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SpaceOAR to improve dosimetric outcomes for 
monotherapy high-dose-rate prostate implantation 
in a patient with ulcerative colitis
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Abstract
High-dose-rate (HDR) brachytherapy is an attractive option for patients receiving definitive radiation therapy for 

prostate cancer with decreased overall dose to the pelvis. However, ulcerative colitis increases rectal toxicity risk and 
may be a contraindication. A synthetic hydrogel, SpaceOAR (Augmentix Inc., Waltham, MA, USA), can facilitate the 
use of HDR brachytherapy for patients where rectal toxicity is a limiting factor.

SpaceOAR gel (13.19 cc) was utilized in a monotherapy HDR prostate treatment with Ir-192 under transrectal ul-
trasound guidance, with the intention of decreasing rectal dose. SpaceOAR gel was inserted transperineally into the 
patient 18 days prior to the procedure.

The HDR brachytherapy procedure was tolerated without incident. All planning constraints were met, and the 
following dosimetry was achieved: Prostate – V100% = 97.3%, V150% = 35%, V200% = 14.5%; Urethra – V118% = 0%; Rec-
tum – D2 cc = 51.6%, V75% = 0 cc. The rectum-catheter spacing was on average between 6-8 mm. Average spacing for 
our 10 most recent patients without SpaceOAR was 3 mm. SpaceOAR did not hinder or distort ultrasound imaging or 
increase treatment time.

SpaceOAR successfully increases catheter-rectal wall spacing and decreases rectal dose due to improved planning 
capabilities, while decreasing the likelihood of rectal perforation. One application of this tool is presented to mitigate 
potential toxicities associated with ulcerative colitis. At five months, one week, and one day follow-up, the patient 
reported no bowel issues following HDR brachytherapy. 
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Purpose
Radiation therapy (RT) for prostate cancer is 

a well-established and effective treatment technique with 
various treatment options backed by randomized trials 
and single-institutional studies [1]. Although radiation 
modalities such as external beam radiotherapy (EBRT) 
and brachytherapy are effective in the management of 
prostate cancer, a concern regarding short and late tox-
icity plays a pivotal role in modality selection, dose, and 
duration of therapy, motivating recent advances in tech-
nique of delivery.

The ProtecT trial concluded no significant differ-
ence among the prostate-cancer-specific mortality rates 
in observation versus surgery or RT; however, they did  
note increased genitourinary (GU) toxicities and erec-
tile dysfunction following surgery as well as increased 
gastrointestinal (GI) toxicities from RT [2]. Rectal toxic-
ities are a limiting factor in RT for prostate cancer due 
to a high rectal dose attributed to the proximity of the 

prostate and rectum, with significantly higher toxicity 
correlated to dose to the inferior rectum [3,4,5]. In some 
patients, the degree of rectal toxicity may be a key factor 
governing treatment selection. Willet et al. [6] reported 
increased rectal toxicity associated with RT and irritable 
bowel disease (IBD), specifically ulcerative colitis (UC), as 
well as severe rectal toxicities in patients with IBD under-
going abdominopelvic irradiation. Furthermore, acute 
GI toxicity of grade 2 or higher is exacerbated in patients 
undergoing concomitant medical therapy for IBD [7]. Ad-
vances in modern RT have demonstrated a trend toward 
improved toxicity profiles from treatment in high-risk 
groups such as patients with IBD [8,9].

Although advances in image-guided radiation ther-
apy (IGRT) and treatment technique may facilitate the 
use of RT in patients with a concern for rectal toxicity, 
modern trends in EBRT and brachytherapy application 
towards dose escalation and hypofractionation contrib-
ute to renewed concern regarding sparing rectal dose. 
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Several reports and phase III clinical trials incorporating 
patients of varied risk stratification have demonstrated 
improved biochemical control with modern dose escalat-
ed EBRT [10,11,12,13,14,15]. Given favorable therapeutic 
ratio and logistic advantages, moderate and extreme hy-
pofractionation have been a focus of recent randomized 
trials of the past decade [16,17,18,19,20]. Although not 
conclusively shown in the majority of hypofractionation 
trials to date, there have been reports of increased rectal 
toxicity associated with larger dose per fraction [21].

Brachytherapy remains a curative alternative to rad-
ical prostatectomy or EBRT for early stage disease, with 
no significant differences in treatment results but lower 
rates of urinary incontinence and increased preserva-
tion of sexual function [22]. Trends in brachytherapy 
have similarly explored dose escalation and completion 
of treatment within fewer sessions with high-dose-rate 
(HDR) techniques [23]. Although late grade 3 rectal tox-
icity is rare following definitive upfront brachytherapy, 
well below 5% in most series, dosimetric rectal outcome 
has been shown to be overall improved with HDR com-
pared to EBRT [24]. In instances of salvage brachyther-
apy following biochemical failure post-EBRT, a higher 
incidence of grade 2/3 rectal toxicity has been reported 
in low-dose-rate (LDR) and HDR series [25]. When con-
sidering upfront treatments in the recent ASCENDE-RT 
trial, addition of brachytherapy boost to 78 Gy EBRT 
demonstrated an increase in grade 3 rectal toxicity from 
3.2% to 8.1% [26]. In patients receiving HDR monother-
apy (19 Gy in single fraction), Krauss et al. [27] report-
ed grade 1/2 acute and chronic GI toxicities in 12%/0% 
and 12.1%/1.7% of patients, respectively, and Prada et al. 
[28] reported acute grade 1 GI toxicities up to 7%, with 
no grade 2 acute or grade 1/2 chronic GI toxicities. It is 
likely that further techniques designed to improve rectal 
dosimetry in the context of brachytherapy will continue 
to lead to less acute and late toxicity.

Displacement of normal tissue has long been explored 
as a viable strategy to improve dosimetry to organs at 
risk (OARs) [29]. For prostate RT, a novel technique for 
sparing high-dose to the anterior rectal wall is the use of 
a synthetic gel injection into the space between the pros-
tate and rectum [30,31,32,33,34]. The feasibility and effects 
on toxicity of these rectal displacement gels has been re-
ported by various investigators. Prada et al. [35] reported 
the successful use of a rectal wall displacement technique 
in single fraction HDR brachytherapy as monotherapy, 
with no additional toxicities and the same biochemical 
control at 32 months. Strom et al. [36] reported successful 
implementation of a polyethylene glycol (PEG) hydrogel 
for HDR brachytherapy plus or minus intensity-modulat-
ed radiation therapy (IMRT), with significantly increased 
prostate-rectal distance and significantly decreased mean 
rectal doses. Yeh et al. [37] similarly looked at a PEG hy-
drogel for HDR brachytherapy plus or minus IMRT and 
also reported increased prostate-rectal distance as well as 
low acute and chronic rectal toxicities despite aggressive 
dose escalation. SpaceOAR (Augmentix Inc., Waltham, 
MA, USA) is an FDA-approved gel, evaluated as having 
a benefit in reducing rectal dose, toxicity, and quality of 
life declines by a phase III trial with a median follow-up 

period of 3 years [33,38,39]. At our clinic, SpaceOAR is 
typically injected under ultrasound guidance at the con-
clusion of an HDR prostate procedure performed prior 
to external beam hypofractionated prostate RT, while pa-
tients are under general anesthesia. The use of SpaceOAR 
for these patients has effectively reduced high-dose to the 
rectum consistent with that shown in the phase III trial 
previously mentioned. Here, we report the potential ben-
efit of injecting SpaceOAR prior to a monotherapy HDR 
prostate implantation, with the primary goal of mitigat-
ing GI toxicity due to UC. 

Case presentation
A 73-year-old patient initially presented with an ele-

vated prostate-specific antigen (PSA) of 9.94 ng/ml. He 
received a prostate biopsy, which confirmed intermedi-
ate-risk adenocarcinoma of the prostate, GG 2 stage IIB 
(cT2bN0M0, Gleason score of 3 + 4 = 7 in 3/12 cores). 
Brachytherapy with 19 Gy in a single fraction with Spa-
ceOAR was chosen as monotherapy for this patient in-
stead of EBRT due the patient’s UC and concomitant 
medication use of azathioprine. 

The SpaceOAR gel implantation was performed 18 
days prior to the HDR procedure in sterile dorsal lithot-
omy position with an ultrasound stepper and transrectal 
ultrasound (TRUS). This timing was a result of logistical 
and scheduling considerations between the time of injec-
tion and the HDR procedure. A waiting period of at least 
three days before HDR is necessary to allow local gas to 
adequately resolve, restoring visualization of the prostate 
gland, which is immediately lost following the injection. 
Using 1% lidocaine, the perineum was numbed, followed 
by the prostatic neurovascular bundles via TRUS guid-
ance. The SpaceOAR needle was then advanced to the 
mid prostate at midline, and a 1 cc injection of saline 
was used to identify the correct position posterior to the 
prostate and completely anterior to the rectum. SpaceO-
AR was then attached and injected to completion. At Jef-
ferson hospital, the average SpaceOAR volume injected 
into patients receiving hypofractionated EBRT following 
HDR prostate treatment is 10.5 cc (range, 6.88-14.08 cc) as 
seen on magnetic resonance imaging (MRI). The SpaceO-
AR volume used in this case as seen on MRI was 13.19 cc 
and unintentionally asymmetrically displaced slightly to 
the patient’s left during injection. Injection volume varies 
with application [30,34].

For the monotherapy HDR prostate brachytherapy 
procedure, the patient was in dorsal lithotomy position 
and induced under general anesthesia. A Foley cathe-
ter was inserted. Rectal preparation was verified, and 
perineum was prepped with betadine. A TRUS probe 
with a brachytherapy ultrasound stepper was inserted 
into the rectum, and the prostate was visualized and 
measured to be 39 cc. Using a template-based approach,  
17 catheters were inserted from anterior to posterior pros-
tate in a modified periphery loading technique. Catheter 
positions were verified in the transverse and sagittal po-
sitions and depths were confirmed. The target volume, 
normal tissues (rectum and urethra), and SpaceOAR 
were contoured by the attending physician, and real-time 
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inverse planning (Nucletron Oncentra® Prostate v.4.2.2.4) 
was performed by physics. All constraints were met as 
follows: Prostate – V100% > 95%, V150% < 35%, V200% < 12%;  
Urethra – Dpoint max < 120%, D10% < 115%; Rectum –  
Dpoint max < 90%, V80% < 0.2 cc [27]. After plan checks by 
the physician and physicists, catheters were connected to 
the microSelectron® v2 Ir-192 HDR afterloader (Nucletron, 
The Netherlands) and the treatment was delivered via 
Nucletron Oncentra® TCS. After delivery, catheters were 
removed, perineum was cleaned, and the patient was extu-
bated. The procedure was tolerated without incident. 

Discussion
The SpaceOAR is placed between the ultrasound 

probe and needles, thus it was hypothesized to decrease 
visualization of the needles due to the potential for vari-
ous distorting effects seen in ultrasound such as reflection, 
refraction, and shadowing that occur at tissue interfaces. 
Consistent with vendor literature, there was no visual hin-
drance or distortion of the needles due to the gel and the 
gel was clearly visible on the ultrasound image (Figure 1). 
After analysis, this makes sense since the SpaceOAR gel 
had an average Hounsfield Unit (HU) value of 7 based on 
the average SpaceOAR HUs from the CT scans of patients 
previously treated at our institution, which is very close to 
water (HU = 0) and should therefore have a similar den-
sity and acoustic impedance resulting in minimal ultra-
sound distortion. Maintaining satisfactory image quality 
validates the feasibility of utilizing SpaceOAR prior to 
HDR as a rectal protector for patients with UC. It is inter-
esting to note, however, that there is a large discrepancy 
in SpaceOAR volume between ultrasound (5.622 cc) and 
MRI (13.19 cc). Part of this discrepancy arises from the 
superior resolution and quality of the MRI. Discrepancies 
also arise from the displacement of anatomy due to the 
rectal ultrasound probe. The large SpaceOAR volume dis-
crepancy between ultrasound and MRI has no impact on 
patient care; however, is important to consider.

The dosimetric benefit of increasing prostate and rec-
tal separation is the primary objective of using the Spa-
ceOAR gel during HDR prostate implantations. This can 
be seen in the craniocaudal direction on the sagittal image 
(Figure 2) and anteroposterior direction in the axial imag-
es (Figure 1 and Figure 3). The average distance between 
the closest needle and the rectal wall in the past ten HDR 
prostate procedures at our institution was 3 mm (median, 
2.9 mm; max, 6.3 mm; min, 0.4 mm). Utilizing SpaceO-
AR, the distance between the closest needle and the rectal 
wall lacking SpaceOAR averaged 6 mm, and the distance 

Fig. 1. Axial slices from an ultrasound image taken before (left; four anchor needles only) and after (right) complete needle 
implantation during an HDR brachytherapy prostate procedure post-SpaceOAR injection. The SpaceOAR gel (surrounded by 
red arrows in right image) and implanted needles (bright spots) are clearly visualized

Fig. 2. Sagittal slice from an ultrasound image after com-
plete needle implantation during an HDR brachytherapy 
prostate procedure post-SpaceOAR injection with over-
laid contours. Please note that the poor image quality re-
sults from this image’s reconstruction from an axially ac-
quired ultrasound and that the contours were generated 
in the axial view where image quality is adequate. This 
image is meant for visualization of the gel’s craniocaudal 
displacement of the prostate

Prostate
Urethra
Rectum
SpaceOAR
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between a needle within the region of the SpaceOAR 
and rectal wall was greater than 8 mm. In regions of no 
SpaceOAR, its contralateral presence increased the pros-
tate-rectum spacing. This increased separation and shift 
in isodose lines is beneficial due to the large dose gradient 
obtained with an Ir-192 source (Figure 3). In a phase I study 
done at our institution to assess the safety, tolerability, 
and preliminary efficacy of HDR brachytherapy in combi-
nation with hypofractionated VMAT in intermediate-risk 
prostate cancer, the following median dosimetry was re-
ported for 22 patient plans [40]: Prostate – V100% = 96.3%,  
V150% = 39.4%, V200% = 15.3%; Urethra – V118% = 1.39%, 
D2cc = 71.7%; Rectum – V75% = 1.3 cc. This case achieved: 
Prostate – V100% = 97.3%, V150% = 35%, V200% = 14.5%; 
Urethra – V118% = 0%; Rectum – D2cc = 51.6%, V75% = 0 cc 
(Figure 4).

Using a more conservative α/β of 3 Gy for rectum, 
max equivalent dose at 2 Gy per fraction (EQD2) to 2 cc of 
rectum was 25.1 Gy, in accordance with GEC-ESTRO rec-
ommendations to include a D2cc to rectum less than 75 Gy 
by EQD2 [41,42]. SpaceOAR resulted in better dosimetry 
for all critical dosimetric indices as reported in our phase 
I trial [40]. QUANTEC guidelines suggest a conservative 
DVH constraint set for the rectum of V50Gy < 50%, V60Gy < 
35%, V65Gy < 25%, V70Gy < 20%, and V75Gy < 15% [3]. As our 
D2cc rectum was 25.1 Gy after EQD2 conversion using an 
α/β of 3 for late effects, these dose constraints were easily 
met. This is likely attributed to an ideal implant in addi-
tion to increased prostate-rectum spacing, which allowed 
the optimizer to effectively utilize posterior catheters.

SpaceOAR did not impede standard procedure times, 
which is important as the patient is under general anes-
thesia and complication probabilities increase with in-
creased duration of the procedure. The time from patient 
intubation to HDR initiation was 211 minutes, which is 
on par with our average HDR prostate procedure time 
of 203 minutes taken from eight previous procedures. 
However, there are many variables contributing to proce-
dure time, which makes it difficult to assess and compare 

actual times on a case-by-case basis. Additional patient 
safety factors created by SpaceOAR are buffer space be-
tween needle placement and the rectum, which decreases 
the probability of rectal perforation. Mariados et al. [30] 
report no device-related adverse events or rectal perfora-
tions during the use of the spacer and discuss ease of use 
for applying the spacer with 98.7% placement success.

Conclusions
SpaceOAR successfully increased catheter-rectal wall 

spacing and decreased rectal dose due to improved plan-
ning capabilities, while decreasing the likelihood of rectal 
perforation. Although difficult to directly conclude given 
the lack of prospective randomized series, incorporating 
techniques to increase prostate-rectal wall separation may 
be of particular benefit to high-risk patients. This technique 
is prominent in EBRT and may be of interest in brachyther-
apy incorporating HDR hypofractionated treatment. This 
particular case report demonstrates one application of this 
concept in a patient with UC with favorable dosimetric 
outcome. The patient tolerated the SpaceOAR injection 
and HDR brachytherapy procedures well. At five months, 
one week, and one day follow-up, the patient reported no 
bowel issues following HDR brachytherapy. 
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