
repeated these analyses for the primary experiment involving
a larger cohort (49 subjects) with data available for categories
of both Classical and Popular music, and a randomized order

TABLE 1 | Mean goodness of fit statistics for value and limit functions for

music categories for the pilot experiment Classical music stimulus set.

Variables Parameter Mean ± SD for parameters

(Log K−, H−) R2 0.91 ± 0.11

Adjusted R2 0.89 ± 0.14

F statistic of regression 396 ± 613

p-value of regression 0.017 ± 0.031

(Log K+, H+) R2 0.85 ± 0.17

Adjusted R2 0.80 ± 0.22

F statistic of regression 421 ± 903

p-value of regression 0.040 ± 0.071

(Log K−, Log H−) R2 0.85 ± 0.22

Adjusted R2 0.80 ± 0.33

F statistic of regression 104 ± 97

p-value of regression 0.050 ± 0.16

(Log K+, Log H+) R2 0.76 ± 0.29

Adjusted R2 0.66 ± 0.39

F statistic of regression 75 ± 107

p-value of regression 0.13 ± 0.18

(K−, σ−) R2 0.85 ± 0.18

Adjusted R2 0.74 ± 0.30

F statistic of regression 160 ± 534

p-value of regression 0.085 ± 0.15

(K+, σ+) R2 0.82 ± 0.27

Adjusted R2 0.70 ± 0.45

F statistic of regression 89 ± 149

p-value of regression 0.12 ± 0.24

of stimulus presentation. We first considered the Classical
and Popular music stimulus sets separately. Looking at
group keypressing data across six Classical music categories
in this larger cohort, we replicated the same findings as
observed in our pilot phase cohort. Boundary envelopes
for group (K, H) value functions were again well fit by
logarithmic and power-law (with vertical and horizontal
offsets) functions (Figure 4A), while boundary envelopes for
group (K, σ ) limit functions were well fit by quadratic
functions (Figure 4B). Group-level (H+, H−) data exhibited a
radial distribution about the origin of the trade-off plot, as
observed previously, with a mean radial distance of 2.57 bits
(Figure 4C).

Individual Subject (K, H) Value Functions
We next considered keypress variables in the primary experiment
for Classical music categories at the individual subject level.
First, (K, H) value functions were fit separately with logarithmic
functions (H = a log K + b) and simple power-law functions
(H = b Ka). Figure 5A depicts the logarithmic fits to individual
subjects’ approach and avoidance curves, highlighting the
(K, H) data for individual music categories and fits for a
representative subject (symbols, dark traces). These logarithmic
fits were estimated by performing simple linear regression of
H against log10 K. The linear fits are depicted graphically in
Figure 5B, which plots H against log10 K, highlighting the
results of regression for the representative subject (symbols,
dark traces). Figure 5C displays the results of the simple
power-law fits to individual subjects’ (K, H) data. Power-law
fits were estimated by performing simple linear regression of
log10 H against log10 K; the results of these regressions are
displayed graphically in Figure 5D. Goodness of fit estimates for
logarithmic and power-law approximations to the (K, H) value
functions for the primary Classical music analysis are provided
in Table 2.

Individual Subject (K, σ ) and (H+, H−) Analyses
We also considered the relationships between K and σ as well
as H+ and H− at the individual subject level. As seen in the
pilot cohort, individual (K, σ ) limit functions were well fit by
quadratic functions (Figure 6A). Table 2 indicates goodness of
fit estimates for the quadratic functions fit to individual (K, σ )
data. Also consistent with earlier results, individual (H+, H−)
data were radially distributed about the origin of the trade-off plot
(Figure 6B). Figure 6B demonstrates these (H+, H−) trade-off
functions for individual subjects.

Popular Music Experiment
Group-Level (K, H), (K, σ ), and (H+, H−) Analyses
After confirming that the relationships between mean
keypressing and pattern variables replicated across separate
cohorts of subjects keypressing to Classical music categories,
we asked if these results extended to a different genre of
music. We performed an identical analysis to keypressing
data from the same large cohort of subjects (as depicted in
Figures 4–6), but this time using keypressing data related to six
categories of Popular music. We observed the same relationships
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FIGURE 4 | Group relative preference results for the Classical music stimulus set in the primary experiment. (A) Approach and avoidance boundary

envelopes for (K, H) data were well fit by logarithmic functions (light red/green traces) and power-law functions with offset (dark red/green traces). Symbols depict (K,

H) data pairs for the six individual Classical music categories across all subjects in the cohort. (B) Boundary envelopes for the group (K, σ ) data were well fit by

quadratic functions (green/red traces). Symbols depict (K, σ ) data pairs for all Classical music categories and subjects. (C) Trade-off plot showing group (H+, H−)

data. Symbols indicate (H+, H−) data pairs for each individual music category within individual subjects. Black line indicates radial fit computed across all subjects

and music categories, such that r =

√

(H+)2+(H−)
2
.

FIGURE 5 | Individual (K, H) value functions and (K, H) regressions for the Classical music stimulus set in the primary experiment. (A) Logarithmic fits to

(K, H) data within individual subjects. Linear regression of H vs. log10 K for the approach and avoidance data (separately) resulted in logarithmic fits of the form H = a

log10 K + b. Symbols indicate (K, H) values within individual music categories for approach and avoidance keypressing in a representative subject. Dark green/red

traces indicate log fits for approach/avoidance keypressing in the representative subject; light green/red traces indicate log fits for remaining subjects of the cohort. (B)

Semilog plot illustrating linear regression of H vs. log10 K for approach (green) and avoidance (red) data in the representative subject (dark traces) and remaining

subjects in cohort (light traces). This linear regression procedure produced the log fits depicted in (A). (C) Simple power-law fits to (K, H) data within individual

subjects. Linear regression of log10 H vs. log10 K resulted in power-law fits of the form H = b Ka. (D) Log-log plot illustrating linear regression of log10 H vs. log10 K

for the approach and avoidance data in individual subjects. This linear regression produced the power-law fits depicted in (C).
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TABLE 2 | Mean goodness of fit statistics for value and limit functions for

music categories for the primary experiment Classical music stimulus set.

Variables Parameter Mean ± SD for parameters

(Log K−, H−) R2 0.88± 0.14

Adjusted R2 0.85± 0.17

F statistic of regression 778± 2, 232

p-value of regression 0.019± 0.036

(Log K+, H+) R2 0.84± 0.20

Adjusted R2 0.77± 0.32

F statistic of regression 205± 485

p-value of regression 0.059± 0.13

(Log K−, Log H−) R2 0.86± 0.19

Adjusted R2 0.81± 0.27

F statistic of regression 347± 1, 389

p-value of regression 0.041± 0.14

(Log K+, Log H+) R2 0.84± 0.22

Adjusted R2 0.77± 0.36

F statistic of regression 311± 989

p-value of regression 0.063± 0.15

(K−, σ−) R2 0.88± 0.19

Adjusted R2 0.79± 0.31

F statistic of regression 171± 399

p-value of regression 0.073± 0.15

(K+, σ+) R2 0.82± 0.26

Adjusted R2 0.71± 0.43

F statistic of regression 1.8e30± 1.2e31

p-value of regression 0.12± 0.23

between keypressing and all pattern variables evaluated in
the pilot experiment. Figure 7 displays the relative preference
relationships computed on the group-level data for the Popular
music cohort. As seen before, group boundary envelopes could
be fit to (K, H) value function data using either a logarithmic
function or power-law with offsets (Figure 7A). Boundary
envelopes fit to the group (K, σ ) limit function data were again
well fit using quadratic functions (Figure 7B), while group
(H+, H−) data in the trade-off plot were radially distributed
about the origin, with a mean radial distance of 2.61 bits
(Figure 7C).

Individual Subject (K, H) Value Functions
At the individual subject level, subjects’ (K, H) value functions
were again well fit by logarithmic (Figure 8A) or simple power-
law (Figure 8C) functions when keypressing to the Popular
music categories. Figures 8B,D display the linear regressions of
H against log10 K and log10 H against log10 K used to estimate
the logarithmic and power-law fits, respectively.

Individual Subject (K, σ ) and (H+, H−) Analyses
Individual subject results for the (K, σ ) and (H+, H−)
relationships for keypressing to Popular music categories also
corroborated the results with Classical music. Individual (K, σ )
data were well fit using quadratic functions (Figure 9A), while
(H+, H−) trade-off data conformed to radial distributions about

the origin (Figure 9B). Goodness of fit estimates for logarithmic
and power-law fits to individual (K, H) data as well as quadratic
fits to (K, σ ) data for the Popular music analysis are presented in
Table 3.

Pooled Classical and Popular Music
Analysis
Group-Level (K, H), (K, σ ), and (H+, H−) Analyses
As a final analysis, we took the second (larger) cohort of subjects
from the primary experiment and pooled data together across
both Classical and Popular music stimulus sets, to perform a
relative preference analysis for subjects keypressing to a total
of 12 music categories spanning different musical genres (six
Classical music categories and six Popular music categories).
Results of this pooled analysis corroborated the results observed
for the pilot experiment as well as the analyses conducted
separately on Classical and Popular music categories. Figure 10
displays the results of the group-level analysis across genres.
Figure 10A depicts the group (K, H) value functions; boundary
envelopes to approach and avoidance data were well fit by either
logarithmic functions (light traces) or power-law functions with
offsets (dark traces). Boundary envelopes to group (K, σ ) data
were well fit by quadratic functions (Figure 10B), and group (H+,
H−) trade-off data exhibited a radial distribution with a mean
radial distance of 2.59 bits (Figure 10C).

Individual Subject (K, H), (K, σ ), and (H+, H−)

Analyses
At the level of individual subjects, value functions for (K, H)
data across the 12 pooled music categories were well fit with
logarithmic (Figure 11A) or power-law (Figure 11C) functions.

The simple linear regressions ofH against log10 K and log10 H
against log10 K used to estimate the logarithmic and power-law
fits (respectively) are displayed in Figures 11B,D, highlighting
the results for the representative subject. Additionally, individual
subjects exhibited (K, σ ) limit functions conforming to quadratic
functions (Figure 12A), and their individual (H+, H−) data
were radially distributed around the origin of the trade-off plot,
as shown in Figure 12B. Table 4 presents the goodness of fit
estimates for fits to individual subjects’ (K, H) and (K, σ ) data
for the pooled Classical and Popular music analysis.

Goodness of Fits for the (K, H) value
Function
Given issues in the literature between use of a logarithmic vs.
a power-law framework for the Weber-Fechner Law (Fechner,
1860; Stevens, 1961), we further evaluated the issue of whether
the (K, H) value functions are better fit by logarithmic or power-
law functions. Our prior work has shown that both frameworks
appear to work well within the range of interpretable human
keypressing (Breiter and Kim, 2008; Kim et al., 2010; Lee
et al., 2015). In this manuscript, we addressed this question by
comparing the R2 values for the approach and avoidance curves
between the logarithmic and power-law fits, in order to see
whether one of the functions had significantly higher goodness
of fit values. Considering results for approach and avoidance
curves across four datasets (pilot experiment, Classical stimulus
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FIGURE 6 | Limit and trade-off fits for individual subjects from the Classical music stimulus set in the primary experiment. (A) Limit functions show the

relationship between mean keypressing (K) and keypress standard deviation (σ ) across Classical music categories within individual subjects, highlighting a

representative subject (symbols, dark traces). Limit functions for approach and avoidance keypressing were quadratic fits of the form σ = a K2+ b K + c. (B)

Trade-off plot fits illustrate the relationship between avoidance (H−) and approach (H+) keypress entropy across Classical music categories, within individual subjects.

Radial fits were computed for each subject such that r =

√

(H+)2+(H−)
2
. Symbols and black trace indicate data and fit for a representative subject; radial fits for

remaining subjects are indicated by gray traces.

FIGURE 7 | Group relative preference results for the Popular music stimulus set in the primary experiment. (A) Approach and avoidance boundary

envelopes for (K, H) data were fit by logarithmic functions (light red/green traces) and power-law functions with offset (dark red/green traces). Symbols depict (K, H)

data pairs for the six individual Popular music categories across all subjects in the cohort. (B) Boundary envelopes for the group (K, σ ) data were fit with quadratic

functions (green/red traces). Symbols depict (K, σ ) data pairs for all Popular music categories and subjects. (C) Trade-off plot showing group (H+, H−) data. Symbols

indicate (H+, H−) data pairs for each individual music category within individual subjects. Black line indicates radial fit computed across all subjects and music

categories, such that r =

√

(H+)2+(H−)
2
.

set in the primary experiment, Popular stimulus set in the
primary experiment, pooled Classical and Popular analysis from
the primary experiment) resulted in eight comparisons, requiring
a p-value of 0.05/8 = 0.0063 after Bonferroni correction. None
of the differences in R2 values between logarithmic and power-
law fits to the (K, H) value functions approached this level of
significance. For the pilot Classical music dataset, the fits to the
avoidance curves had R2-values (±SD) of 0.91 ± 0.11 and 0.85
± 0.22 for log and power-law fits (see Table 1), respectively, and
were not statistically different (two-sample paired t-test, p =

0.19). Fits to the approach curves had R2-values of 0.85 ± 0.17
and 0.76 ± 0.29 for log and power-law fits (see Table 1), again
not statistically different (t-test, p = 0.27). Likewise, there were
no differences in R2-values of the fits to the (K, H) data for the

second (primary) Classical music dataset (avoidance curves, log:
0.88 ± 0.14, power: 0.86 ± 0.19, p = 0.31; approach curves,
log: 0.84 ± 0.20, power: 0.84 ± 0.22, p = 0.64; see Table 2), the
Popular music dataset (avoidance curves, log: 0.90± 0.12, power:
0.89 ± 0.14, p = 0.76; approach curves, log: 0.88 ± 0.19, power:
0.86 ± 0.18, p = 0.93; see Table 3), or for the pooled Classical
and Popular music dataset (avoidance curves, log: 0.88 ± 0.14,
power: 0.86 ± 0.13, p = 0.07; approach curves, log: 0.82 ± 0.20,
power: 0.80 ± 0.20, p = 0.03; see Table 4). Overall, average R2-
values ranged from 0.82 to 0.91 and 0.76 to 0.89 for the log and
power-law fits, respectively. Thus, both logarithmic and power-
law functions produced consistently good fits to the (K, H) data,
and we remain agnostic as to which form may be the preferred
method for approximating the value function.
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FIGURE 8 | Individual (K, H) value functions and (K, H) regressions for the Popular music stimulus set in the primary experiment. (A) Logarithmic fits to

(K, H) data within individual subjects. Symbols indicate (K, H) values within individual music categories for approach and avoidance keypressing in a representative

subject. Dark green/red traces indicate log fits for approach/avoidance keypressing in a representative subject; light green/red traces indicate log fits for remaining

subjects of the cohort. (B) Semilog plot illustrating linear regression of H vs. log10 K for approach (green) and avoidance (red) data in a representative subject (dark

traces) and remaining subjects in cohort (light traces). (C) Simple power-law fits to (K, H) data within individual subjects. (D) Log-log plot illustrating linear regression of

log10 H vs. log10 K for the approach and avoidance data in individual subjects.

FIGURE 9 | Limit and trade-off fits for individual subjects from the Popular music stimulus set in the primary experiment. (A) Limit functions show the

relationship between mean keypressing (K) and keypress standard deviation (σ ) across Popular music categories within individual subjects, highlighting the

representative subject (symbols, dark traces). Limit functions for approach and avoidance keypressing are quadratic fits (σ = a K2+ b K + c). (B) Trade-off plot fits

illustrate the relationship between avoidance (H−) and approach (H+) keypress entropy across Popular music categories, within individual subjects. Radial fits were

computed for each subject such that r =

√

(H+)2+(H−)2. Symbols and black trace indicate data and fit for a representative subject; radial fits for remaining subjects

are indicated by gray traces.
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TABLE 3 | Mean goodness of fit statistics for value and limit functions for

music categories for the primary experiment Popular music stimulus set.

Variables Parameter Mean ± SD for parameters

(Log K−, H−) R2 0.90± 0.12

Adjusted R2 0.87± 0.16

F statistic of regression 595± 1, 571

p-value of regression 0.021± 0.037

(Log K+, H+) R2 0.88± 0.19

Adjusted R2 0.84± 0.25

F statistic of regression 1, 069± 3, 647

p-value of regression 0.044± 0.11

(Log K−, Log H−) R2 0.89± 0.14

Adjusted R2 0.84± 0.20

F statistic of regression 106± 184

p-value of regression 0.048± 0.085

(Log K+, Log H+) R2 0.86± 0.18

Adjusted R2 0.81± 0.24

F statistic of regression 290± 908

p-value of regression 0.053± 0.089

(K−, σ−) R2 0.88± 0.16

Adjusted R2 0.81± 0.27

F statistic of regression 64± 95

p-value of regression 0.062± 0.12

(K+, σ+) R2 0.87± 0.19

Adjusted R2 0.79± 0.32

F statistic of regression 887± 4, 397

p-value of regression 0.075± 0.16

Goodness of Fits for the (K, σ ) Value
Function
Across analyses, average R2-values ranged from 0.82 to 0.88 for
the quadratic fits to the (K, σ ) value function (see Tables 1–4).

Loss Aversion Measures
In the behavioral finance and neuroeconomics literature, loss
aversion is defined as the overweighting of losses relative to
gains, or, more technically, the slope (i.e., first derivative) of the
avoidance curve of the value function divided by the slope of
the approach curve (Kahneman and Tversky, 1979; Köbberling
and Wakker, 2005; Schmidt and Zank, 2005). For this study,
we compared a measure similar to the classic definition of loss
aversion as defined under prospect theory (Lee et al., 2015),
which we refer to as loss aversion going forward. Namely, we
computed loss aversion from the relative slopes of the approach
and avoidance curves fit to subjects’ (K, H) value function data.
For our data, loss aversion for the approach and avoidance
curves was computed at the point where K = 25 keypresses.
Kahneman and Tversky originally reported a value of 2.25 for
loss aversion (Kahneman and Tversky, 1979), indicating that
humans are more than twice as averse to losses as they are drawn
to gains. The values we obtained for loss aversion in the (K,
H) value functions of individual subjects keypressing to music
stimuli overlapped this value in many cases. Table 5 provides the

average loss aversion values computed across subjects for both
the pilot experiment (Classical music only) and the two stimulus
sets (Classical and Popular music) in the primary experiment.
For the pilot Classical music dataset, logarithmic fits yielded an
average loss aversion (±SD) of 1.13 ± 0.33, while power-law
fits yielded average loss aversion of 3.26 ± 1.24. Thus, power-
law fits overlapped the classical value reported by Kahneman
and Tversky, while the values obtained from logarithmic fits
were lower than this value. For the primary Classical music
experiment, log fits produced average loss aversion of 1.38± 1.12,
vs. 2.36 ± 3.47 for power-law fits, overlapping the classical value
in both cases. For Popular music stimuli, loss aversion values
were 0.97 ± 0.38 for log fits and 5.27 ± 13.48 for power-law fits.
Finally, for the pooled Classical and Popular music analysis (from
the primary experiment), loss aversion values were 1.26 ± 1.59
for log fits and 2.27 ± 0.82 for power-law fits, again overlapping
the classical value of 2.25 in both cases.

Subjectivity of Preference
Finally, we wished to consider the extent to which
approach/avoidance preferences were unique to individual
subjects. If subjects all had similar preferences to approach
or avoid the various categories of music stimuli, this would
argue that preferences on the music keypress paradigm are
not subjective, but are more common across all subjects. On
the other hand, if individual subjects had unique patterns of
approach/avoidance across music categories, this would argue
that preference truly is subjective (i.e., individualized). To
address this question, we examined the relative rank orderings
of Classical and Popular music categories along the (K, H)
value function for each individual, considering both logarithmic
and power-law fits, using methods developed to assess relative
preference logic in Kim et al. (2010) and described in Methods.
Figure 13 shows frequency histograms that indicate the numbers
of subjects who share rank orderings in common, when all
categories of music had (K, H) values [thus individuals with 5 or
less categories on the (K, H) value function were not included in
the histograms].

The horizontal axes in these histograms specify the number
of subjects who share a particular rank ordering in common.
For instance, a value of one on the horizontal axis indicates
rank orderings observed in only a single subject, a value of two
indicates number of subjects having rank orderings common
across two subjects (a dyad), a value of three indicates number
of subjects with the same ordering in three subjects (a triad),
etc. The vertical axis indicates the number of subjects observed
with each type of rank ordering. (For instance, a bar with a
frequency of 40 centered on x = 1 indicates 40 subjects with
completely unique rank orderings seen in no other subject.) Rank
orderings observed in common across many subjects (i.e., large
value on horizontal axis) indicate stereotyped patterns of music
preference, while rank orderings observed in only one or a small
number of subjects (i.e., small value on horizontal axis) reflect
individualized patterns of preference.

For the pilot Classical music phase, we found that all subjects
with valid avoidance curve fits had completely unique rank
preference orderings of avoidance to music categories for both
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FIGURE 10 | Group relative preference results for pooled Classical and Popular music stimulus sets in the primary experiment. (A) Approach and

avoidance boundary envelopes for (K, H) data were fit by logarithmic functions (light red/green traces) and power-law functions with offset (dark red/green traces).

Symbols depict (K, H) data pairs for the six Classical and six Popular music categories across all subjects in the cohort. Popular music categories are indicated by a

black dot in the center of the symbols. (B) Boundary envelopes for the group (K, σ ) data were fit with quadratic functions (green/red traces). Symbols depict (K, σ )

data pairs for all Classical and Popular music categories and all subjects. (C) Trade-off plot showing group (H+, H−) data. Symbols indicate (H+, H−) data pairs for

each individual Classical and Popular music category within individual subjects. Black line indicates radial fit computed across all subjects and music categories, such

that r =

√

(H+)2+(H−)2.

FIGURE 11 | Individual (K, H) value functions and (K, H) regressions for pooled Classical and Popular music stimulus sets in the primary experiment.

(A) Logarithmic fits to (K, H) data within individual subjects. Symbols indicate (K, H) values within individual Classical and Popular music categories for approach and

avoidance keypressing in a representative subject. Popular music categories are indicated by a black fill in the center of the symbols. Dark green/red traces indicate

log fits for approach/avoidance keypressing in a representative subject; light green/red traces indicate log fits for remaining subjects of the cohort. (B) Semilog plot

illustrating linear regression of H vs. log10 K for approach (green) and avoidance (red) data in a representative subject (dark traces) and remaining subjects in cohort

(light traces). (C) Simple power-law fits to (K, H) data within individual subjects, including data from a representative subject. (D) Log-log plot illustrating linear

regression of log10 H vs. log10 K for the approach and avoidance data in individual subjects, including data from a representative subject.
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FIGURE 12 | Limit and trade-off plots for individual subjects from pooled Classical and Popular music stimulus sets in the primary experiment. (A)

Limit functions show the relationship between mean keypressing (K) and keypress standard deviation (σ ) across Classical and Popular music categories within

individual subjects, highlighting the representative subject (symbols, dark traces). Popular music categories are distinguished by a black fill in the center of the

symbols. Limit functions for approach and avoidance keypressing are quadratic fits (σ = a K2 + b K + c). (B) Trade-off plot illustrates the relationship between

avoidance (H−) and approach (H+) keypress entropy across Classical and Popular music categories, within individual subjects. Radial fits were computed for each

subject such that r =

√

(H+)2 + (H−)
2
. For both (A,B), symbols and dark trace indicate data and fit for a representative subject; radial fits for remaining subjects are

indicated by light traces.

TABLE 4 | Mean goodness of fit statistics for value and limit functions for

music categories for pooled Classical and Popular music stimulus sets

(from the primary experiment).

Variables Parameter Mean ± SD for parameters

(Log K−, H−) R2 0.88± 0.14

Adjusted R2 0.86± 0.18

F statistic of regression 679± 1, 623

p-value of regression 0.010± 0.052

(Log K+, H+) R2 0.82± 0.20

Adjusted R2 0.80± 0.23

F statistic of regression 302± 818

p-value of regression 0.020± 0.091

(Log K−, Log H−) R2 0.86± 0.13

Adjusted R2 0.85± 0.15

F statistic of regression 120± 128

p-value of regression 0.0049± 0.016

(Log K+, Log H+) R2 0.80± 0.20

Adjusted R2 0.77± 0.23

F statistic of regression 84± 88

p-value of regression 0.025± 0.071

(K−, σ−) R2 0.86± 0.12

Adjusted R2 0.83± 0.15

F statistic of regression 92± 205

p-value of regression 0.0035± 0.012

(K+, σ+) R2 0.82± 0.22

Adjusted R2 0.78± 0.26

F statistic of regression 74± 96

p-value of regression 0.033± 0.12

power-law (15 of 15 valid subjects) and log (16 of 16 valid
subjects) fits. For approach behavior, 14 of 16 valid subjects had
unique preference orderings for the log fit, and 13 of 15 valid
subjects had unique preference orderings for the power-law fit.

TABLE 5 | Loss aversion values observed in RPT analyses for (K, H) value

functions fit with logarithmic and power-law functions.

Stimulus set (Experiment) Regression Fit type Loss

aversion ± SD

Classical music (pilot) (log10 K, H) Log 1.13± 0.33

(log10 K, log10 H) Power 3.26± 1.24

Classical music (primary) (log10 K, H) Log 1.38± 1.12

(log10 K, log10 H) Power 2.36± 3.47

Popular music (primary) (log10 K, H) Log 0.97± 0.38

(log10 K, log10 H) Power 5.27± 13.48

Pooled Classical and Popular

music (primary)

(log10 K, H) Log 1.26± 1.59

(log10 K, log10 H) Power 2.27± 0.82

The results for the primary Classical and Popular music
experiments are depicted graphically in Figure 13. Rank ordering
analysis derived from logarithmic fits to the value functions
produced the following results: For Classical music, avoidance
rank orderings were unique in 41 of 47 subjects, whereas 3 pairs
of people shared common rank orders (3 dyads). This produced
a split between 87% unique and 13% shared rank orderings of
preference. The approach rank orderings for Classical music were
unique in 40 of 48 subjects, whereas 4 pairs of subjects shared
common rank orders (4 dyads). This resulted in a split between
83% unique and 17% shared rank orderings of preference. For
Popular music, avoidance rank orderings were unique in 30 of
43 subjects, whereas there were 5 pairs of subjects who shared
common rank orderings (5 dyads), and 3 subjects shared a single
rank order (1 triad). This produced a split between 70% unique
and 30% shared rank orderings of preference. The approach rank
orderings for Popular music were unique in 33 of 47 subjects,
whereas 7 pairs of subjects shared common rank orders (7 dyads).
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FIGURE 13 | Results of relative ordering analyses for primary Classical and Popular music experiments. To determine the individuality of music preferences

across subjects, we determined the rank ordering of music categories along the (K, H) value functions of individual subjects for both approach and avoidance

keypressing behavior. Histograms were then generated that indicate the number of subjects having rank order combinations observed once (i.e., unique orderings),

twice (orderings in two people or dyads), or more. The horizontal axes indicate the number of subjects who have a specific rank ordering in common. For instance, a

value of one indicates rank orderings observed in only a single subject, a value of two indicates rank orderings observed across two subjects, etc. The vertical axes

indicate the number of subjects in which a given rank order incidence was observed. Rank orderings observed in large numbers of subjects (i.e., large value on

horizontal axis) indicate stereotyped patterns of music preference across subjects, while large numbers of rank orderings observed in only one or a small number of

subjects (i.e., small value on horizontal axis) reflect individualized patterns of preference. (A,B) indicate the number of subjects having unique vs. not unique orderings

of music categories using logarithmic (K, H) value functions for avoidance (top panels) and approach (bottom panels) keypressing to Classical and Popular music

categories, respectively. (C,D) show similar frequency histograms of rank orderings for the Classical and Popular music categories, but were determined using the

power-law fits to (K, H) value functions. Black lines indicate power-law fits to the rank order frequency distributions for (A–D) when there are three points to be fitted in

the histograms; in histograms without three or more points for fitting, these black lines represent schema of a potential fit.

This resulted in a split between 70% unique and 30% shared
rank orderings of preference. Notably, we also observed that in
all analyses, the frequency distributions of rank orderings could
be well approximated by power-law functions where there were
three data points (see black lines in Figure 13). In Figure 13,
where a histogram has fewer than three points for fitting, these
black lines represent a “perfect” or idealized fit.

For the rank orderings in the primary experiments derived
from power-law fits to the value functions shown in Figure 13,
we observed the following. For Classical music, avoidance rank
orderings were unique in 39 of 45 subjects, whereas 3 pairs of
subjects shared common rank orders (3 dyads). This produced
a split between 87% unique and 13% shared rank orderings of

preference. The approach rank orderings for Classical music were
unique in 36 of 40 subjects, whereas 2 pairs of subjects shared
common rank orders (2 dyads). This resulted in a split between
90% unique and 10% shared rank orderings of preference. For
Popular music, avoidance rank orderings were unique in 25 of
38 subjects, whereas there were 5 pairs of subjects who shared
common rank orders (5 dyads), and another 3 subjects who
shared a single rank order (1 triad). This produced a split between
66% unique and 34% shared rank orderings of preference. The
approach rank orderings for Popular music were unique in
30 of 44 subjects, whereas 7 pairs of subjects shared common
preference orderings (7 dyads), resulting in a split between 68%
unique and 32% shared rank orderings of preference.
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Finally, for the pooled Classical and Popular music analysis,
48 and 47 of 49 subjects had valid fits computed for the (K, H)
avoidance curve for logarithmic and power-law fits, respectively,
and were used for analysis of preference rank ordering. For
approach behavior, 49 and 48 of 49 subjects had valid curve fits
computed for log and power-law fits. Among these valid subjects,
every single subject had a unique preference rank ordering when
categories were pooled across both classical and popular music
stimuli.

Across primary experiments and stimulus sets, the majority of
subjects had unique relative orderings of music categories along
the (K, H) value function: ∼66–90% unique (average of 78%) vs.
10–34% shared (average of 22% shared). Our findings thus argue
that keypress-based musical preferences are, to a considerable
extent, unique to the individual.

As a secondary analysis to the analysis of preference
subjectivity, we sought to test if a history of music lessons or
self-described music expertise were associated with the general
78% unique vs. 22% shared distribution of preferences. For this
analysis, there were not enough data points in the 22% shared
group for a valid ANOVA by the Fit type (log or power law),
by Music task (Classical us. Popular music), or by Curve Type
(approach or avoidance).

DISCUSSION

This study observed patterns of approach and avoidance, in two
separate cohorts with two genres of music stimuli, that showed
individual variability yet were lawful. Specifically: (1) Dynamic
auditory stimuli produced RPT functions similar to the three
functions reported from static visual stimuli and schematized
in Figures 1A–C. (2) RPT functions from music stimuli, like
static visual stimuli, reflected the value function in prospect
theory and the construct of decision utility from portfolio theory.
Metrics derived from these graphs, notably loss aversion, were
similar to what has been reported in the literature with visual
stimuli for RPT and for prospect theory. (3) RPT functions,
across group and individual data, showed a similarity in their
mathematical fitting that is consistent with scaling across levels of
organization. (4) Approximately 78% of subjects showed unique
patterns of category preference not shared by more than one
other subject, yet a minority of 22% of subjects had exactly the
same ordering of music categories, raising the hypothesis of a
Pareto distribution defining a power law relationship between
shared and unique preference orders, potentially related to the
power law fits observed between {K, H} variables in this study
(Barry, 1983; Hardy, 2010).

The demonstration that relative preference variables exhibited
the same patterns on a keypress task involving time-varying,
auditory stimuli as observed with static visual stimuli raises the
hypothesis that the relationships observed among these variables
are likely domain-general and occur for a wide range of stimuli in
reward-aversion processing. Graphs from music data showed R2

consistently greater than 0.8, like the studies with visual stimuli.
Our “loss aversion” findings support this in that our pooled
Classical/Popular music data with the power-law fit (parallel to

that used by Kahneman and Tversky, 1979) produced a loss
aversion metric that almost exactly matched the classic literature
value (2.27 for our data vs. 2.25 reported in literature; Tversky
and Kahneman, 1992). Notably, the RPT loss aversion metrics
observed with music stimuli were similar to those observed with
visual stimuli and to those from a prospect theory paradigm
in the same experimental subjects (Lee et al., 2015). These
findings with music stimuli extend the potential use of this
keypress task for behavioral neuroscience beyond applications
with static stimuli or visual stimuli, to use with time varying
stimuli and auditory stimuli, and allow a lawful description of the
resulting behavior while preserving a broad potential diversity of
individual preference behavior.

Richard Feynman considered scaling to be a fundamental
feature of lawfulness (Feynman, 1965). The relationships among
relative preference variables we observed—the (K, H) value
functions, (K, σ ) limit functions, and (H+, H−) trade-off plots—
appeared to scale, with consistent mathematical descriptions
between individual subjects and the group level. Furthermore,
scale invariance was apparent given the high R2-values obtained
for either power-law or logarithmic fits to the (K, H) data.
With simple power-law fitting, scale invariance was verified
by performing linear regression following log transformation
of both the K and H axes. The resulting fits characteristically
demonstrated asymptotic behavior (0 < a < 1, given H = b
Ka), which implies that substantial changes in the input variable
(K) produce only minor changes in the output (H). It is worth
noting that such compression of the range of possible outputs
is a hallmark of biological and other complex systems (Gisiger,
2001; Freyer et al., 2012). The same asymptotic behavior was
characteristic of the logarithmic fits to the (K, H) data, with the
difference that in this case the fits were obtained by performing
linear regression of H against K after log transformation of
K alone. Connections between layers of organization in a
complex system specify the information that one layer has about
other layers (Szostak, 2003). Such connections between levels,
as exhibited in the preserved graphical relationships between
relative preference variables across individual and group levels,
suggest that the principles underlying organization at one scale
are preserved at the other (Sutton and Breiter, 1994; Kim et al.,
2010). Scaling means that a particular description of a behavior
or an object does not change if the scale of time, weight, height
or other parameters are dilated or contracted by a common
factor. The issue of scaling (or scale invariance) has become
a fundamental construct in neuroscience (see Braeutigam
commentary in Frontiers of Neuroscience, 2017), particularly as
neuroscience seeks to connect and differentiate measurements
made as distinct levels of spatio-temporal organization, such
as between behavior, distributed ensembles of circuits, micro-
circuits, cells, etc. (Bohland et al., 2009).

The observation of scaling and lawfulness in this music
data occurred in parallel with response probability distributions
showing the majority of subjects had unique preference
orderings. Namely, the majority of individuals in this experiment
had a broad diversity of preference toward categories of music,
yet these profiles could all be consistently fit with RPT functions.
Frequency analysis of preference rank order (i.e., Figure 13)
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could be fit with power-law functions and logarithmic fits,
consistent with the use of either function for fitting the keypress
value function (Figures 3–5, 7, 8, 10, 11). These observations
support the contention that the RPT graphs of music data are
lawful (Feynman, 1965), yet allow for individual variability in the
pattern of preference, arguing that RPT allows for the diversity of
human preference while providing structure for it.

It is intriguing that the distribution of unique to shared
responses across subjects was ∼78–22%, showing strong
inhomogeneity in this joint ratio, akin to a Pareto distribution
(Barry, 1983; Hardy, 2010). A Pareto distribution is a significantly
skewed probability distribution that produces power-law fits
tending to scale across levels of spatio-temporal organization,
like those observed in this study. There are explicit procedures
for testing if data reflects an underlying Pareto distribution, but
much larger data sets than ours are needed for such testing,
and for ruling out that our 78–22% split is not just a statistical
anomaly akin to the birthdate problem—in a room of people,
what are the odds you share the same birthday? With 39
instantiations of a 6 digit random number (given only numbers
1–6 and non-replacement), there is a 65% probability that a
number will be repeated. Accordingly, at this time, the 78–22%
split between unique and shared preference orderings in subjects
can only be interpreted as supporting a hypothesis of a Pareto
distribution underlying musical preference, and needs at least
another 2–4 cohorts to be tested, with cohort sizes potentially into
the hundreds if not thousands of subjects. If one were to produce
such a study, one would explicitly test if the alpha-exponent of
the decay function fit to the response probability distribution
(e.g., black curved lines in Figure 13) either define a power law
relationship between shared and unique preference orders, or is
potentially associated with the exponent for the power-law fit of
the (K, H) value function (e.g., Figures 3–5, 7, 8, 10, 11).

Beyond such testing, additional or intermediate variables may
also exist which moderate or mediate relations between rank
orderings of preference, and the lawful patterns between {K,
H, σ } variables we observed [i.e., reflect an interaction effect
(moderation) or an additive effect (mediation), respectively].
For instance, it is possible that variables of music familiarity
and music training may have a relationship to the response
probability function, something we did not have the cohort size
to test (see last paragraph in Subjectivity of preference in Results).
Also, prior RPT work has shown that hedonic deficit states of
hunger/satiation shift the position of categorical preferences on
the (K, H) value functions, (K, σ ) limit functions, and (H+, H−)
trade-off plots of individuals, but do not alter the mathematical
fits of these functions even when these studies are done more
than a week apart (Kim et al., 2010). Such work argues that RPT
curves may provide a method for quantifying familiarity and
musicianship effects on preference. People generally like a song
more after they have heard it a few times, but many repetitions
can reduce this preference, suggesting an upside down U curve
between exposure (x-axis) and preference (y-axis) (Bornstein,
1989). It is possible that the (K, σ ) limit function may provide
a framework for mapping familiarity effects given its similarity to
an upside down U curve, if exposure is added as a z-axis to the K
and σ axes.

Consistent with prior publications using visual stimuli (e.g.,
Breiter and Kim, 2008; Perlis et al., 2008; Gasic et al., 2009; Kim
et al., 2010; Lee et al., 2015; Viswanathan et al., 2015, 2017),
the current music data demonstrate offsets from the origin of
the value function graph where the positive and negative value
functions intersect the x-axis. Modeling that incorporates such
offsets (i.e., logarithmic fits with additive offsets, as opposed
to simple power-law fits) consistently shows higher R2 results,
suggesting the offsets are not artifacts but reflect an important
aspect of the underlying system. Such offsets have ready analogies
to existing behaviors in decision-making during uncertainty.
Namely, the positive offset can be analogized to an “ante” in
poker, where a player puts a baseline bet into the kitty of
existing bets. The negative offset can be analogized as taking a
hedge against a potential loss, or investing in insurance to cover
uncertain negative outcomes. Prior work with prospect theory
(Kahneman and Tversky, 1979) and matching from operant
conditioning (Herrnstein, 1961) appear to disallow such offsets;
further work is needed to better understand the role of these
offsets in reward/aversion behavior as well as their physiological
basis.

The observation of recurrent patterns among
approach/avoidance variables to music stimuli has potential
implications beyond behavioral neuroscience to the neuroscience
of music preference and recommendation engines. Keypressing
is readily translated into the duration of approach and avoidance,
and exposure duration has been shown to follow an RPT
framework (Breiter and Kim, 2008; Kim et al., 2010). The
duration of time a user listens to a music track before
skipping to the next song (e.g., data collected by iTunes)
could be used as a surrogate measure of preference intensity,
instead of a keypress measure of preference. This would
permit online music providers to monitor the preferences
of their users to all accessed songs in order to suggest
similar music for which the user is likely to have a strong
preference.

There are also salient implications of the current findings
for music neuroscience. Important research has indicated that
preference ratings, such as Likert scale approaches (Likert, 1932)
to quantifying music preferences are associated with reward
circuitry activation (e.g., Blood and Zatorre, 2001; Salimpoor
et al., 2011; Trost et al., 2012), and that physiological biometrics
of preference can be both associated with preference ratings (e.g.,
Blood and Zatorre, 2001; Grewe et al., 2007; Guhn et al., 2007;
Salimpoor et al., 2009; Laeng et al., 2016) and with activation
in reward circuitry connected with music responses (e.g., Blood
and Zatorre, 2001; Osuch et al., 2009; Pereira et al., 2011; Trost
et al., 2012; Salimpoor et al., 2013). The current results point to
a number of direct neuroimaging and physiology applications
that can add to these ongoing neuroscience efforts. First, the RPT
framework produces a rank ordering of preferences that fulfills
criteria for preference logic (Hansson and Grune-Yanoff, 2009),
and is done within a framework of lawful behavior (Kim et al.,
2010). Such a framework provides a complementary approach
to Likert scales, particularly excelling at relative ordering of
preference within in individual. Second, the pattern variables
used in RPT, such as the Shannon entropy measure H, can be
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directly studied against brain activation, and to our knowledge,
have only been used once to date with regard to the patterns in
human judgment and decision-making (e.g., Viswanathan et al.,
2015). H describes the uncertainty or information contained
within a pattern of judgments or choices, and as such provides a
framework by which to study how the brain organizes preference
information. It also allows an investigator to assess effects of
divergence in decision making, to understand how the individual
can have large degrees of freedom for any particular judgment or
choice, but still be constrained by the balance between a set of
approach decisions and a set of avoidance decisions. The (H+,
H−) tradeoff relationship in particular provides a mechanism
for having lawful determinism over bundles of choices, along
with unconstrained choice at any particular decision point,
and as such, provides a fundamental construct for studying
the balance between the two. Third, the fitting parameters
of the RPT value function, saturation function, and tradeoff
function can all be used in linear and non-linear regression
analyses, or support vector machine analyses, to identify brain
regions involved with aligning the rank orders of preference,
along with their dynamic shifting for state-based or contextual
factors. For instance, we currently have minimal neuroscience
understanding of how core constructs such as loss aversion may
change over time, or relate to dynamic stimuli such as music
(e.g., see Viswanathan et al., 2015). Nor do we have a strong
neuroscience basis for how rank preference ordering may change
over the course of circadian cycles, or for contextual factors that
make one type of music potentially something the individual
does not want to appear to enjoy (or vice versa). These three
approaches to using RPT with neuroimaging and physiology
suggest a number of opportunities for furthering music
neuroscience.

In summary, the present study used music stimuli to identify
discrete, recurrent and scalable patterns for approach/avoidance
behavior that were consistent with patterns observed with
static visual stimuli. These findings suggest that RPT patterns
may be general across sensory domains and extend to
dynamic, time-varying stimuli. Individual preference was quite
heterogeneous across subjects, yet most subjects showed strong
RPT curve fits. This argues that musical preferences can be
quite individualistic, showing variance along functions that are
lawful yet provide a scaffold for this variance. The ability to
quantify individual differences in this rigorous manner may
advance the precision with whichwe are able to predict individual
responses to music, both from a behavioral standpoint and
when mapping to underlying biology. These observations may

also have implications for a number of domains ranging from

behavioral and music neuroscience to improvement of music
recommendation systems.
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