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Abstract: The physicochemical and biological properties of active pharmaceutical ingredients (APIs)
are greatly affected by their salt forms. The choice of a particular salt formulation is based on numerous
factors such as API chemistry, intended dosage form, pharmacokinetics, and pharmacodynamics.
The appropriate salt can improve the overall therapeutic and pharmaceutical effects of an API.
However, the incorrect salt form can have the opposite effect, and can be quite detrimental for
overall drug development. This review summarizes several criteria for choosing the appropriate salt
forms, along with the effects of salt forms on the pharmaceutical properties of APIs. In addition to a
comprehensive review of the selection criteria, this review also gives a brief historic perspective of
the salt selection processes.

Keywords: chemistry; salt; water solubility; routes of administration; physicochemical; stability;
degradation

1. Introduction

The specific salts of active pharmaceutical ingredients (APIs) are often formed to achieve desirable
formulation properties. Although addressing poor aqueous solubility is one of the most important
reasons to employ a salt formation, pharmaceutical companies also use the formation of unique salt
products to commonly address other physicochemical and biological concerns such as stability, toxicity,
poor absorption, and issues related to manufacturing processes. The importance of salts is indicated by
approximately 50% of the United States Food and Drug Administration (US FDA) approvals consisting
of APIs in the salt form [1]. Moreover, half of the top 200 prescription drugs in the United States
consist of pharmaceutical salts [2]. The choice of the appropriate salt form is dictated by various factors.
The formation of potentially marketable salt requires concerted efforts and a thorough understanding
of the physical and chemical characteristics of the API and counterions that are used. A rational
decision tree approach should be followed for the selection of the best salt in the most economical
way. Furthermore, all of the necessary testing should be performed in the early phases of the drug
development process in order to minimize failures. Salts can significantly alter physical/chemical
properties of an API so much so that it can expedite the drug development process.

The suitability of a candidate for salt selection is determined by the physical and chemical
properties of the API; different counterions can be utilized to address one or more shortcomings of the
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API. The prediction of a salt’s qualitative and/or quantitative properties based on the counterion used
is an important research area. Several studies have described a link between salt properties and the
counterions used [3–8]. While predictions can be made with some degree of accuracy, there is no reliable
way to accurately investigate salt properties based on the counterion used. Currently, a wide range of
validated counterions is available to prepare the salts of APIs (Table 1) [9]. One important criterion
in the selection of counterions is to employ agents that have been previously used in FDA-approved
drugs, and are thereby generally recognized as safe (GRAS) [7].

This review will address various criteria for the selection of salt forms, as well as suitable examples
for each category. Inclusion of all of the examples for each criterion will be beyond the scope of this
review; therefore, only a few representative examples are included. It should be noted that various
textbooks have been published addressing the salt forms of API; the focus of the majority of the
literature is the enhancement of API solubility through salt formation. This review is unique, and aims
at offering a succinct report on the salt selection criteria based on the chemical, pharmaceutical,
biological, and economical applications of different salt formulations.

Table 1. List of currently available counterions for salt formation [9].

Chemistry (Type of Ion) Examples of Counterions

Cations

Aluminum
Arginine

Benzathine
Calcium

Chloroprocaine
Choline

Diethanolamine
Ethanolamine

Ethylenediamine

Lysine
Magnesium

Histidine
Lithium

Meglumine
Potassium
Procaine
Sodium

Triethylamine
Zinc

Anions

Acetate
Aspartate

Benzenesulfonate
Benzoate
Besylate

Bicarbonate
Bitartrate
Bromide

Camsylate
Carbonate
Chloride
Citrate

Decanoate
Edetate
Esylate

Fumarate
Gluceptate
Gluconate
Glutamate
Glycolate

Hexanoate
Hydroxynaphthoate

Iodide
Isethionate

Lactate

Lactobionate
Malate
Maleate

Mandelate
Mesylate

Methylsulfate
Mucate

Napsylate
Nitrate

Octanoate
Oleate

Pamoate
Pantothenate

Phosphate
Polygalacturonate

Propionate
Salicylate
Stearate
Acetate

Succinate
Sulfate
Tartrate
Teoclate
Tosylate
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2. Drug Chemistry Considerations

2.1. API Functional Groups

The presence of acidic or basic functional groups is an essential requirement for the formation
of salts. A majority of the APIs discovered are suitable candidates for salt formation during drug
development, since they are either weakly acidic or weakly basic in nature. Salt screening begins
with the characterization of acidic or basic functional groups. Depending on the presence of these
groups and pharmaceutical needs, a potential counterion can be selected. Low molecular weight
bases and acids have higher chances of being a liquid with a low melting point. Salt formation can
be employed to augment their melting points and convert and maintain the solid state. For example,
Bozigian et al. reported that compound NBI-75043, which is an investigational compound for the
treatment of insomnia, was a crystalline, free base with a low melting point (64 ◦C) [10]. One of the
important pharmaceutical requirements for this compound was to develop a salt that possessed a
higher melting point. Since weakly basic drugs require acidic counterions to form ionic bonds, 14 acids
were selected as possible counterions. Since the low melting point was one of the concerns for this drug,
initial approaches to characterize salt forms included differential scanning calorimetry (DSC), which is
an important tool for determining the melting point as well as crystallinity, solvates, and presence or
absence of the polymorphs. They were able to successfully find the salt form of NBI-75043 by focusing
on the chemistry of the drug [10].

2.2. pKa of the Drug

The selection of a counterion is based on the pKa rule, which takes into account the degree of
ionization of the acidic or basic functional groups that are present in the drug [11]. According to
the pKa rule, when the pKa difference between an acid and base is greater than two or three, salt
formation is expected [11,12]. Ideally, for basic drugs, the pKa should be at least two pH units higher
than the pKa of the counterion, and for acidic drugs, the pKa of the drug should be at least two pH
units lower than the pKa of the counterion chosen. This difference ensures strong binding energy
between the opposite ionic species so that the complexes formed will not readily break down into
individual species when not required. For example, phenytoin is a well-known acidic drug with a
pKa value of 8.4; however, it has limited solubility. One important pharmaceutical property for this
drug that needed to be addressed was improving its aqueous solubility. Due to the acidic nature of the
drug, basic counterions with pKa values >10.4 were likely to form pharmaceutically acceptable salts.
Therefore, a strong basic counterion such as NaOH was needed to form a desirable salt of phenytoin.
Weakly basic counterions would not be able to form salts with phenytoin, since these counterions
would not be able to raise the pH above the required pHmax value of 11 [13].

2.3. Lipophilicity

Salt formation is a well-utilized technique to increase the aqueous solubility of a drug. However,
hydrophobic salt approaches are sometimes considered to increase the lipophilicity of a drug
molecule [14,15]. The decrease in aqueous solubility has been found to be a useful approach to provide
greater chemical stability, particularly at high humidity and high temperature. One well-known
example is the formation of sulfate as well as hydrophobic salts of xilobam. The sulfate salt of
this drug is completely ionized. In fact, it has been found that the presence of aryl groups in the
sulfate counterion for this drug protected the base from getting easily hydrolyzed in the presence of
high humidity and high temperatures. The formation of hydrophobic salts allows pharmaceutical
companies to prepare more stable drugs without affecting their bioavailability [16]. Salt formation leads
to increased lipophilicity as a result of the neutralization of the overall electrostatic charge, thereby
enhancing the membrane permeability of hydrophilic molecules. As shown in Table 2, Sarveiya et al.
correlated the effect of several counterions of ibuprofen on log P value and membrane absorption [17],
and clearly demonstrated the effects of the different counterions on these properties.
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Table 2. Counterions of ibuprofen and their respective log P values and membrane absorption values.

Ibuprofen Counterion Log P Intestinal Flux (µg·cm−1·h−1)

Sodium 0.92 3.09
Ethylamine 0.97 5.42

Ethylenediamine 1.11 15.31
Diethylamine 1.12 7.91
Triethylamine 1.18 48.4

2.4. Hygroscopicity

Hygroscopicity is defined as the ability of a material to absorb and retain moisture at various
temperatures and humidity conditions. Low hygroscopicity is a preferred characteristic of drugs,
as the moisture content can significantly affect stability. Based on the extent of water uptake, APIs can
be classified as non-hygroscopic, slightly hygroscopic, and hygroscopic solids [18]. A non-hygroscopic
substance can take up moisture from a humid environment, which in turn can alter the mechanical
and solubility properties, affecting the performance of a drug. Readily hydrolyzable drugs are more
easily degraded due to the presence of water and pH alterations in the microenvironment of the
salt. Thus, hygroscopicity needs to be carefully monitored when designing a salt form of a drug.
For example, the salts of mineral acids tend to be very polar, leading to increased hygroscopicity and
low microenvironmental pH. These factors can affect the stability of some drugs due to a consequential
increase in the rate of hydrolysis [19].

2.5. Water of Hydration

A salt with the associated water of crystallization is considered as a hydrate form. These forms
have water molecule(s) in the crystalline lattice of the API. Hydrate forms of APIs are quite common;
it is estimated that approximately one-third of APIs can form hydrates if exposed to the conditions that
are conducive for hydrate formation [20]. Pharmaceutical hydrates are formed when the API comes
in contact with water during crystallization, lyophilization, wet granulation, aqueous film coating,
spray drying, and storage [21]. If a hydrate is exposed to a dry environment, it can lose the water
of crystallization to attain a lower state of hydration or an anhydrous form. The exchange of water
between drug and excipients such as starch or cellulose can also affect the solubility and mechanical
properties of a drug product [22,23]. Water molecules in pharmaceutical hydrates influence the
internal energy, thermodynamic activity, hygroscopicity, solubility, dissolution rate, and stability [23].
Therefore, understanding the hydrate form is crucial in order to better understand these properties
and address significant issues if the need arises.

2.6. Polymorphism

Polymorphism is the ability of a solid compound to exist in more than one crystalline form.
Most drugs exhibit structural polymorphism or multiple crystalline forms. In order for a molecule
to develop into a potential drug, the existence of a stable polymorph or a suitable pseudopolymorph
needs to be established. The polymorphs (or pseudopolymorphs) of drugs show different chemical
stability; it is generally observed that a more thermodynamically stable polymorph is more chemically
stable than a metastable polymorph [24]. The optimized orientation of molecules, hydrogen bonds,
and non-hydrogen bonds in the crystal lattice play an important role in imparting thermodynamic
stability to crystal structures. Even small changes in the crystal packing may lead to significant
differences in the chemical reactivity of the two polymorphs of the same drug [24]. Between the
crystalline form and amorphous forms of the same drug, the amorphous form is less stable due to
the lack of a three dimensional crystal structure, free volume, and greater molecular mobility [24].
The amorphous form of penicillin G was shown to be less stable than the crystalline sodium and
potassium salts [25]. There are several examples of drug polymorphism’s effects on the pharmaceutical
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fate of the drug. It is beyond the intended scope of this review to address all of the examples.
However, it is worthwhile to mention the polymorphism of ritonavir (Norvir®), the discovery of which
served as a wake-up call for the pharmaceutical companies. Ritonavir is an antiviral drug marketed
by Abbott Laboratories in 1996 in the form of semisolid gel capsules for the treatment of acquired
immunodeficiency syndrome (AIDS) [26]. The capsules contained the only known crystal form, Form I,
which was discovered during the development process. However, in 1998, a new and significantly less
soluble polymorph of ritonavir precipitated in the semisolid gel capsules [27,28], which became known
as Form II. This form demonstrated a significantly lower solubility in hydroalcoholic solutions than the
marketed Form I [28]. The manufacturing of ritonavir semisolid capsules formulation was comprised
of a hydroalcoholic solution of the drug, which was found to be saturated with Form II. The sudden
appearance and dominance of this less soluble form made the formulation unmanufacturable [27],
and also affected the storage of Norvir® oral solution at refrigeration conditions, since lower storage
temperatures led to the crystallization of Form II [27]. These factors, along with limited inventory,
led to the withdrawal of the drug by Abbot Laboratories, leaving tens of thousands of AIDS patients
around the world without medication [26]. Ritonavir was reformulated and approved in 1999 before
being placed on the market; Abbot lost revenue of over US $250 million in the process [26]. Therefore,
understanding salt formulations and their correlation to polymorphism early in drug development is
imperative to minimize drug failures at later stages of drug development.

2.7. Chemical Stability

Acidic or basic counterions can alter the pH of the microenvironment in liquid dosage forms.
In turn, changes in pH can influence the reactivity of an API with excipients, and can lead to either
the improved stability or degradation of the API. Undesirable interactions can generate significant
impurities in a drug product [29].

For example, amlodipine is a free base that was initially chosen for developing a maleate
salt. However, the presence of maleic acid changed the microenvironment of the drug product,
and this alteration led to the formation of the aspartic acid derivative (UK-57269) by Michael addition,
as shown in Figure 1. This degradation product was found to have different biological activity,
and therefore, amlodipine maleate was found to be unsuitable for further development. Although
such reactions could be minimized by the careful selection of excipients and by avoiding alkaline
conditions [30], besylate (benzenesulfonate) was chosen to be the suitable salt form with significantly
fewer problems [12]. This example clearly demonstrates how drug stability can be adversely affected
if a counterion is not carefully chosen.
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Figure 1. Degradation reaction of amlodipine in the presence of maleic acid.

2.8. Solubility and Dissolution Rate

Salt formation approaches have widely been utilized to increase solubility, and therefore,
the dissolution rate of a drug. It is one of the most common methods to increase the solubility
of weakly acidic and basic drugs. Hydrochloride, mesylate, hydrobromide, acetate, and fumarate
are the most common counterions that are used for basic chemical entities in the past 20 years [31],
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while sodium, calcium, and potassium continue to be the most common counterions for weakly
acidic drugs. Increases in aqueous solubility have been achieved by most of these counterions.
Slater et al. studied the feasibility of salt formation for RPR2000765, having a pKa of 5.3 and an
intrinsic free base solubility of 10 µg/mL [32]. The poor aqueous solubility yielded poor bioavailability
in animals. While all of the salt forms (hydrochloride, hydrobromide, methanesulfonate, mesylate,
and camphorsulfonate) increased the solubility of the parent drug, mesylate salt consistently produced
a higher solubility of 39 mg/mL at 25 ◦C. Other factors such as hygroscopicity, clean polymorphic
profile, particle size, and flow properties were also considered, and all of these factors favored the
formation of a mesylate salt for further development [32]. This shows that the selection of a suitable
counterion should not be an isolated approach that focuses on one consideration at a time, but should
instead be a holistic approach, incorporating additional relevant considerations simultaneously.

3. Pharmaceutical Considerations

3.1. Dosage Form Desired

3.1.1. A Liquids (Suspensions)

Suspensions are the most common type of oral liquid dosage forms. Masking the taste of
bitter drugs is one of the important considerations during drug formulation development. The use
of different counterions to make suitable salt forms has been utilized effectively to either make
suspensions or reduce solubility so that drugs do not dissolve well when placed on the tongue.
For example, erythromycin (free base) is a well-known macrolide antibiotic that is freely soluble
in water. However, higher solubility leads to faster dissolution on the tongue, leading to a bitter
taste. This unique characteristic was found to be a great deterrent for pediatric formulations.
Salt formulations were later sought to reduce solubility. Of the various salt forms screened, stearic acid
salt was found to have reduced solubility, and further allowed the formulation of a suspension that
effectively suppressed the bitter taste of the free base. This makes the acidic salt form of erythromycin
much more pharmaceutically acceptable, especially in pediatric patients. Similar to erythromycin,
in order to reduce the solubility of an acidic or basic drug, salts can be synthesized to allow the
development of a suspension formulation. For acidic drugs, calcium salts or anion exchange resonates
can be considered. For basic drugs, the salts of long chain fatty acids (e.g., laurates and pamoates) and
cation exchange resonates can be a good choice [12].

Similarly, sweeteners such as cyclamic acid or saccharin can be useful to make salts for basic
drugs. In case of acidic drugs, basic salts such as triethanolamines can be useful for improving the
taste [12]. These examples demonstrate that salt strategies may be an effective approach to mask the
taste of bitter drugs.

3.1.2. B Solutions

The solubility of a drug in aqueous systems is an important factor in the development of parenteral
formulations. Thus, in order to increase solubility, salt forms are frequently employed to make
concentrated parenteral solutions. Appropriate counterions can be straightforwardly screened based
on solubility experiments, which serve as an important tool for finding the best candidate. In most cases,
solubility can be increased by altering the pH of a solution. One well-known example is phenytoin
sodium, in which the solubility is significantly increased by the addition of sodium hydroxide (NaOH),
in order to allow parenteral administration at a desired concentration [33]. Chemical stability is another
crucial factor, as drugs in solution tend to be less stable than in solid dosage forms. For example,
cephalosporin antibiotics are neutral zwitterions, and are not very stable in solution. Mono-counterion
salts did not offer much stability, and although di-counterion salts yielded stable solutions, they were
quite acidic with pH < 2. This pH problem was resolved by preparing a di-hydrochloride salt to be
reconstituted with 2 mL of arginine at the time of injection. This led to a stable drug solution within a
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desired pH range [12]. This clearly reflects that salt formulations can be exploited to make appropriate
parenteral solutions for a desired therapeutic outcome.

3.1.3. Creams/Ointments/Gels

Creams, ointments, and gels are commonly used dosage forms for transdermal delivery. Highly
polar transdermal drug candidates generally demonstrate ineffective percutaneous penetration [34].
This limits the use of some important drugs. Salt formation has been utilized in the past to increase
transdermal permeability. Counterions act as neutralizing agents by binding with the API via Coulomb
forces to permit passive absorption. For example, the ion-pairing of salicylates with alkylamines and
quaternary ammonium ions showed an increase in the percutaneous flux of the drug. Increased
penetration was successfully attained with the diethylamine salt of diclofenac as a topical gel, while the
sodium salt is available for oral absorption [35]. Therefore, a suitable formulation can be developed to
increase transdermal permeability for desired systemic effects.

3.1.4. Aerosols

The inhalation route is primarily targeted to bronchioles and lungs for local drug delivery, but
various physiochemical and mechanical factors should be considered for effective delivery. The limited
residence time of the drug at the site of action is one of the most common and important barriers to the
effective utilization of APIs. Salt formulations have been instrumental in providing the local delivery
of drugs with much longer half-lives. For example, salmeterol is a long-acting beta adrenergic agonist
that is used in the therapy for chronic obstructive pulmonary disease (COPD). Reduced solubility was
necessary to allow for a longer time at the site of action, and was accomplished by the development
of an xinafoate salt. This slow-dissolving compound potentiated the long half-life of salmeterol.
Therefore, the xinafoate salt of salmeterol served as an important formulation and a prime example to
demonstrate how the properties of APIs can be modified for desired outcomes [36].

3.2. Ease of Synthesis and Scale-Up

3.2.1. Flowability

Generally, an API with decent flow properties is considered a good candidate for the development
of commercially successful solid oral dosage forms. The flowability of the drug can have significant
effects on the blending, compression, filling, transportation, and scale-up operations of solid dosage
manufacturing. APIs with poor flow properties may result in final products with unacceptable
uniformity content, weight variation, and physical inconsistency. The crystalline nature of an API is
mostly preferred, as it is amenable to techniques that improve flow properties [37]. Thus, an amorphous
drug can be formulated into a suitable salt form that improves its solid state properties by promoting a
crystalline structure.

3.2.2. Corrosiveness of Counterions

A drug with a highly corrosive nature can be a significant barrier to a successful manufacturing
process. Although utilizing a counterion approach to mask the corrosive group can solve the problem
to a greater extent, if selection is not done well, it can lead to more problems in the latter parts of drug
development. For example, weakly basic drugs with low dissociation constant (pKa) values require
salts of much stronger counterion acids to be physically stable [38]. This may lead to acidic aqueous
solutions of the salt. Highly acidic aqueous solutions can corrode metal containers, manufacturing
tools, and other equipment. Therefore, parts used for tableting such as punches, dies, and die tables
are more vulnerable to the damage caused by corrosive solids, since they are in continuous contact
with tablet mixtures under high pressure and friction. The metal surface of capsule-filling machines
and mechanical forces involved in filling medications can also become corroded. Corrosive salts
can make tableting technically impossible, and if used, may lead to metal traces in tablets during
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compression. Consequently, these types of corrosive counterions should not be used to create salt
formulations, or alternatively, should be sufficiently diluted with excipients to avoid serious corrosive
properties [39]. Furthermore, the salts of drug products with pH values of 2.5 or lower for saturated
aqueous solutions are generally found to be corrosive. Corrosiveness tests should be conducted if
the pH value of a saturated aqueous solution is less than or equal to four. For example, weakly basic
drugs (pKa = 4.7), as mentioned by Stahl et al., were considered to be developed as either free bases
or hydrochloride/methanesulfonate salts. However, the hydrochloride salt was later dropped due
to extreme corrosiveness. The methanesulfonate was not corrosive on stainless steel, and was only
slightly corrosive on grey cast iron and tool steel alloys. Therefore, methanesulfonate was chosen
as the preferred counterion, followed by further development [12]. Thus, the unique properties of
counterions need to be studied in order to properly to manufacture non-corrosive drug products.

3.2.3. Compatibility with Excipients

There are numerous examples in the literature regarding the selection of suitable salt forms to
minimize the interaction of APIs with various excipients, thereby making the drug product chemically
feasible to develop. The selection of the counterion should be based on an understanding of the types
of chemical interactions with the excipients.

For example, the free base form of compound CGP6085 was initially designed as an antidepressant.
However, its unwanted interactions with the tablet excipient, lactose led to the significant degradation
of the API (Figure 2). Thus, the free base form was found to be a non-viable option. The hydrochloride
salt form of CGP6085 was later developed, which significantly improved the stability of the API,
and eventually suppressed interaction with lactose [12]. This example illustrates how salt forms can
have a significant influence on drug stability, and unique counterions have the potential to increase the
stability of a drug in the chosen dosage form.
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Figure 2. Free base and salt form of CGP6085.

3.3. Route of Administration

Routes of drug administration dictate the use of the free form (acid/base) of a drug, or whether a
suitable salt form is warranted. In fact, for some drug formulation types, it is even more important to
have a salt form than a non-salt form. One of the major concerns for injectable dosage forms is the
limited solubility of a drug in the few vehicles that are suitable for injection. For example, the formation
of salt formulations is much more crucial for injectable dosage forms than oral or transdermal dosage
forms. This is because injectable drugs, which are mainly intravenous (IV), require soluble products to
avoid phlebitis or tissue irritation due to insoluble therapeutic agents [40]. Historically, more injectable
salt forms have been approved than any other salt forms. A review article by Paulekuhn et al. described
how more than 70% injectable dosage forms that contained salts as compared with only 50–60% of
oral dosage forms. A greater need for a highly soluble salt for injectable dosage forms is one of the
important driving forces behind salt forms [1]. The most commonly used anions for oral dosage forms
are chloride, sulfate, and maleate; chloride, sulfate, and acetate were the three top anions used for
injectable dosage forms. Whereas, sodium, potassium, and calcium were the three most favored cations
used for both oral and parenteral formulations. Recently, the lysine counterion has become a popular
choice for injectables, appearing in approximately 15% of injectable salts that were approved between
2002–2006 [1]. Thus, salt formation is one of the important ways to achieve the desired characteristics
in a drug, such as increased solubility for the parenteral route of administration.
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Different salt forms of the same drug can be suitable for different routes of administration as
well. For example, sodium, potassium, and the free acid forms of diclofenac have been approved as
oral medications. Diclofenac sodium 1% gel (Voltaren Gel®) and diclofenac sodium topical solution
1.5% w/w (Pennsaid®) are also available as topical products; however, its epolamine salt (Flector®) is
approved as a transdermal patch due to its better skin permeation than sodium or potassium salts [41].

3.4. Controlled Release Dosage Forms

APIs demonstrate different dissolution and release properties when attached to different
counterions; this property has been utilized to design controlled-release drug forms. Clinically,
one salt form may be preferred over another for desired release characteristics. For example, a highly
soluble drug can be designed into a controlled release formulation by using sparingly soluble salts.
This decrease in drug solubility may retard the drug release as desired. Therefore, selecting an
appropriate counterion to slow down drug release can be helpful in sustained release (SR) formulations.
For example, imipramine, which is a tricyclic antidepressant, was initially designed as hydrochloride
salt as an immediate release (IR) formulation (Figure 3). However, a controlled release formulation was
more desirable to maintain sustained therapeutic effects. For the same reason, imipramine pamoate
was designed, and its solubility was found to be significantly less than hydrochloride salt. This delay
in the rate of drug release was suitable for the desired SR formulation [12].
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Another example that illustrates the importance of dissolution is the various salt forms of
diclofenac. Fini et al. examined the dissolution of 30 different salt forms of diclofenac [42]. While both
potassium and free acid form are now being used for the immediate release dosage form in the US,
only the sodium salt form is used for the extended release dosage form. Thus, different counterions
that are attached to the same drug can influence dissolution rates, and therefore can influence dosage
forms desired in clinical practice.

4. Pharmacokinetics (PK), Pharmacodynamics (PD), and Safety Considerations

4.1. Toxicological Consideration

When a drug is administered orally, it has the potential to interact with the gastrointestinal (GI)
wall lining, causing unwanted side effects. This type of toxicity concern with APIs is crucial, and can be
instrumental in limiting the effective utilization of drugs. At times, salt approaches have been utilized
to reduce the gastrointestinal (GI) toxicity of the parent drug. Various examples [43–45] demonstrate
this use of counterions that were readily metabolized and excreted while having minimal toxicity
concerns. Thus, these approaches were helpful in addressing GI toxicity concerns. For example,
salicylates are known to cause GI bleeding and related disturbances, including ulcers. Choline is an
important counterion with minimal toxicity; it has been reported that choline salicylate demonstrated
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lower incidences of GI toxicity and was better tolerated at higher doses [43]. Therefore, the GI toxicity
of APIs can be effectively reduced by the selection of appropriate salt forms.

4.2. Distribution and Clearance

Although not commonly utilized, salt formations have also been shown to affect the distribution
and clearance of a drug molecule. Malek et al. demonstrated that the distribution properties of some
antibiotics can be significantly altered by using macromolecular counterions [45]. Macromolecules
such as polysaccharides, polyacrylic acids, sulfonic acids, and polyuronic acids were combined with
popular antibiotics such as streptomycin and neomycin. Compared with streptomycin sulfate salt,
these high molecular weight counterion salts with streptomycin showed a higher distribution of the
drug to the lymph nodes, and less drug presence in the plasma. Selective distribution then resulted in
the delayed clearance of streptomycin [46]. This opens up a great avenue for research to find unique
macromolecular salt forms to alter the distribution of a drug based on the therapeutic outcomes desired.

4.3. Onset and Termination of Therapeutic Effects

Based on therapeutic indication, some drug formulations require a slower onset and termination
of therapeutic effect. Different salt forms have been effectively utilized to alter the onset and duration
of action of drugs. For example, it was observed that single salt amphetamine in dextroamphetamine
preparations was not a good choice for fast and sustainable psychostimulant effects. Instead, Adderall
XR® was designed as a combination of the aspartate and sulfate salts of amphetamine, plus the
saccharate and sulfate salts of dextroamphetamine. These different salts in a single drug product
allowed different metabolism rates and possessed different onsets of action. This resulted in a
faster induction of therapeutic effect while maintaining that effect for a sufficiently long time [47].
This example illustrates how salt can be utilized to modify the onset and duration of action of a drug
to achieve desired results.

4.4. Counteracting Side Effects

Sometimes, counterions are used in such a manner that the side effects of the parent drug can
be decreased by the counterion used. For example, the antihistamine salts of penicillin have been
reported in the literature, since penicillin has the potential to elicit an allergic response in some patients.
The main idea was to mitigate this allergic response of penicillin by using well-documented anti-allergic
drugs [48]. Similarly, the intramuscular (IM) injection of benzylpenicillin was co-formulated with
benzathine counterion. Benzathine is a well-known local anesthetic that numbs the IM injection site.
This co-formulation decreases the pain associated with a very high IM depot dose of benzylpenicillin,
which is required to treat certain conditions such as syphilis [49]. Another renowned example
reflecting the use of counterions to minimize side effects is Dramamine® (diphenhydramine + 8-chloro
theophylline), where 8-chloro theophylline acts as a stimulant to counteract the drowsiness caused by
diphenhydramine [50,51].

4.5. Drug Interactions

The presence of free acid/base forms or a particular counterion can have some clinically relevant
drug interactions, particularly when it is co-manufactured or co-administered with other drugs.
Prasugrel represents an important example of a drug interaction when co-administered with proton
pump inhibitors (PPIs) [52]. Prasugrel is available as a hydrochloride salt, which was found to offer
better absorption at higher gastric pH, when compared with the free base form. However, during the
manufacturing of the drug, it has been found that the acid–base reaction can convert the salt form to
the free base form, thus affecting pharmacokinetics. This is further complicated by the concurrent use
of PPIs along with prasugrel, and co-administration can alter gastric pH as well as the salt to base ratio.
So, bioequivalence studies with or without PPIs became clinically relevant. It was found that when
prasugrel in different salt/base ratios was co-administered with lansoprazole, all forms exhibited a
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similar extent of absorption; however, the rate of absorption was found to be different [52]. This was
a very important clinical outcome, since a high salt to base conversion significantly delayed the
maximal platelet aggregation achieved by prasugrel, which is an important therapeutic goal following
myocardial infarction. Thus, different salt forms as well as drug interactions can have important
clinical implications [52].

5. Economic Considerations

Intellectual Property (IP) Considerations

Over the years, various generic pharmaceutical manufacturers have tried to bring different salt
forms of an approved API to gain entry into the market, even before the original patent had expired.
On the contrary, innovative salt formulations have helped original patent holders to extend proprietary
rights or give market exclusivity to a generic manufacturer. Some of the benefits offered by innovative
salt forms that may deserve patent protection are simplified manufacturing procedures, more stable
analogues, newer routes of administration, or a completely different therapeutic use [53].

One of the well-known examples is the request by Dr. Reddy’s Laboratories to gain market
approval of amlodipine maleate, even before the patent expiration of amlodipine besylate. This plea
was rejected in favor of the original patent. However, some manufacturers were successful by
modifying certain dosage characteristics, as they demonstrated unique advantages. One well-known
example is diclofenac epolamine (Flector®), which was approved and patented as a transdermal
patch while its sodium and potassium salts were already available as generic tablets, capsules, topical
gels, and solutions. The original patent on the traditional formulation was issued on 4 March 1997.
The Institut Biochimique SA (IBSA) got a new patent on Flector®, which was approved by the FDA
on 31 January 2007, and is valid until 13 April 2019 [54]. The innovative formulation justified the
extended patent and marketing exclusivity. This demonstrates that patenting innovative salt forms
can give market exclusivity to some products and help companies protect their intellectual properties.

All factors affecting the salt selection process are summarized in Figure 4 for clarity.
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6. Screening, Preparation, and Characterization of Salts

There are various articles addressing the screening, preparation, and characterization of
salts [55–57]. The intent of this section is not to provide an all-encompassing account of the processes
involved, but rather to offer a brief summary for the purpose of tying loose ends among the selection,
screening, preparation, and characterization of salts. The screening process of the salts starts with
the selection of possible counterions to form the salt [9]. The salts of parent compounds (PC) are
identified by screening an extensive number of salt forms (SFs) under a variety of crystallization
conditions. Extensive screens are traditionally conducted at different conditions to identify salts
with ideal properties for formulation development [55]. The drug must be completely ionized in
a single state ionization in order to allow salt formation, since incomplete ionization can lead to
the precipitation of the unionized form. As mentioned in the pKa section, the ideal pKa difference
should be maintained in the solvent system that is used for crystallization; the challenge for this
requirement is that often, non-aqueous or mixed solvent systems are used for crystallization, which can
affect pKa. Recent advances such as a microfluidic platform can overcome the limitation of solvent
incompatibility. The microfluidic platform is comprised of 48 wells, and each well is approximately
87.5 nL in volume. The reduction in volume enables salt screening for samples as low as 1 mg [55].
The salt of the API is prepared using one of four methods: thermal, anti-solvent, evaporation,
and slurry conversion [9]. Regardless of the method employed, the crystallization is influenced
by the additive type, concentration, pH, and ionic strength [9]. The prepared salt is characterized
by X-ray powder diffraction, which gives information about whether the sample is crystalline or
amorphous. Additionally, infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopy
provides information about the interaction between the parent compound and the counterion [9].
Thermal methods such as differential scanning calorimetry (DSC) are used to determine the melting
point and enthalpy of fusion. Both of those properties are helpful in predicting the solubility and
stability of salts [9]. The purity and crystallinity of the sample can be assessed from the sharpness of
the endotherm. The nature of the endotherm can also give information on the hydrates and solvates
in the crystal structure [9]. Nievergelt et al. recently reported a high throughput screening of salts of
cationic APIs using a semiautomatic technique. Their method used only nanoliters of the solution
of the analyte for crystallization, yielding single crystals of appropriate size for characterization by a
single-crystal X-ray structure determination [56].

7. Conclusions

The salt formation of an API is an integral part of the formulation development process.
Traditionally, improving solubility is one of the fundamental reasons to employ salt forms. This article
summarized that a unique salt form can have implications far from solubility. The choice of the
ideal salt form can improve the solid-state properties of the API, and can ease the burden of time
consumption and expensive formulation development. The counterions of the salts that are used can
positively affect the applicability of the drugs in various dosage forms by improving the formulation
properties. The appropriate salt form of the API is important in order to achieve the desired outcome,
and can also have an immense economic impact.
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Abbreviations

API Active Pharmaceutical Ingredient
FDA Food and Drug Administration
GRAS Generally Regarded as Safe
IR Immediate Release
PPI Proton Pump Inhibitors
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