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Abstract: Two-component systems (TCS) are signaling machinery that consist of a histidine kinases
(HK) and response regulator (RR). When an environmental change is detected, the HK phosphory-
lates its cognate response regulator (RR). While cognate interactions were considered orthogonal,
experimental evidence shows the prevalence of crosstalk interactions between non-cognate HK–RR
pairs. Currently, crosstalk interactions have been demonstrated for TCS proteins in a limited number
of organisms. By providing specificity predictions across entire TCS networks for a large variety
of organisms, the ELIHKSIR web server assists users in identifying interactions for TCS proteins
and their mutants. To generate specificity scores, a global probabilistic model was used to identify
interfacial couplings and local fields from sequence information. These couplings and local fields
were then used to construct Hamiltonian scores for positions with encoded specificity, resulting in
the specificity score. These methods were applied to 6676 organisms available on the ELIHKSIR web
server. Due to the ability to mutate proteins and display the resulting network changes, there are
nearly endless combinations of TCS networks to analyze using ELIHKSIR. The functionality of
ELIHKSIR allows users to perform a variety of TCS network analyses and visualizations to support
TCS research efforts.

Keywords: statistical inference; mutational phenotypes; interaction specificity; phosphorylation;
fitness landscape; bacterial signaling

1. Introduction

Two-component systems (TCSs) are ubiquitous in bacteria and archaea and are the
key signaling transduction machineries for sensing and responding to the environment.
TCSs consist of sets of interaction signaling partners, histidine kinases (HKs) that phos-
phorylate their cognate response regulators (RRs). Interactions, however, are often not
one-to-one. Multiple HKs can interact with multiple RRs. Identifying relevant interactions
among TCS is an important task that has been addressed experimentally only for a limited
number of organisms.

We advanced the study of interaction specificity in TCS by creating a model based
on amino acid coevolution at the interface of HKs and RRs. Our Direct Coupling Anal-
ysis (DCA) [1] based interaction model not only confirms known cognate partners [2]
but also reveals novel interactions in multiple organisms. We uncovered a TCS network
in Synechococcus elongatus regulating cyanobacterial circadian clock and confirmed im-
portant master regulators [3]. Our model is also able to predict functional mutations to
modulate binding specificity between partners, such as PhoQ and PhoP [4] or even design
new interactions between non-cognate, interspecies TCS proteins, such as the EnvZ from
Escherichia coli and Spo0F from Bacillus subtilis [5]. Another application of this model
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is the identification of crosstalk across signaling networks and the influence of mutation
in the topology of the network. Figure 1 illustrates a section of statistical couplings in a
protein sequence and highlights two of the most common applications, the identification
of physical contacts in a protein [6,7] or the identification and quantification of interactions
between multiple proteins [8,9].

Figure 1. Statistical couplings for sequence position and residue type are inferred from the MSA for
the protein family using the DCA method. High couplings indicate significant interactions between
sequence positions. These couplings can be used to infer physical contacts within a single protein
structure, or to infer the interaction interface and strength between two proteins.

We decided to make this model and tools available to the scientific community in an
interactive web server that facilitates the analysis and prediction of TCS networks as well
as the exploration of the effects of mutation in these proteins prior to experimental work.
We named the service Evolutionary Links Inferred for Histidine Kinase Sensors Interacting
with Response regulators (ELIHKSIR) and it can be accessed at https://elihksir.org.

In recent years, online repositories of sequence data have seen a large influx of se-
quences and are painting a more refined picture of protein families. Using these data,
one can construct global probabilistic models that verify the observed statistics and relate
them to inter-residual couplings. Cheng et al. [2] have used these probabilistic models
to introduce an objective function Hspeci f ic

TCS (~σ) to describe the specificity (fitness) of the
interaction between a response regulator and a histidine kinase partner by a scalar score
using a sequence~σ from a linked multiple sequence alignment (MSA). For completeness,
we reproduce the introduction of Hspeci f ic

TCS (~σ) here.
Using the set of sequences {~σ}, we can create a global probabilistic model P(~σ) to find

a given amino acid sequence~σ in a protein family by the following:

P(~σ) =
1
Z
· exp (−H(~σ)) (1)

https://elihksir.org
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with a general Hamiltonian H(~σ) and the partition function Z to verify normalization for
the probabilities. A sufficient form for H(~σ) [10] is given by the large-q Potts Model [11]:

H(~σ) ∝ −∑
ij

eij(ai, aj)−∑
i

hi(ai) (2)

with the coupling matrix eij(ai, aj) between two sequence sites ai, aj at sequence positions
i and j; and the local field hi(ai) at the site ai at sequence position i. The sites a can have
q = 21 different states for amino acid and sequence gap composition. The entries of
the coupling matrix eij(ai, aj) and the local fields hi(ai) encode preferences for sequence
compositions at positions i and j. The inference of the coupling matrix eij(ai, aj) and the
local fields hi(ai) is a non-trivial task. Several methods exist to do so [1,12,13]. We inferred
the couplings using mean field DCA (mfDCA), which is fast and accurate at predicting
interaction specificity in TCS.

From these coupling parameters, we can introduce and create objective functions to
measure varying effects. In the Material and Methods, we introduce an objective function
Hspeci f ic

TCS (~σ) that is sensitive to sequence mutations and linked to protein interaction speci-

ficity. For the calculation of Hspeci f ic
TCS (~σ), we need full access to the couplings eij(ai, aj) and

local fields hi(ai). Throughout the process, we consider these as constant and created a
database that our server uses internally to calculate new values for the Hspeci f ic

TCS (~σ) score in
a mutation event.

Figure 2 gives an overview of the entire process of the ELIHKSIR web server. The MSA
for our system is created by concatenating the HisKA domain section of the Pfam [14]
Histidine Kinase (HK) family (Pfam:PF00512) [15] and the REC domain of the Response
Regulator (RR) family (PF00072) [16], which contains information for thousands of organ-
isms. Furthermore, we collect metadata for each organism and sequence pairs through the
Uniprot database [17]. From this, we calculate the coupling matrices eij(ai, aj) and the local
fields hi(ai). These parameters allow us to calculate a score for the interaction specificity
HTCS. The data are visualized in a web interface with interactive heatmaps.

ELIHKSIR is a user-friendly and accessible tool that displays TCS signaling networks.
The breadth of the web server allows for analysis of TCS networks in both common and
uncommon species and strains. Table 1 summarizes the number of organisms and interac-
tion partners available. Users can easily search for their organism of interest, view TCS
specificity networks for the whole organism, and view all possible interactions for an HK or
RR of interest. This capability allows researchers with restricted computational resources
to analyze signaling networks. Some common use cases of ELIHKSIR’s features include
identifying cross-talk interactions between non-cognate HKs and RRs, comparing speci-
ficity of different HK–RR pairs, and comparing differences in signaling networks between
species and/or strains. In addition to browsing and exporting wild-type TCS networks,
mutations may be introduced into HKs and/or RRs, for which all interaction specificity
scores are recalculated and displayed. This allows users to predict network-wide changes
in specificity after introducing a mutation. Further applications include testing mutants for
desired change(s) in specificity, guiding engineering of TCS proteins with interaction or
insulation requirements, and viewing changes in specificity for new or uncommon clinical
and environmental variants. With these capabilities, ELIHKSIR is an effective tool for a
variety of researchers who interface with TCS proteins and signaling.
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Figure 2. (a) A concatenated MSA is generated for Pfam [14] Histidine Kinase (HK) family
(Pfam:PF00512) [15] and Response Regulator (RR) family (PF00072) [16]. (b) From this MSA coupling
matrices are generated with mfDCA [1]. From these couplings, we are able to calculate a numeric
score using the equation shown. This equation formally describes how Hamiltonian scores are
generated for each HK–RR pair and is equivalent to Equation (3). The data are displayed in a web
interface with interactive heatmaps. The user has an elaborate menu available to explore the data by
creating mutations to sequence positions. The default heatmap legend is more sensitive towards the
outer extremes of the values, coloring strongly negative (favorable) or positive values (unfavorable).

Table 1. Attributes of the ELIHKSIR web server.

Total Organisms 6676

Bacteria 6412
Archaea 65
Eukaryotes 188
Unknown Organisms/Metagenomes 11

Total Interactions Evaluated 6,272,607

Number of HKs 111,032
Number of RRs 225,616

2. Results
2.1. Validation

Validation of the ELIHKSIR web server was performed through detailed investigation
using three model organisms: Escherichia coli, Synechococcus elongatus, and Enterococcus
faecalis. True positive specificity predictions were defined by either positive selection
and/or negative selection for a cognate pair. Positive selection is defined as an HK having
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its highest specificity with a single RR. Negative selection is defined as an RR having
poor specificity across all HKs but having its relative highest specificity with an HK.
False negatives were defined as selection towards a noncognate partner that is greater than
that of the cognate partner, in which both positive and negative selection fail to identify
the cognate pair. Only cognate pairs in which the HK contains a HisKA domain were
evaluated. For E. coli, there were fourteen true positives and three false negatives for
seventeen cognate pairs, shown in Figure A1. For S. elongatus, there were five true positives
and one false negative for the six cognate pairs, shown in Figure A2. For E. faecalis, there were
seven true positives and one false negative for the eight cognate pairs, shown in Figure A3.
The resulting sensitivity and accuracy is 0.84.

DCA identifies coevolving residues at the HK–RR interface for HisKA and REC
domains that have been used to accurately predict the structure of the HK–RR complex [18].
Out of the top 20 DCA-identified interfacial couplings, 10 are present in the 3DGE structure,
as shown in Figure A4b. Information about all 3DGE interfacial contacts is present in
the DCA-generated couplings and local fields (Figure A4a). Couplings are scored by
their direct information (DI) value as defined by DCA (Table A2). Thus, higher DI values
indicate that these couplings are more important for HK–RR interactions. When utilizing
DCA couplings for the calculation of Hamiltonian values, only couplings present on
the structurally verified HK–RR interface are used. This ensures auxiliary information
obtained through DCA does not impact the Hamiltonian values, and thus, does not impact
the resulting specificity score.

The interface is aligned for each TCS pair during the construction of the MSA,
which was performed using a hidden Markov model. The sequences displayed in ELIHK-
SIR are the aligned residues and gaps. Predictions made based on HK and RR sequences
only consider residues which align with their respective protein family. Insertions and
deletions are not considered in the alignment of the interface and may result in deviations
in the three dimensional structure of the resulting signaling complex. The model assumes
no changes in the three dimensional structure of the HK–RR interface during evaluation of
different TCS pairs.

2.2. Mutations

A key functionality of the ELIHKSIR server is the ability to interactively perform
in silico mutations on a HK–RR pair. In the mutation screen, as shown in Figure 3b, the full
MSA of a pair is shown with a visual clue to the histidine kinase region and the response
regulator region. Any part of the MSA can be transformed and the changes in a HK or RR
become applied globally. The heatmap is also updated accordingly. Gaps can be introduced
as ’-’ characters. As the mutation values are run against a tabulated database for the
positions and amino acid type, the total length of the MSA has to remain at 176 amino
acids. Insertions are not possible in the model unless they occur in gap regions.

Only a subset of the positions in the genetic sequence correspond to an actual inter-
facial residue of the protein interface between Thermotoga maritima class I HK853 and
the response regulator RR468, (PDB ID: 3DGE). Because of this, not every change in the
sequence performed by a user will translate into a change in the specificity score. Further-
more, some types of amino acids can play similar roles in a specific residue position. In this
case, the model accounts for this and only reflects minor or no changes in the total score.

An interesting application of the mutation user interface is shown in Figure 4,
the rewiring of specificity. By transferring portions of a sequence from one cognate pair
to another cognate pair, interaction properties can be discovered or lost. In this specific
example, a portion of amino acids positions 70 to 80 transferred from ntrC into the same po-
sition in the cusR response regulator creates cross-talk with a new interacting partner qseC,
while maintaining the initial interaction cognate partner cusS. Alternatively, introducing
the same sequence positions from the response regulator qseB into cusR is entirely sufficient
to rewire the entire interaction and create an exclusively positive selection towards qseC.
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Figure 3. (a) Heatmap for Synechoccus elongatus as displayed on ELIHKSIR and when exported
as an image. (b) Mutation screen as displayed on ELIHKSIR. (c) Histogram depicting all selectivity
scores for a given HK or RR.
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Figure 4. (a) One of the many use cases for the web server is the exploration and in silico change of specificity. In this
example, we identify the response regulator cusR as the interaction partner of the histidine kinase cusS indicated by the
lowest value in our Hamiltonian. (b) The transfer of a significant sequence portion of the response regulator ntrC does
not disrupt the initial interaction and introduces cross-talk through a second interaction partner. (c) Alternatively, the
introduction of a sequence portion of the response regulator qseB into cusR disrupts the initial interaction and rewires the
interaction towards qseC.

2.3. Data Export

The user has three options to export data from ELIHKSIR. First, the user may export a
PNG image, as shown in Figure 3a of the entirety of the heatmap in PNG format by clicking
on the Export to PNG button on the left panel once a heatmap has been displayed. This will
generate a PNG image of the heatmap on a transparent background and download it onto
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the user’s machine. The image will also include the labels and legend. When selecting an
n× m-sized subselection in a heatmap, the user is presented with the choice to display
the subselection as a new heatmap. Second, the user may export a PNG image of a
histogram as shown in Figure 3c of a row of response regulator and histidine kinase pairs
that corresponds to a desired histidine kinase by clicking on the Export to PNG button
that is located inside the opened histogram. The histogram export will also include the
names of each response regulator. Finally, the user may export a CSV representation of
the user’s arbitrary selections of the cells of the heatmap. After the user makes selections
of the cells on the heatmap, the Export to CSV button on the right panel can be clicked to
download a file that contains a comma delimited list of the user’s selections. All these
methods of exporting will take into consideration the mutated Hamiltonian values, if any,
of the response regulator and histidine kinase pairs.

2.4. Negative Selection

An important concept highlighted by the server is that of negative selection. Not only
are interaction partners indicated by strong couplings and a highly negative score for a
TCS pair, but equally by high interaction scores with each partner except one. In this
case, the interaction with a marginal advantage will be the strongest interaction and may
facilitate signal transduction. Hence, we differentiate by either positive selection and/or
negative selection for the cognate pair, where positive selection is defined as an HK having
the highest specificity for its cognate RR and where negative selection is defined as the
cognate HK having the highest specificity out of all HKs for a given RR. Figure 5 highlights
this for two different cases in E. coli (ECOLI). Besides the heatmap, a good indicator for
the interactions is a look at the histograms (Figure 5b) of interaction strengths, which
are, for this purpose, available through the server. In cusR, a single interaction between
cusR and the histidine kinase cusS is dominant (Figure 5b top). In rcsB, the majority of
interactions are reported as less specific. Even though the interaction between rcsB and the
histidine kinase rcsC is not reported as very specific, it will be the dominant interaction
for rcsB.

Figure 5. Negative selection in Escherichia coli strain K12 (ECOLI). (a) Heatmap view for the response
regulators cusR and rcsB. In cusR, a single interaction between cusR and the histidine kinase cusS is
dominant. This is a case of positive selection between two interacting partners. In rcsB, the majority of
interactions are reported as having a low specificity. Even though the interaction between rcsB and the
histidine kinase rcsC is not reported as having a high specificity, it will be the dominant interaction for rcsB
as there is no stronger interaction partner for signal transduction. This is an example of negative selection.
(b) Histogram view for the response regulators cusR and rcsB. From these histograms, it becomes clear
that cusR-cusS (top) and rcsB-rcsC (bottom) are the dominant interactions.
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3. Discussion
3.1. Characterization of Cognate Specificity

Through both mutational and computational analyses, the interface between the
HisKA domain and the REC response regulator domain has been shown to control speci-
ficity of TCS interactions [19]. In Figure 6, this finding is confirmed for 14 out of 17 cognate
pairs shown for E. coli. In Figure 7, this finding is confirmed for all eight cognate pairs
shown for M. tuberculosis. While predictions of interaction specificity have been previously
demonstrated, ELIHKSIR presents specificity scores for all HisKA HK and RR pairs in
thousands of organisms, defining specificity landscapes. These specificity landscapes can
then be used to determine favorable interactions through identification of pairs exhibiting
positive and/or negative selection. When assessing cognate pairs, the prevalence of interac-
tions either partially or solely characterized by negative selection becomes apparent. In the
validation process, 54.8% of detected cognate pairs exhibited both positive and negative
selection and 19.4% of detected cognate pairs were characterized by negative selection only.
Negative selection is important for preventing cross-talk and ensuring orthogonality [20],
but results indicate that it may be a main or contributing determinant of many cognate
interactions. It is unclear if other attributes or domains contribute to reinforcement of
specificity for cognate pairs detected by negative selection only.

By identifying whether cognate interactions are maintained by positive and/or nega-
tive selection, users can explore how deletion of TCS proteins may affect gene expression.
Experimental deletion of the cognate RR in a pair regulated by negative selection may result
in a noncognate RR being phosphorylated by the HK. In deletion experiments, it may be
useful to understand how removal of TCS proteins may affect overall expression. Further-
more, some TCS proteins are encoded for on plasmids. Understanding how the presence or
lack of plasmid-encoded TCS proteins on organisms’ genetic expression may be important
for the study of antibiotic resistance and plant cell transformation by bacteria [21].

It is important to note that, in many proteins, HisKA domains are accompanied
by an HATPase_c domain, which is responsible for binding ATP and transferring its γ
-phosphate to the HisKA domain. Aside from its ATPase activity, the HATPase_c domain
alone can act as a histidine kinase [22]. It is unknown whether the HATPase_c domain itself
encodes specificity or is partially responsible for specificity in certain cognate TCS pairings.
Further analysis of the HATPase_c domain as well as other histidine kinase domains could
reveal additional residues and mechanisms controlling TCS orthogonality.

3.2. Exploration of Non-Cognate Interactions

The ELIHKSIR web server allows for exploration and visualization of signaling net-
works. Using the displayed heatmap, users may identify crosstalk interactions in signaling
networks. Non-cognate, crosstalk interactions are common in signaling networks and
may influence the expression patterns in organisms. HTCS scores can be used to identify
non-cognate, crosstalk interactions. Non-cognate interactions may be predicted by high
specificity for a non-cognate partner as shown in Figures 7b–d and 6b,d. Any negative
score indicates some level of encoded specificity. While scores near zero indicate no en-
coded specificity, TCS non-cognate partners with scores near zero may still interact due to
shared attributes present in all TCS proteins, shown in Figures 6c and 7b. TCS non-cognate
pairs in which shared TCS attributes are partially removed have positive specificity scores,
indicating low specificity. These methods of identifying possible interactions may be used
across all available organisms, allowing for users to investigate crosstalk interactions within
specific, and possibly uncommon, species or strains.

TCS pairs in which the RR has a cognate HK of a different family than HisKA have
low specificity, but may still interact are shown in Figures 7b,d,f and 6b,d,f. The ability
to interact despite very low specificity indicates there may be activity of HATPase_c in
phosphorylation of non-cognate RRs whose cognates belong to other HK families since
HATPase_c is present in both HisKA and HisKA3 family HKs.
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Figure 6. (a) Cognate interactions and observed in vitro crosstalk interactions overlaid onto the speci-
ficity score heatmap for E. coli [23]. Noncognate interactions are assessed. (b) BarA phosphorylates
cusR, narL, and narP, in which the scores are −5.723, 2.390, and 3.491 respectively. The score for
barA-cusR indicates that phosphorylation occurs due to high specificity for its noncognate partner.
Phosphorylation of narL and narP are characterized in (f). (c) PhoR phosphorylates cpxR, in which
the score is −0.037. A score near zero indicates diminished specificity, while still retaining attributes
shared among all TCS pairs. (d) BaeS phosphorylates glrR, rssB, and cheY, in which the scores
are −1.264, 3.998, and 4.605. The score for baeS-glrR indicates that phosphorylation occurs due
to increased specificity for a noncognate partner. Phosphorylation of rssB is characterized in (g).
Phosphorylation of cheY can be described similarly to (f), as its cognate HK utilizes a different
family of HK than HisKA. (e) Cognate, crosstalk, and average non-cognate scores are shown for each
HK. (f) HKs narQ and narX are not shown as they utilize a HisKA3 family HK, rather than HisKA.
Their RRs, narL and narP, have low specificity for all HKs utilizing the HisKA domain. This leads
narL and narP to be nonspecific for HisKA family HKs. Despite a lack of specificity, crosstalk is
observed. (g) RssB is an orphan RR that can be phosphorylated by multiple HKs.
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MtrB PrrB PhoR

Figure 7. (a) Cognate interactions and observed in vitro crosstalk interactions overlaid onto the
specificity score heatmap for M. tuberculosis [24]. Noncognate interactions are assessed. (b) MtrB
phosphorylates kdpE, phoP, tcrX, tcrA, and narL, in which the scores are −4.895, −5.826, 0.391,
−1.093, and 2.813 respectively. Scores for kdpE, phoP, and tcrA indicate that phosphorylation
by mtrB occurs due to high specificity for these noncognate partners. TcrX has a score near zero,
/textcolorredindicating diminished specificity but a presence of attributes shared among all TCS
pairs. Phosphorylation of narL is characterized in (f). (c) PrrB phosphorylates mprA, in which the
score is −11.263. This score indicates that phosphorylation of mprA by prrB occurs due to high
specificity. (d) PhoR phosphorylates tcrX, tcrA, and devR, in which the scores are −5.744, −5.176,
and 6.856, respectively. Scores for tcrX and tcrA indicate that phosphorylation by phoR occurs due
to high specificity for these noncognate partners. Phosphorylation of devR is characterized in (f).
(e) Cognate, crosstalk, and average noncognate scores are shown for each HK. (f) HKs devS and narS
are not shown as they utilize a HisKA3 family HK, rather than HisKA. Their response regulators,
narL and devR, have low specificity for all HKs utilizing the HisKA domain.

In Figure 6g, we observe an orphan RR that exhibits low specificity for many HKs and
has been phosphorylated by HKs with low predicted specificity. Aside from the possibility
of HATPase_c domain contributions, it is possible that low specificity for orphan RRs is
favorable as it promotes promiscuity. In the case of rssB in E. coli, phosphorylation is
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important for function [25,26]. Therefore, promiscuity of rssB could ensure maintenance of
function throughout the E. coli life cycle. Using similar reasoning, one can identify potential
interactions with orphan HKs and RRs. Information yielded from analysis of orphan TCS
proteins may assist in describing their role in organisms’ life cycles, environmental stress
responses, and expression patterns. Utilizing predicted orphan TCS protein interactions
could be useful in the study of antibiotic resistance in bacteria, response to environmental
metals and compounds in archaea, or plant response to drought.

3.3. Revealing Interaction Specificity for Mutation and Variation

After mutating a protein residue, specificity scores are recalculated and the heatmap
is updated. This reveals how mutation(s) change interaction specificity with all possible
TCS partners. A feature that becomes important when scientists would like to assess the
network effect of mutations as opposed to single pairwise interactions. The ELIHKSIR web
server also separates organisms by strain, allowing interaction specificities to be compared
between different strains of the same organism. Accessibility of specificity predictions
for different mutants and strains may reveal differences in TCS signaling of clinical and
environmental variants and may assist in the engineering of sensory kinases and response
regulators as it has been shown in previous studies [5].

4. Materials and Methods
4.1. MSA Construction

Raw HMM profiles for HisKA and REC were obtained through Pfam’s hidden Markov
models (HMM) [27,28]. Then, the profile was searched using Hmmer’s hmmsearch against
the TrEMBL database. HKs with a sequence gap of 5 residues or larger were excluded
from the MSA. The resulting HisKA domain MSA was 67 residues in length and contained
111,032 sequences utilized in the ELIHKSIR web server. RRs with a sequence gap of
6 residues or larger were excluded from the MSA. The resulting REC domain MSA was
112 residues in length and contained 225,616 sequences utilized in the ELIHKSIR web
server. Cognate HK-RR pairs were concatenated and used for the generation of couplings
and local fields using mfDCA, where cognate is defined by having adjacent loci [29].
The resulting cognate MSA was 179 residues in length and contained 10,091 sequences.
A number of 25 iterations of random concatenation of each HK to a random RR was used
to generate a scrambled MSA. The resulting MSA was 179 residues in length and contained
16,363,100 sequences.

4.2. mfDCA Evolutionary Couplings and Hamiltonian Scores

Mean field DCA (mfDCA) [1] was used to infer the coevolutionary parameters from
conjugated multiple sequence alignments (MSAs) of cognate HK–RR sequences and scram-
bled HK–RR sequences. The resulting coupling parameters and local field parameters
were utilized in the calculation of Hamiltonian scores. In order to quantify changes on the
Hamiltonian H(S), Cheng et al. introduced a score HTCS as follows:

HTCS(HKA + RRA) =−
LHKA

∑
i=1

LHKA+LRRA

∑
j=LHKA+1

eij(Ai, Aj)×Θ(c− rij)

−
LHKA+LRRA

∑
i=1

hi(Ai)

(3)

for a specific pair between a sequence HKA and RRA of sequence lengths LHKA and LRRA
with the coupling matrix eij(Ai, Aj) between two sequence sites Ai, Aj at sequence positions
i and j; and the local field hi(Ai) at the site Ai at sequence position i. LHKA is 67 for the
HisKA domain and LRRA is 112 for the REC domain. The couplings are only taken within a
pair distance rij < c = 12Å of a native contact, expressed by a function Θ(x) = 1 for all
x > 0 and Θ(x) = 0 for x ≤ 0. The contact map of the native interfacial pairs is given by
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the 3D resolved structure of protein interface Thermotoga maritima class I HK853 with
its cognate, RR468, (PDB ID: 3DGE). This interface is used as a template for the spatial
complex. Equation (3) is used to calculate energies HTCS and H0

TCS at interface positions,
where HTCS is calculated using cognate couplings and local fields and H0

TCS is calculated
using scrambled couplings and local fields. H0

TCS is generated using the large-q Potts
Hamiltonian model on the scrambled MSA which is constructed by completing 25 rounds
of concatenation of any of m HKs in the data set with any of n RRs in the dataset:

H0
TCS({HK, RR}) =

〈HTCS(HKX |X ∈ {1,...,m}+ RRY|Y ∈ {1,...,n})〉25
(4)

To find Hspecific
TCS , Hamiltonian energies calculated from shared attributes present in all

HK–RR pairs must be removed from the specific HK–RR pair being evaluated:

Hspecific
TCS (HKA + RRA) =

HTCS(HKA + RRA)− H0
TCS({HK, RR})

(5)

where the resulting Hspecific
TCS represents the interaction specificity strength between the HK

and RR. Therefore, this energy function could be used to predict the interaction preference
between any HK and RR. Additionally, an updated Hspecific

TCS score, after incorporating a
mutation in the MSA, serves a reference for the effect of the mutation on binding specificity
strength. The updated Hspecific

TCS is generated by performing the same calculations presented

in Equations (3) and (5). Ranges for Hspecific
TCS values are varied between organisms and

strains where a positive score indicates a loss of shared encoded TCS attributes, a negative
score indicates encoded specificity, and a score of zero indicates a presence of all shared
TCS attributes but diminished encoded specificity. When qualifying potential interactions,
users should compare Hspecific

TCS for different TCS pairs belonging to the same organism.
One should consider more negative values to have increased encoded specificity, zero val-
ues to be capable of interacting with other TCS proteins without encoded specificity in the
HisKA domain, and positive values to exhibit insulation of HisKA and REC domains.

4.3. Software

The web server has a custom-built front end running React [30] for enhanced user
experience with custom components. The back-end is serving data through REST [31]
endpoints. Upon mutation, the scores are looked up from a pre-computed table. The python
source code for the calculation of HTCS is accessible via the web server. Details on public
endpoints can be found in Appendix A.

5. Conclusions

The ELIHKSIR web server is a valuable tool for analyzing TCS specificity landscapes
in a growing list of 6412 species and strains of bacteria, 65 species and strains of archaea,
and 188 species and strains of eukaryotes. This allows users to find potential cross-talk
interactions and characterize existing orthogonality for many organisms across different
kingdoms. For each organism, heatmaps and histograms of TCS networks are easily ac-
cessed, displayed, and exported. Furthermore, the ability to compute, display, and export
changes in specificity for mutated HK or RR proteins allows users to explore potential
interactions and visualize changes in specificity over an entire signaling network. This abil-
ity can assist in the analysis of engineered mutants, clinical and environmental variants,
and cross-talk behavior. While ELIHKSIR is useful for interactions between HisKA family
HKs and the REC domain of RRs, there exist other HK families in which the ELIHKSIR
model does not evaluate. Building and validating models to predict specificity for other
families of HK would further assist TCS research. Even though ELIHKSIR only displays
specificity scores for HisKA and REC domains, these domains are critical in determining
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specificity for many TCS interactions, as demonstrated by the 6,272,607 HK-RR pairs evalu-
ated. Due to the ability to mutate each protein and recalculate network-wide specificity
scores, there are nearly endless possibilities of HK–RR pairs to evaluate using ELIHKSIR.
The accessibility, breadth, and functionality of ELIHKSIR allows a variety of researchers
(both computational and experimental) to harness TCS specificity predictions, supporting
research efforts through a tool that did not previously exist.
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Abbreviations
The following abbreviations are used in this manuscript:

ELIHKSIR
Evolutionary Links Inferred for Histidine Kinase Sensors
Interacting with Response regulators

TCS Two-Component System
DCA Direct-Coupling Analysis
mfDCA couplings generated by mean-field method as outlined in Morcos, 2011 [1]
DI Direct Information
HK Histidine Kinase, Histidine Kinase family (Pfam:PF00512) [15]
RR Response Regulator, Response Regulator family (Pfam: PF00072) [16]
TP True Positive
FN False Negative
PS Positive Selection
NS Negative Selection

Appendix A

Data of the server can be accessed in a programmatic way through two REST end-
points as described in Table A1. The all organisms endpoint api/list returns a list of
all the organisms currently accessible through ELIHKSIR. The return value will contain
the names (ORGANISM_NAMES::STRING), UNIPROT ID (ORGANISM_UNIPROT_ID::STRING),
and the numeric identifier/primary key (ORGANISM_ID::INT) for each organism. By
using the numeric identifiers obtained from the list endpoint further meta data and in-
formation, along with the scores for each interacting pair, can be obtained through the
api/pairs endpoint.

Table A1. List of the available endpoints for the REST API.

Endpoint HTTP Method URL

All Organisms GET api/list
Pairs for heatmap GET api/pairs/{ORGANISM_ID::INT}

https://elihksir.org/
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Figure A1. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable interaction.
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Figure A2. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable.

Figure A3. True positives are correct prediction of cognate pairs through positive and/or negative
selection. False negatives occur when the cognate pairing is not the most favorable interaction.
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Table A2. Couplings used in specificity model sorted by descending DI value.

HK RR DI HK RR DI HK RR DI HK RR DI

18 77 0.102853 7 147 0.00806367 14 170 0.00572271 16 77 0.00460402
22 80 0.0722833 30 83 0.00801695 19 169 0.00571496 42 77 0.00460128
11 167 0.0705232 33 83 0.00781679 14 147 0.00570246 26 176 0.004455
26 84 0.0515243 22 171 0.00767719 22 170 0.00569941 42 76 0.00444185
23 80 0.0492594 19 79 0.00765574 16 76 0.00569788 17 169 0.00442802
14 146 0.04276 23 172 0.00763662 15 76 0.00568733 27 80 0.00440244
46 76 0.0398581 18 171 0.00759788 38 80 0.0056818 15 167 0.00439432
19 76 0.0392644 19 147 0.00753089 10 147 0.00567069 19 81 0.00420284
25 170 0.0351779 18 81 0.00752615 22 172 0.00562105 38 79 0.00418686
25 171 0.0303173 12 148 0.00734758 13 147 0.00559724 41 79 0.00416339
11 168 0.0285807 10 150 0.00732327 34 87 0.00559491 15 170 0.0041264
15 146 0.0270048 45 76 0.007169 33 84 0.00556154 24 173 0.00403743
29 87 0.0265711 22 76 0.00712089 34 84 0.00552466 18 146 0.00382329
19 77 0.0259669 21 172 0.00705718 25 169 0.00545037 16 147 0.00378105
30 87 0.0215653 30 80 0.00702085 15 118 0.00544512 18 172 0.00377972
23 76 0.0193616 15 74 0.00697282 25 174 0.00543429 20 168 0.00375797
19 80 0.0189693 18 147 0.00691656 18 74 0.00541696 16 169 0.00366294
22 77 0.0188355 45 79 0.00690392 14 149 0.00540391 25 81 0.00362641
23 79 0.0180874 22 78 0.00680398 30 86 0.00538702 13 169 0.00359782
19 74 0.0176283 19 170 0.00679327 33 87 0.00538074 10 148 0.00359015
8 147 0.0172729 23 170 0.00679065 17 147 0.00537632 20 77 0.00355346
18 169 0.0171606 18 78 0.00676363 33 86 0.00534217 11 146 0.00345648
29 171 0.0170736 26 81 0.00675062 7 149 0.00530426 21 81 0.00344168
16 168 0.0168674 31 87 0.0067342 14 169 0.00530394 42 80 0.00338203
15 77 0.0152404 21 77 0.00670382 38 83 0.00526882 28 173 0.00334077
25 172 0.0149784 27 84 0.00667465 26 82 0.00525117 22 174 0.0032904
39 83 0.014901 22 81 0.00666247 17 77 0.00524036 20 170 0.00327778
29 172 0.0146187 46 77 0.00658625 42 83 0.00521168 14 168 0.0032269
21 170 0.014469 26 79 0.00657677 34 83 0.00520958 22 176 0.00319442
26 80 0.0141692 18 168 0.00651457 34 80 0.00518935 24 172 0.00310293
26 83 0.0139579 45 80 0.00648245 20 80 0.00514101 17 170 0.00307046
23 83 0.0130196 19 172 0.00639985 46 80 0.00512939 19 168 0.00298315
12 168 0.0128269 18 76 0.00633046 18 170 0.00510377 26 85 0.00290492
15 147 0.0123301 28 172 0.00626959 23 82 0.00509604 20 171 0.0027667
29 84 0.0121863 25 175 0.00623035 25 80 0.00502442 15 169 0.00275228
8 148 0.0119021 16 74 0.00615123 49 77 0.00502117 20 169 0.00269252
23 84 0.0118386 30 88 0.00614559 45 77 0.00501361 15 168 0.00266174
22 84 0.0113964 19 75 0.00610985 24 171 0.00496918 21 168 0.00254422
23 171 0.0108972 10 149 0.00608531 17 76 0.00494564 26 174 0.00238278
32 87 0.0108637 24 80 0.00607124 14 167 0.00492586 27 173 0.00238187
26 171 0.0107505 23 169 0.00605014 15 148 0.00492344 24 169 0.00237797
25 84 0.0104978 33 88 0.00604033 23 173 0.00489615 20 172 0.00233119
14 148 0.0104055 7 150 0.00599047 24 170 0.00488941 18 145 0.00222389
30 84 0.0102802 48 76 0.00596518 44 76 0.00484498 13 168 0.00190674
26 87 0.0102777 21 80 0.0059512 21 173 0.00483877 10 169 0.00186603
23 78 0.01007 25 173 0.00592837 29 173 0.00481891 18 167 0.00162171
23 77 0.00997545 28 171 0.00591566 10 168 0.00480323 12 169 0.00147153
22 169 0.00996165 42 79 0.00586154 17 171 0.00478502 15 145 0.00135628
43 80 0.00972282 22 173 0.00585409 22 168 0.00478308 11 149 0.00105631
22 83 0.00952424 26 172 0.0058532 12 147 0.0047804 11 169 0.000969333
18 80 0.0093605 49 76 0.005838 26 173 0.00476983 11 150 0.000862052
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Table A2. Cont.

HK RR DI HK RR DI HK RR DI

7 148 0.00897782 26 175 0.00581626 22 82 0.00476307 11 148 0.000856593
29 83 0.00882006 30 172 0.00577961 45 75 0.00475623 11 118 0.000790599
21 171 0.00865425 22 79 0.00577265 39 80 0.00473036 11 147 0.000413171
26 170 0.00854487 15 73 0.00576882 27 172 0.00472585
19 171 0.00831504 41 80 0.00576018 41 76 0.00472158
17 168 0.008266 30 173 0.00574398 27 83 0.0046522
19 78 0.00818936 23 81 0.00573789 20 76 0.00465154
21 169 0.0080992 22 175 0.00573107 16 77 0.00460402

(a)

(b)
Figure A4. Gray structures show the HK residues lying outside of the HisKA domain. Black structures show the RR residues
lying outside the REC domain. The blue structure represents the HisKA domain, and the yellow structure represents the
REC domain. Green pseudobonds show contacts within 12 Angstroms Cα to Cα. Red pseudobonds show the top 20 DCA
couplings. The distribution of DCA couplings indicates that the model does not show biases towards subregions of the
interface. (a) All contacts within 12 Angstroms as found in the structure viewed from two different positions, left and right
faces; (b) Top 20 interfacial DI contacts as viewed from left and right faces.
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