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Abstract
One of the core features of autism spectrum disorder (ASD) is impaired reciprocal social

interaction, especially in processing emotional information. Social robots are used to

encourage children with ASD to take the initiative and to interact with the robotic tools to

stimulate emotional responses. However, the existing evidence is limited by poor trial

designs. The purpose of this study was to provide computational evidence in support of

robot-assisted therapy for children with ASD. We thus propose an emotional model of ASD

that adapts a Bayesian model of the uncanny valley effect, which holds that a human-look-

ing robot can provoke repulsion and sensations of eeriness. Based on the unique emotional

responses of children with ASD to the robots, we postulate that ASD induces a unique emo-

tional response curve, more like a cliff than a valley. Thus, we performed numerical simula-

tions of robot-assisted therapy to evaluate its effects. The results showed that, although a

stimulus fell into the uncanny valley in the typical condition, it was effective at avoiding the

uncanny cliff in the ASD condition. Consequently, individuals with ASD may find it more

comfortable, and may modify their emotional response, if the robots look like deformed

humans, even if they appear “creepy” to typical individuals. Therefore, we suggest that our

model explains the effects of robot-assisted therapy in children with ASD and that human-

looking robots may have potential advantages for improving social interactions in ASD.

Introduction
According to the DSM-5, which is the most widely accepted classification of mental disorders,
autism spectrum disorder (ASD) is behaviorally defined as a group of disorders with abnormal
or impaired development in two areas: persistent deficits in social communication and social
interaction, and restricted, repetitive patterns of behavior, interests, or activities [1]. Individuals
with ASD experience the world and human behavior differently compared with typically devel-
oping individuals, as they react in an atypical way to stimuli [2]. There has been interest in
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using robots for intervention with children with ASD because robots can generate a high
degree of motivation and engagement in children with learning disabilities and can be used to
communicate, interact, display and recognize emotion, develop social competency, and main-
tain social relationships [3, 4]. Studies have shown that children with ASD tend to express
more interest in robots than in non-robotic toys or human partners [5, 6]. Therefore, the use of
robots as therapy tools may improve the engagement of children with ASD and elicit novel
social behaviors [7, 8]. Additionally, the particular design used to create such robots may play a
large role in helping children with ASD become more social [9].

When designing robot systems that interact with people, it is important to take into account
the uncanny valley theory [10, 11]. This holds that, although cartoonish or other abstract
human figures may elicit an immediate sense of familiarity in human observers, robots or ani-
mations that appear very similar, but not identical to, humans may trigger a sense of uneasiness
[12]. This feeling is represented graphically by a sharp dip in familiarity, called the uncanny
valley, in which the observer’s emotional response to the artificial character becomes drastically
less positive (Fig 1, Typical). These unsettling emotions are thought to have an evolutionary
origin, a theory that is supported by studies of monkeys [13] and human infants [14, 15]. In
addition, an fMRI study reported that there is activation related to the uncanny valley in the
human brain [16].

To avoid the uncanny valley, designers often create robots that do not resemble humans.
For example, many therapeutic robots are designed to look like animals or to be cute and non-
threatening, such as PARO [17, 18]. However, although a therapeutic robot called KASPER

Fig 1. The uncanny valley hypothesis and the model’s prediction. The solid blue line indicates the uncanny valley effect. The red dashed line shows the
model’s prediction for children with ASD.

doi:10.1371/journal.pone.0138642.g001
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may closely resemble a human and seem creepy to a typical person, children with ASD have
responded well to it [19]. In another study that used a robotic face as stimuli, children with
ASD showed no increase in heart rate when exposed to a creepy face, whereas children without
ASD appeared uncomfortable and exhibited an increased heart rate [20]. Additionally, the
majority of children with ASD showed an increase in social communication when they inter-
acted with a robotic face [21]. These studies suggest that children with ASD do not find
human-looking robots creepy, although they feel uncomfortable interacting with most people.
We thus postulated that ASD induces a unique emotional response curve more like a cliff than
a valley (Fig 1, ASD). Given this, individuals with ASD may identify humans utilizing different
neural systems and information to typical individuals [22–24], thus leading them to classify
humans into different categories, compared to typical individuals.

The purpose of this study was to provide computational evidence for robot-assisted therapy
for children with ASD. We hypothesize that: 1) individuals with ASD categorize humanness
abnormally, and 2) their social interaction, defined as their emotional response to humans,
may be improved by learning to categorize humans in the same manner as non-ASD sufferers.
Based on these hypotheses, we modeled the emotional responses in ASD as the “uncanny cliff”,
adapting a Bayesian model of the uncanny valley [25], and carried out numerical simulations
of robot-assisted therapy to evaluate the effects. The results showed that even if a stimulus fell
into the uncanny valley in the typical condition, it sometimes improved the emotional response
in the ASD condition. Therefore, we concluded that our model may explain the effects of
robot-assisted therapy in children with ASD, and that human-looking robots may have the
potential to improve social interaction in ASD.

Methods

The uncanny valley model
A dimension of human-likeness can be defined in the uncanny valley theory as a smooth linear
change in the degree of physical human-like similarity. The perceived human-likeness of
objects can therefore be explained in terms of the psychological effect of categorical perception
(CP) [26, 27]. CP is the experience of percept invariance in sensory phenomena that can be var-
ied along a continuum. CP is related to how neural networks in the human brain detect the fea-
tures of objects in the world, allowing them to be separated into categories based on perceived
similarities and differences [28].

Feldman developed a computational model of the influence of CP, known as the perceptual
magnet effect, using a Bayesian model of optimal statistical inference [29]. The perceptual mag-
net effect is a phenomenon that affects perceptual categorization; it has mainly been described
with respect to vowels, and is characterized by a warping of perceptual space near phonemic
category centers [30]. The effect makes people judge stimuli that are close to a category bound-
ary as more dissimilar than stimuli that are distant from a category.

Recently, Moore proposed a model of the uncanny valley effect that is an extension of Feld-
man’s model [25]. This model could predict the differential perception distortion resulting
from stimuli involving conflicting cues that induce perceptual tension at category boundaries,
and it could explain the uncanny valley effect. According to Moore’s model, the distortion
resulting from the perceptual magnet effect can be described by the following displacement
function:

DðSiÞ ¼ EðHjSiÞ � Si; ð1Þ

where E(H | Si) is the expected value of the perceptual humannessH given a physical stimulus
Si (i = 1, 2, . . .), which is a component of the multi-dimensional perceived stimuli S1, S2, . . ..
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The term D(Si) expresses a measure of perceptual distortion towards or away from the different
categories. If D(Si) is positive, it represents a distortion in one direction in line with the stimu-
lus axis. In contrast, a negative value of D(Si) represents a distortion in the opposite direction.
Suppose a given category Cj (j = 1, 2, . . .), E[H | Si] is described as

E½HjSi� ¼
X

j

PðCjjSiÞ
s2
cj
Si þ s2

si
mcj

s2
cj
þ s2

si

; ð2Þ

where μcj and σcj are the mean and standard deviations of the category, respectively, and σsi is
the measure of uncertainty related to the stimulus. Then, according to Bayes’ theorem, the pos-
terior probability P(Cj | Si) is represented as

PðCjjSiÞ ¼
PðSijCjÞ � PðCjÞ

PðSiÞ
; ð3Þ

where

PðSiÞ ¼
X

j

PðSijCjÞ � PðCjÞ:

In the following, the posterior probability P(Si | Cj) is supposed using a Gaussian distribu-
tion:

PðSijCjÞ ¼ Nðmcj; s
2
cj
þ s2

si
Þ:

Imagine a situation in which there are multiple dimensions, and in which stimuli are per-
ceived as multiple cues. In this case, Moore defined any differential perpetual distortion as the
variance of the displacement values:

V ¼ E½DðSiÞ2� � ðE½DðSiÞ�Þ2: ð4Þ

Here, V indicates the amount of perceptual tension, which would be a result of differential
distortions between conflicting perceptual cues, such that V increases with greater perceptual
conflict. Therefore, the emotional response function F(Si) can be provided by subtracting V
from P(Si):

FðSiÞ ¼ PðSiÞ � a � V ; ð5Þ

where α is the scaling parameter set to 150, which reflects the sensitivity of an observer to any
perceived perceptual conflict.

In this study, we assumed that the perceived stimuli involved two types of stimulus (S1 and
S2) and two categories (C1 and C2), with P(C1) = P(C2) = 0.5. The stimuli S1 and S2 have differ-
ent measures of uncertainty, and the parameters are set to σs1 = 0.2 and σs2 = 0.05. The catego-
ries C1 and C2 correspond to the background and human categories. The background category
(C1) parameters are set to μc1 = 0.5 and σc1 = 0.5, and the human category (C2) parameters are
set to μc2 = 1.0 and σc2 = 0.05 where the mean of the human category is adjusted to reproduce
the uncanny valley effect in ASD. Hence, the posterior probability of the human category given
the stimulus S1 (P[C2 | S1]), is distributed more broadly and, if given the stimulus S2 (P[C2 |
S2]) with a narrower distribution, the effect is small on the posterior probabilities of the back-
ground category (P[C1 | S1] and P[C1 | S2]) (Fig 2). Here, we compute the whole emotional
response function Y(S1, S2) as the linear sum of the emotional responses induced by the stimuli
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S1 and S2. The whole emotional response is given by:

YðS1; S2Þ ¼ b � FðS1Þ þ ð1� bÞ � FðS2Þ; ð6Þ
where β is the attention rate for the stimulus S1, and is set to 0.5.

The uncanny valley effect in ASD
We assumed that ASD involves not the “uncanny valley” but the “uncanny cliff” (Fig 1)
because children with ASD have been shown to have persistent deficits in social communica-
tion and social interaction with other people, while a realistic human-looking robot did not
elicit negative feelings [20, 21]. Hence, although they interact relatively easily with non-human
animals and robots, individuals with ASD may have a reduced perception of agency in humans
[31]. Additionally, individuals with ASD may perceive less stimulus information when they
interact with other persons [23]. We thus hypothesized that individuals with ASD expect peo-
ple to be even more human-like than they actually are, and that the human category in ASD is
shifted from its actual position to an extreme position (Fig 3). Studies using fMRI found that
individuals with ASD identify humans utilizing different neural systems, as compared with typ-
ical individuals. Individuals with ASD showed either abnormally weak or no activation in the
fusiform face area, which is specialized for facial recognition among typical individuals [22],
and abnormal functional neural connectivity during face processing [24]. In this study, we
reproduced the uncanny valley effects in ASD as the “uncanny cliff” using values for μc2 rang-
ing from 1.0 to 1.3.

Learning process via robot-assisted therapy
Robot-assisted therapies may still help individuals with ASD improve social interaction with
other people, because feelings of uncanniness are tied to perceptions of experience [32]. It has
been suggested that all of our perceptual categories are inborn [33]. However, the boundaries
of inborn categories may be modified as a result of learning [34]. There are two different learn-
ing processes: categorical expansion and categorical compression [35]. Because the widths of
the boundaries are determined by the variance of the categories, we assumed that the variance
of the human category could be updated by experiences of perceived humanness via interac-
tions with therapeutic robots.

Fig 2. Probability of the occurrence of a different stimulus given a broad human category (S1), and a narrow human category (S2). The left- and right-
hand panels show the probability densities for S1 and S2, respectively.

doi:10.1371/journal.pone.0138642.g002
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We performed simple simulations of robot-assisted therapy based on the assumption that
the variance of the human category updates with each trial. In the simulations, the variance of
the human category is updated iteratively as follows, in accordance with the learning rule of CP
(see Appendix):

ðsðkþ1Þ
c2 Þ2 ¼ ðsðkÞ

c2 Þ2 þ g � PðC2jSpÞ � fðSp � mc2Þ2 � ðsðkÞ
c2 Þ2g; ð7Þ

where k and Sp are the trial number and presented stimulus for learning, respectively. Here, the
learning parameter γ is a variable parameter that is proportional to the emotional response:

g ¼ d � YðS1; S2Þ; ð8Þ
where δ is the scaling parameter, and is set to 0.1. We assumed that the learning process must
be dependent on the emotional response Y(S1, S2), e.g., an interest or motivation. Then, if Y(S1,
S2) becomes positive, it fosters learning. On the other hand, if Y(S1, S2) becomes negative, it
inhibits learning.

The posterior probability P(C2 | Sp) represents an effect of the presented stimulus Sp on the
perceptual human category C2. In this study, we defined P(C2 | Sp) as the linear sum of the
effects of stimuli S1 and S2, similar to Eq (6):

PðC2jSpÞ ¼ b � PðC2jS1Þ þ ð1� bÞ � PðC2jS2Þ: ð9Þ

Results

The uncanny valley model
We reproduced the uncanny valley effect as an emotional response to stimuli using a Bayesian
model of the uncanny valley effect. We also tried to predict autistic behavior by adapting the
same model using a shifted human category for the perception of humanness. When the mean
of the human category was shifted to the right, the uncanny valley receded (Fig 4A) and the

Fig 3. Probability densities of perceptual categories. The typical and ASD conditions are defined by μc2, where the mean of the human category is:
typical, μc2 = 1; ASD, μc2 = 1.25.

doi:10.1371/journal.pone.0138642.g003
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reduced emotional response could not be recovered at the upper bound of the stimulus. The
uncanny curve formed a “cliff” rather than a “valley”, in keeping with our original assumption
(Fig 4B).

Effects of robot-assisted therapy
We simulated processes that numerically evaluated CP learning of a human category under
several stimulus conditions to examine the effects of robot-assisted therapy. The value of μc2
was set to 1.25 for the ASD condition. The presented stimuli were defined as visual impressions
of the therapeutic robots, and were distributed over a range from 0 (completely machine-like)
to 1 (fully human-like). The human category was influenced by stimuli between the range of
0.25 and 0.5 in the typical condition (Fig 5A), versus 0.5 and 0.8 in the ASD condition (Fig 5B).
The learning speed varied depending on the presented stimulus. The learned variances after
500 trials differed according to the presented stimulus (Fig 5C). In both conditions, the pre-
sented stimulus induced a high variance at the lower bound of effective area, and a small vari-
ance at the upper bound.

We produced the uncanny valley effect using the learned variances after 500 trials. In the
typical condition, the uncanny valley disappeared when the presented stimulus was within a
range of 0.25 and 0.5 (Fig 6A). Then the dip was gradually lifted in succeeding trials, and the
peak for the human-like stimuli was decreased (Fig 6B). In the ASD condition, the uncanny
cliff reappeared when the presented stimulus was within a range of 0.5 and 0.8 (Fig 6C), and
the bottom gradually increased across subsequent trials (Fig 6D).

Discussion
We presented an emotional model of ASD that adapts a Bayesian model of the uncanny valley
effect [25]. We then postulated that children with ASD show a unique emotional response
curve to human likenesses, forming a cliff rather than a valley. The expected emotional
response for individuals with ASD was reproduced by our model. In our study, we carried out
numerical simulations of robot-assisted therapy to examine the effects on emotional response.
In the typical condition, the simulation showed disappearance of the valley when the presented
stimulus was within a certain range (Fig 6A). This result may indicate a habituation effect,

Fig 4. Predictions of the uncanny valley effects according to Moore’s model. (A) Emotional response plotted as a function of the stimulus and the mean
of the human category. The left- and right-hand panels show the three-dimensional representation, and the color image of a plain face, respectively. (B) The
uncanny valley curves for the typical and ASD conditions (typical, μc2 = 1; ASD, μc2 = 1.25).

doi:10.1371/journal.pone.0138642.g004
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because people’s cultural backgrounds may have a considerable influence on the uncanny val-
ley [36], e.g., people who are more accustomed to computer graphics and robots may be less
affected by the human likeness of the stimulus. On the other hand, although a stimulus fell into
the uncanny valley in the typical condition, it was effective at avoiding the uncanny cliff in the
ASD condition. Thus, individuals with ASD may find it more comfortable, and may modify
their emotional response, if the robots look like deformed humans, even if they appear creepy
to individuals without the disorder. We therefore suggest that robot-assisted therapy using
human-looking robots has potential advantages for improving social interaction in individuals
with ASD. Because this study has only been conducted using a computational approach, there
are limitations to our conclusions for predicting actual human behaviors. Thus, it is necessary
to establish the uncanny valley theory in terms of the neural basis, and evaluate our assump-
tions about the uncanny valley effect perceived by individuals with ASD.

In our simulations, the learned variances differed depending on the presented stimulus
(Fig 5). However, the influences were small in terms of the uncanny valley effect (Fig 6). Thus,
the response to the presented stimulus was primarily related to the efficiency of the therapy
whenever it was within the effective interval.

There are few empirical data supporting the uncanny valley theory, and opinions vary as to
the degree of its effect and longevity [37–39]. No empirical studies have directly investigated if
and how the uncanny valley applies to those with ASD. Thus, the uncanny valley theory must
not be considered as an established theory. On the other hand, several studies clearly suggest
that the uncanny valley exists, and it is supposed that the effect is likely to be a great deal more
complex than Mori’s original proposal, driven by a number of factors.

Fig 5. Effects of robot-assisted therapy on the variance of the human category. (A–B) Learned variance of the human category. The left panel is plotted
as a function of the trial number and the presented stimulus. The right panel represents the learning curves for some of the presented stimuli: (A) in the typical
condition; and (B) in the ASD condition. (C) The terminal values of the learned variance after 500 trials with respect to the presented stimulus.

doi:10.1371/journal.pone.0138642.g005
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The greatest differences in brain responses to uncanny robots were bilateral in the parietal
cortex, specifically in the areas that connect the part of the visual cortex that processes body
movements with the motor cortex [16]. We therefore postulate that visual feedback systems
have developed as systems for classifying self (human-likeness) and others (non-humanness),
estimating the internal state of others, and predicting their emotional responses, from a system
based on identifying one’s own movements. Visual feedback systems are thought to make a
major contribution to social functions. This suggests that the design of therapeutic devices for
children with ASD should be carefully considered.

This study proposes a hypothesis about human-robot interaction for individuals with ASD.
It may explain the influence of robot-assisted therapy on children with ASD, one that aims to
improve their social interactions. We speculate that such therapy induces adaptation of percep-
tual categories and, consequently, modifies emotional response curves generated by the
uncanny valley effect. Moreover, human-looking therapeutic robots, which fall into the
uncanny valley in typical individuals, may improve social interaction in individuals with ASD.
In the future, we will evaluate our assumption regarding the uncanny valley effect in children
with ASD. First, we will measure observers’ impressions of facial images in children with ASD.

Fig 6. Effects of robot-assisted therapy on emotional response. (A) Emotional response in the typical condition plotted as a function of the stimulus and
presented stimulus. The left and right panels correspond to the three-dimensional representation, and a color image of a plain face, respectively. (B) Example
of the uncanny valley curve changes in the typical condition for 0.4 of the presented stimulus at 0, 50, 150, and 500 trials. (C) Emotional response in the ASD
condition plotted as a function of the stimulus and presented stimulus. The left and right panels correspond to the three-dimensional representation, and a
color image of a plain face, respectively. (D) Example of the uncanny curve changes in the ASD condition for 0.7 of the presented stimulus at 0, 10, 50, and
500 trials.

doi:10.1371/journal.pone.0138642.g006
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In doing so, the degrees of realism of the images will be manipulated by morphing between
artificial and actual human faces, similar to a previous study in healthy subjects [40]. After
that, we will investigate the effects of robot-assisted therapy, thorough human-robot interac-
tion games, relating to physiological indicators (e.g., heart rates [20]) or emotional expressions
(e.g., smiles [41]), and specific assessment scales including social interactions for individuals
with ASD, i.e., the Social Responsiveness Scale (SRS) and the Autism Diagnostic Observation
Schedule (ADOS).

Appendix

Derivation of learning rule for categorical perception
Learning processes of CP can be divided into two different processes: learning that occurs
between categories and learning that occurs within a category of comparison may be described
as a categorical expansion effect and a categorical compression effect, respectively [35]. The
categorical expansion effect broadens the category boundaries, allowing the category to encom-
pass a larger set of objects. In contrast, the categorical compression effect narrows the category
boundaries to include a smaller set of objects. Because category boundaries are determined by
the variance of the categories in accordance with the Bayesian model of CP [29], we supposed
that the variance of the category for the stimulus is denoted by:

s2
cj ¼ E½ðSi � mcjÞ2�: ðA1Þ

Thus, when a subject is exposed to stimulus Sp, the distribution is updated by the stimulus
as:

ðs0
cjÞ2 ¼ ð1� PðCjjSpÞÞ � s2

cj þ PðCjjSpÞ � ðSp � mcjÞ2; ðA2Þ

where P(Cj | Sp) is the posterior probability and represents an effect of the presented stimulus
Sp on the perceptual category Cj. From the Eq (A2), the amount of the update can be described
as:

ðs0
cjÞ2 � s2

cj ¼ PðCjjSpÞ � fðSp � mcjÞ2 � s2
cjg: ðA3Þ

Here, we suppose the category variance at the kth trial as ðsðkÞ
cj Þ2. The variance is supposed to

be iteratively updated through a driving signal described as Eq (A3). We thus define the learn-
ing rule of CP as follows:

ðsðkþ1Þ
cj Þ2 ¼ ðsðkÞ

cj Þ2 þ g � PðCjjSpÞ � fðSp � mcjÞ2 � ðsðkÞ
cj Þ2g; ðA4Þ

where γ is the learning parameter.

Supporting Information
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are reproduced by this file.
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