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Abstract

Background: Essential Dynamics (ED) is a common application of principal component analysis (PCA) to extract
biologically relevant motions from atomic trajectories of proteins. Covariance and correlation based PCA are two
common approaches to determine PCA modes (eigenvectors) and their eigenvalues. Protein dynamics can be
characterized in terms of Cartesian coordinates or internal distance pairs. In understanding protein dynamics, a
comparison of trajectories taken from a set of proteins for similarity assessment provides insight into conserved
mechanisms. Comprehensive software is needed to facilitate comparative-analysis with user-friendly features that
are rooted in best practices from multivariate statistics.

Results: We developed a Java based Essential Dynamics toolkit called JED to compare the ED from multiple protein
trajectories. Trajectories from different simulations and different proteins can be pooled for comparative studies. JED
implements Cartesian-based coordinates (cPCA) and internal distance pair coordinates (dpPCA) as options to
construct covariance (Q) or correlation (R) matrices. Statistical methods are implemented for treating outliers,
benchmarking sampling adequacy, characterizing the precision of Q and R, and reporting partial correlations. JED
output results as text files that include transformed coordinates for aligned structures, several metrics that quantify
protein mobility, PCA modes with their eigenvalues, and displacement vector (DV) projections onto the top principal
modes. Pymol scripts together with PDB files allow movies of individual Q- and R-cPCA modes to be visualized,
and the essential dynamics occurring within user-selected time scales. Subspaces defined by the top eigenvectors
are compared using several statistical metrics to quantify similarity/overlap of high dimensional vector spaces.
Free energy landscapes can be generated for both cPCA and dpPCA.

Conclusions: JED offers a convenient toolkit that encourages best practices in applying multivariate statistics methods
to perform comparative studies of essential dynamics over multiple proteins. For each protein, Cartesian coordinates or
internal distance pairs can be employed over the entire structure or user-selected parts to quantify similarity/differences
in mobility and correlations in dynamics to develop insight into protein structure/function relationships.

Keywords: Essential dynamics, Principal component analysis, Distance pairs, Partial correlations, Vector space
comparison, Principal angles

Background
Many simulation techniques are available to generate
trajectories for sampling protein motion [1–3]. Mo-
lecular conformation is represented by a vector space
of dimension equal to the number of degrees of free-
dom (DOF). Investigating a trajectory in terms of a

set of selected DOF can help understand protein
function. The DOF are usually Cartesian coordinates
that define atomic displacements. Internal DOF can
also be employed, such as distances between pairs of
carbon alpha atoms [4, 5]. Distance pairs simplify the
characterization of protein motion, and can often be
measured experimentally [6]. The process of extract-
ing information from an ensemble of conformations
over a trajectory is a task well suited for statistical
analysis. Specifically, principal component analysis
(PCA) is a method from multivariate statistics that
can reduce the dimensionality of the DOF through a
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decomposition process to quantify essential dynamics
(ED) [7] in terms of collective motions [5, 8, 9].
PCA is a linear transformation of data that extracts

the most important aspects from a covariance (Q)
matrix or a correlation (R) matrix. The R-matrix is
obtained by normalizing the Q-matrix. When the
property of interest is variance, statistically significant
results from Q are skewed toward large atomic dis-
placements. When the objective is to identify corre-
lated motion without necessarily large amplitudes, the
R-matrix should be used. For example, if the swinging
motion of two helixes are highly correlated with the
amplitude of one helix 1/10 that of the other, covari-
ance will likely miss this correlation. In constructing
a Q- or R-matrix it is best to have sufficient sam-
pling, and to mitigate the problematic skewing effect
of outliers [10, 11].
Eigenvalue decomposition calculates eigenvectors,

each with an eigenvalue, that define a complete set of
orthogonal collective modes. Larger eigenvalues for Q
or R respectively describe motions with larger ampli-
tude or correlation. Eigenvalues from the Q-matrix
are plotted against a mode index sorted from highest
to lowest variance. A “scree plot” typically appears in-
dicating a large fraction of the protein motion is cap-
tured with a small number of modes. These modes
define an “essential subspace” thought to govern bio-
logical function. For the R-matrix, modes with eigen-
values greater than 1 define statistically significant
correlated motions. The projection of a conformation
onto an eigenvector is called a principal component
(PC). A trajectory can be subsequently described in
terms of displacement vectors (DV) along a small
number of PC-modes to facilitate comparative studies
where differentiation in dynamics may have functional
consequences.
To quantify large-scale motions of proteins PCA

has been commonly employed [12–14]. The cosine
content of the first principal component is a good in-
dicator of the convergence of a molecular dynamics
simulation trajectory [15]. Cartesian PCA (cPCA) and
internal coordinate PCA methods are frequently used
in characterizing the folding and unfolding of proteins
[16, 17] and understanding the opening and closing
mechanisms within proteins, including ion channel
proteins [18–21]. More generally, PCA is routinely
employed to elucidate the variance in the distribution
of sampled conformations in a molecular dynamics
trajectory [22]. Conformational dynamics of a protein
upon ligand binding has also been investigated with a
PCA approach [23]. With continual increase in com-
putational power and commonly employed coarse-
grained models [24–26] it is now feasible for a typical
lab to perform comparative studies that involves the

analysis of many different molecular dynamics trajec-
tories. Such studies of interest include structure/func-
tion scenarios that interrogate the effects of mutation
on protein dynamics, allosteric response upon sub-
strate binding, comparative dynamics across protein
families under identical solvent/thermodynamic condi-
tions, change in conformational dynamics under
differing solvent/thermodynamic conditions or differ-
ent bound substrates. For example, in our previous
work in studying myosin V [5, 6, 27], where we com-
pared various apo versus holo and wild-type versus
mutant systems motivated building a general tool to
handle comparisons of dynamical metrics across dif-
ferent protein systems. When applied on a collection
of systems, PCA extracts similarities and differences
quantitatively.
When scaling up to analyze a collection of molecu-

lar dynamics trajectories, a toolkit to conveniently
perform a comprehensive set of operations is needed.
Hence, we designed JED (Java Essential Dynamics) as
an easy to use package for PCA applied to Cartesian
coordinates (cPCA) and distance pairs (dpPCA).
While JED makes the analysis of a single protein tra-
jectory straight forward with lot of built in features, it
also allows the same features to be leveraged on a
collection of trajectories to perform comparative ana-
lysis. The features JED offer are: (1) outlier removal;
(2) creates Pymol scripts to visualize individual PC-
modes and essential motion over user-selected time
scales as movies; (3) creates free energy surfaces for
two user-selected PC-modes based on Gaussian kernel
density estimation; (4) calculates the precision matrix
from Q and (5) the partial correlation matrix (P)
along with its eigenvectors and eigenvalues; (6) com-
pares the essential dynamics across multiple proteins
and quantifies overlap between vector subspaces, and
(7) multivariate statistical analysis methods are holis-
tically utilized.

Methodology
A dynamic trajectory provides snapshots (frames)
depicting the various conformations of a protein. For
Cartesian PCA (cPCA) the set Araw = {X(t)} where t is
a discrete variable refers to a particular frame. The
vector X describes the position vectors of a user-
selected set of alpha carbon atoms within the protein.
For m residues, X is a column vector of dimension
3m since there are (x, y, z) coordinates for each alpha
carbon atom. For n observations, A is a matrix of di-
mension 3m × n. To study internal motions, the cen-
ter of mass of each frame is translated to the origin,
and each frame is rotated to optimally align its orien-
tation to the reference structure, Xref, which also has
its center of mass at the origin. We use a quaternion
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rotation method to obtain optimal alignment, which
yields the minimum least-squares error for displace-
ments between corresponding atoms [5].
Since the process of translation and rotation

changes the coordinates of each frame, the trans-
formed A matrix is denoted as AAligned = {XAligned(t)}.
The reference structure Xref is user specified in JED
(selecting the initial structure is common practice).
The data in matrix AAligned is mean centered along its
rows to arrive at A '. The covariance matrix Q associ-
ated with 3 m variables is defined as Q = A ' (A')T ,
which is real and symmetric, and has dimension
3m × 3m. If n ≥ 3m, the eigenvector decomposition of
Q will have 3m − 6 non-zero eigenvalues, where 6
zero eigenvalues correspond to the modes of trivial
degrees of freedom (3 for translation and 3 for rota-
tion). The same is true for the correlation matrix R.
In building a Q - or R-matrix, JED removes outliers
based on a user-defined threshold. In practice, no
zero eigenvalues occur due to alignment variations,
which means the condition number of the Q and R
matrices is finite, and both matrices have an inverse.
The partial correlation matrix P is calculated by nor-
malizing the inverse of Q. Figure 1 shows how R, Q
and P are calculated. The procedure for distance pair
PCA (dpPCA) is mathematically identical. However,
dpPCA does not require the alignment step described
above because internal distances are invariant under
translation and rotations.

Implementation
The Java code for JED can be downloaded from (https://
github.com/charlesdavid/JED). Additional resources are
provided regarding PCA, essential dynamics, example

datasets together with example JED input files. JED is
written in Java and implements the JAMA Matrix pack-
age and calls the KDE (https://github.com/decamp/kde)
to perform the following tasks:

1. The file JED_Driver.txt is input to JED to define all
information needed to run a job. The file
PDB_Read.log lists all PDB files processed in the
order read. The “JED_LOG.txt” file summarizes how
the run progressed. Details about output file formats
and how to setup JED_Driver.txt is documented in a
User Manual (given in Additional file 1).

2. Reads in sets of PDB files (or coordinate matrix files
constructed by JED).
a. The PDB files may be single chain or multi chain.

3. The program performs analysis at the coarse-grain
level of all alpha carbons.

4. The user can select a subset of residues for the
analysis that need not be contiguous.
a. In multi chain PDBs, the residues may come from

the various chains.
5. As an initial pre-PCA output, the following

characteristics are determined:
a. Matrix of atomic coordinates before and after the

optimal alignment is performed.
b. Conformation RMSD and residue RMSD

otherwise known as RMSF.
c. The B-factors in a PDB file are replaced with

residue RMSD.
6. The user can run cPCA, dpPCA or both.
7. The user can choose the number of most relevant

modes to retain.
8. The user can specify a z-score cutoff (a decimal ≥ 0)

such that when the value of a PCA variable (either a
Cartesian or internal distance coordinate) has a

Fig. 1 Full circle of R, Q and P matrix calculations
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|deviation| from its mean that exceeds the z-score
cutoff, it is identified as an outlier. When the value
of a variable is identified as an outlier, it is replaced
by its mean value. This process is done per variable,
per frame, treating each variable independently. This
method is recommended because it reduces condition
numbers on Q, R and P, with little loss in statistics to
avoid misinterpreting the PCA results. However, an
option is provided for the commonly used alternative
that throws out conformations that have a RMSD
value deemed as an outlier.

9. All quantitative metrics are outputted as text-files
for further analysis and graphing. For both cPCA
and dpPCA the following characteristics/metrics are
determined:
a. The displacement vectors (DV).
b. The covariance (Q), correlation (R) and partial

correlation (P) matrices.
c. All eigenvalues for Q, R and P.
d. Three sets of the most relevant PC modes coming

from Q, R and P.
e. Weighted and unweighted mean squared fluctuation

(MSF) and root mean squared fluctuation (RMSF)
for all three sets of the most relevant PC modes are
provided.

f. For cPCA, a set of PDB files and associated
Pymol scripts allow static pictures and movies of
the 3D structure to be viewed for each set of the
most relevant PC modes.

10.DV projections onto each of the most relevant
eigenvectors (weighted and unweighted).

11.Multiple jobs can be run using the same set of
parameters using a batch driver.

12.Essential motions from Q, R and P results can be
generated for any user-selected window of PC-modes,
corresponding to observing protein motions on differ-
ent time scales.

13.After each individual trajectory is processed, additional
programs can be run to perform a comparative
analysis. These programs are:
a. Create_Augmented_Matrix.java: Pools together

multiple trajectories into a single dataset to facilitate
another JED analysis on the collection of data.

b. Subspace.java: Runs comparisons between
individual trajectories and/or a pooled trajectory.
The outputs are cumulative overlaps (CO), root
mean square inner product (RMSIP), and
principal angles (PA).

c. Get_FES.java: Creates a free energy surface for
any two user-selected PC-modes.

d. VIZ_Driver.java: Allows control for animating
motions for individual PCA modes and combined
superposition of essential PC modes related to
timescale windowing.

The R and P matrices are computed from Q. The Q, R
and P matrices are stored in memory (order O2) and then
diagonalized (order O3) for a complete eigenvalue decom-
position using the JAMA matrix package. For 2000 frames
of a 250 residue protein the performance time on a modern
laptop is less than 3 min. For comparative studies, similarity
of conformational ensembles is quantified in terms of the
vector subspaces that characterize ED. JED calculates cu-
mulative overlap (CO), root mean square inner product
(RMSIP), and principal angles (PA) [28–32]. Overlapping
subspaces from different proteins imply they share similar
dynamics, whereas different protein motion is indicative of
subspaces with low overlap.

Results and Discussion
First, we show cPCA results describing ED of a protein.
Second, we show dpPCA results, demonstrating how in-
ternal motions among different loops are easily quantified.
Third, we show how pooling trajectories (using dpPCA)
facilitates a comparative analysis of protein dynamics. As
an illustrative example, a native single chain variable frag-
ment (scFv) of 238 residues is considered, along with a
mutant differing by a single site mutation (G56V). We
work with a 100 ns molecular dynamics simulation trajec-
tory for the native and mutant structures, each having
2000 frames taken from our previous study [33].

Native and Mutant Essential Dynamics from cPCA
To characterize the ED of the native and mutant (G56V)
proteins we performed cPCA on their trajectories. We
show multiple output types in Figs. 2 and 3 for the native
and mutant proteins respectively. For convenience in un-
derstanding the role of correlations, JED also outputs the
reduced Q-matrix defined as ~Qjk ¼ Qxj;xk þ Qyj;yk þ Qzj;zk .
Here, the j and k indices label residues, and the original
3m × 3m covariance matrix is transformed into a rotation-
ally invariant m × m matrix, which is common practice.
Figures 2a and 3a show that the first 20 eigenvectors are
most informative and shows maximum variation of 80%
of the total variance. The reduced Q-matrix (Figs. 2b and
3b) shows which pairs of residues move together as posi-
tive correlation (blue) and away from one another as nega-
tive correlation (red). It can be seen that the native
protein (Fig. 2b) has more anticorrelated motions between
the residues when compared to that of the mutant system
(Fig. 3b). All other 3m × 3m matrix types have a reduced
version, with both format types outputted by JED. The
projection of PC1 vs PC2 and PC2 vs PC3 for native and
mutant are shown in Figs. 2c and 3c respectively. The
trace values for the native and mutant structures are
432 Å2 and 644 Å2 respectively. The larger value for the
mutant suggests that there is an overall increase in flexi-
bility of the mutant. For a particular PC mode, 3D ribbons
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Fig. 2 Some cPCA results for the native protein. a The variance and cumulative variance of the first twenty principal components. b The reduced
Q-matrix. c Projections of the trajectory onto the planes formed by (PC1 and PC2) and (PC2 and PC3). d The displacements along PC1 and PC2
are visualized and colored according to their RMSF for each residue using Pymol™. e The free energy surface associated with the first two
principal components

Fig. 3 For the mutant protein the same type of cPCA results are shown as in Fig. 2. a) Thevariance and cumulative variance of the first twenty
principal components. b) The reduced Q-matrix. c) Projections of the trajectory onto the planes formed by (PC1 and PC2) and (PC2 and PC3). d)
The displacements along PC1 and PC2 are visualized and colored according to their RMSF for each residue using Pymol™. e) The free energy sur-
face associated with the first two principal components
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depicting protein structure are colored by the RMSF to
show mobility where high to low values are colored by red
to blue as shown in Figs. 2d and 3d for native and mutant
system respectively. The free energy surface (FES) ob-
tained from the first two principal components for native
and mutant proteins are shown in Figs. 2e and 3e respect-
ively. In these examples, the free energy landscape for the
native protein has two well-defined basins, while for the
mutant it has only one basin and the conformations were
scattered due to the increased in flexibility.
JED provides similar output for the R- and P-matrices.

In Additional file 2: Figures S1 and S2 show results for the
R-matrix. Differences seen within the first two PC modes
indicate in part how the G56V mutant perturbs protein
motion. Comparing the results from the covariance and
correlation matrices show that the former highlights the
most dramatic motions, while correlations among low
amplitude motions is largely missed. Additional file 2:
Figures S1 and S2 on the other hand show that there is a
much greater richness in correlations in conformational
changes when the amplitude of motion is not allowed to
be the dominant characteristic in the analysis. We recom-
mend that a user should analyze results from the Q- and
R-matrices because they capture different correlated mo-
tions with different amplitude scales. In this example, the
R-matrix results uncover subtle collective motions without
an associated large amplitude motion, which may have
functional consequences and are more sensitive to muta-
tion. Both types of output provide insight about potential
mechanisms that govern protein dynamics. Movies for
PC-modes obtained from the Q and R matrices are given
in Additional file 3. To quantify the similarity in the ED
retained in the top PC modes from the Q-, R- or P-
matrices, JED calculates overlap in these vector spaces.
This feature allows one to access how much shared infor-
mation there is between using different metrics, as well as
between different molecular dynamics trajectories. Results
for RMSIP and PAs over 20 most essential dimensions are
shown in SI in Additional file 2: Table S1. Because up to
30 degrees in PA constitutes high similarity, Additional file
2: Table S1 shows that 6 PC modes are needed to capture
ED accurately. With 6 PC modes the cumulative variance
covers ~74% or ~70% of the dynamics for the native and
mutant protein respectively. Note that 70% cumulative
variance is a commonly used criterion to decide the num-
ber of PC modes to keep. A subspace comparison between
the native and mutant proteins in terms of PA and RMSIP
is made in SI where Additional file 2: Figure S3 and Table
S2 reveals similar dynamics is described with 11 PC
modes. Therefore, the native and mutant proteins exhibit
the same ED. In SI, Additional file 2: Figures S4 and S5
show results for the P-matrix. In addition to the R and P
matrices, JED outputs their inverses, which are respect-
ively called precision and anti-image matrices (see Fig. 1).

Visualization of Essential Protein Motion
The protein motion that is expected to be important for
biological function constitutes a linear superposition of
PC-modes from the essential subspace. Because protein
dynamics spans a large range in time scales, JED allows
essential protein motion to be visualized within a win-
dow of time scales by combining PC-modes over a user-
selected set of PC-modes given by:

X
!

τð Þ ¼
Xkoþw

k¼ko

Ak sin ωkτð ÞV!k

where τ is the time of the movie, V
!

k is the k-th PC-
mode with λk its eigenvalue, Ak ¼ C

ffiffiffiffiffi
λk

p
and ωk ¼ B

ffiffiffiffi
1
λk

q

for the Q and R matrices, while Ak ¼ C
ffiffiffiffi
1
λk

q
and ωk ¼ Bffiffiffiffiffi

λk
p

for the P-matrix. Here, B and C are constants
adjusted to set appropriate time and space scales re-
spectively. The index ko defines the starting PC-mode
(often equal to 1) and w is the window size. Watching
movies at different time scales gives a sense of the
effects of small and large amplitude motions (see
Additional file 3 for movies of essential motions of the
ScFv protein over different windows). In this case, the
movies show the mutation rigidifies nearby residues in
corroboration with our previous results [34]. To our
knowledge, visualizing combination of modes within
user-specified time scale windows offers a unique func-
tionality/tool for researchers.

Reduction of Dimensionality by dpPCA
JED utilizes internal coordinates based on residue-pair
distances (dpPCA). A user selects n residue-pairs,
where a carbon-alpha atom defines the motion of a
residue. The dimensionality of the Q-matrix is there-
fore n. When n is much less than the number of resi-
dues, the reduction in DOF also reduces noise to
signal. Importantly, dpPCA allows intuition to be
used when deciding which distance pairs to consider.
Distance-pairs can be placed between residues having
aligned positions based on sequence or structure. This
facilitates dynamics of homologous proteins to be dir-
ectly compared. In the example used here, a single
site mutation retains the protein size with perfect
alignment. We select distance pairs from the loop re-
gions (H1, H2, H3, Linker, L1, L2, L3) to residue 56
for the native and mutant proteins, which gives n = 74
(see Additional file 2: Figure S6 in SI).
The dpPCA R-matrix is shown in Figs. 4a and 5b

where differences in correlations within the native
and mutant proteins appear. Figure 4c shows the PC-
modes of distance pairs, which describe how distances
between residues stretch or contract. From the fig-
ures, we can clearly see some difference in dynamics
of native and mutant. From Additional file 2: Tables
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Fig. 4 a and b Correlation (R) Matrix as obtained from the dpPCA of native and mutant respectively. c Comparing the 1st and 2nd PC modes for
the native and mutant proteins. d and e Free energy surface obtained from the top two PC modes for the native and mutant respectively

Fig. 5 PCA scatter plot along the pair of different combinations of first three pair combinations of principal components (PC1, PC2 and PC3)
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S3, S4 and Figure S7 in SI, at least 6 PC modes are
needed to characterize the dynamics of the loops rela-
tive to residue 56. Because similarities in motion be-
tween the native and mutant proteins extend up to
15 PC modes, the ED of this set of distance pairs is
the same between the native and mutant proteins.
The free energy surface defined by the PC1 and PC2
modes (see Fig. 4d and e) are similar for the native
and mutant proteins. In general, projecting trajector-
ies onto a plane (a two-dimensional subspace) within
a high dimensional vector space leaves open a likely
possibility that the projections are not common to
the same plane. In Additional file 2: Table S5 in SI, it
is seen that the planes describing the top two PC
modes (from the R-matrix) for the native and mutant
proteins are very similar, somewhat justifying the
direct comparison of free energy surfaces using PC1
and PC2 from two different calculations. However,
Additional file 2: Table S5 also shows that the first
two PC modes for the Q-matrix (from the native and
mutant proteins) are not similar, which is in part a
reason why free energy surfaces appear different in
Additional file 2: Figure S8.

Comparative Analysis by Pooling Trajectories
For comparative studies, it is necessary to use the same
set of coordinates. JED facilitates this by allowing a user
to pool trajectories together. In order to compare the
difference between the native and mutant, we combine
native and mutant trajectories and calculate dpPCA on
the selected subset defined above where no alignment
required for dpPCA. Pooling is also possible with cPCA
with an alignment step. Figure 5 shows a scatter plot of
different combination of PCs (PC1- PC2 (Fig. 5a), PC1-
PC3 (Fig. 5b) and PC2-PC3 (Fig. 5c)) depicting a signifi-
cant difference between the two systems. In particular, it
is evident from the figure that the mutant occupies a lar-
ger phase space and exhibits a higher fluctuation com-
pared to the native, which implies that the mutant has a
higher degree of mobility when compared to native. It is
also possible to obtain FES for any two PC from JED
using JED_get_FES.java. FES for different combinations
of PCs is given in SI in Additional file 2: Figure S9.

Conclusions
We have developed an essential dynamics analysis pack-
age written in Java that performs a complimentary set of
tasks following best practices for multivariate statistics.
The JED toolkit offers much more functionality com-
pared to currently available tools. Particularly unique as-
pects of JED are the Z-score based elimination of
outliers, distance pair PCA (dpPCA), convenient com-
parative analysis of subspaces using principal angles,
visualization of essential motions, and the inclusion of

the full circle of statistical metrics that include precision
matrices and the partial correlation matrix. The program
can be run from a compiled source or from executable
jar files. Additional resources that can be downloaded
with the program include example test cases with all
JED results and a detailed user manual, which is also in-
cluded in SI as a PDF.

Additional files

Additional file 1: User Manual and Tutorial for the JED package.
(PDF 408 kb)

Additional file 2: Supporting Information. Figure S1. Example results
from cPCA using the R matrix for native. Figure S2: Example results
from cPCA using the R matrix for mutant. Figure S3. Subspace
comparison between native and mutant cPCA results Figure S4:
Example results from cPCA using the P matrix for native. Figure S5:
Example results from cPCA using the P matrix for mutant. Figure S6:
Selection of residue-pair distances. Figure S7. Subspace comparison
between native and mutant dPCA results. Figure S8: Example results from
dPCA using the Q matrix for native and mutant. Figure S9: Free energy
surfaces based on all pairwise combinations of the top three PC-modes
based on pooling the native and mutant trajectories. Table S1: Subspace
comparison between all possible pairs of Q-, R- and P-matrices using cPCA
for native and mutant. Table S2: A twenty dimensional subspace
comparison between native and native for each of the Q-, R- and P-matrices
using cPCA. Table S3: A twenty dimensional subspace comparison
between all possible pairs of Q-, R- and P-matrices using dPCA for native
and mutant. Table S4: A twenty dimensional subspace comparison
between native and native for each of the Q-, R- and P-matrices using
dPCA. Table S5: Same as Table S4 expect a 2 dimensional subspace is
being compared. (PDF 4690 kb)

Additional file 3: Movies showing mode 1 and mode 2 of all the
modes obtained from the JED program. (PPT 58883 kb)
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