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A B S T R A C T

The natural history of primary hypereosinophilia remains poorly defined, given the underlying disease het-
erogeneity. Recently, targeted NGS helps to establish clonality in a subset of patients with hypereosinophilia. We
first reported the clonal evolution in a long-term follow-up patient with hypereosinophilia. This case initially
presented with chronic eosinophilic leukemia, not otherwise specified (CEL-NOS), successively transformed to
myelodysplastic syndromes (MDS) and acute myeloid leukemia(s-AML). We identified three mutations at CEL-
NOS phase, five and seven mutations at MDS and s-AML stages, respectively. Our data illustrate the clonal
dynamic process associated with disease evolution from CEL-NOS to s-AML.

1. Introduction

Hypereosinophilia is observed in a range of secondary and clonal
disorders. Clonal hierarchy in myeloproliferative neoplasms (MPNs),
particularly in the context of disease progression, is not well defined.
While next generation sequencing (NGS) studies can generate sub-
stantial dividends in dissecting the genetic basis of myeloid neoplasms
with eosinophilia and suggest possible clonal populations [1,2]. Re-
current mutations in several genes (e.g. RUNX1, ASXL1, JAK2, U2AF1,
IDH1,TET2) have also recently been identified in MPNs [2,3]. Many of
these mutations have been identified in chronic as well as blast phase
MPNs [3]. The specific role of these genes in disease initiation and/or
progression remains incompletely understood. Here, we report the
clonal evolution revealed by NGS in a long-term follow-up patient with
hypereosinophilia.

2. Case report

A 59-year-old male was admitted to our clinic with a 7-month his-
tory of unexplained eosinophilia (>1.5×109/L) and three-week his-
tory of muscle pain in September, 2009. The spleen was palpable 8 cm
below the left rib cage. The complete blood count showed hemoglobin
levels of 147 g/L, 362 × 109/L platelets, and 22.7×109/L leukocytes,
with 36.7% eosinophils. A high lactate dehydrogenase was observed
(493.5 U/L; normal, <240 U/L). An extensive workup for malignancy,

allergies, parasitic, and autoimmune disease were all negative. Bone
marrow (BM) specimen showed a hypercellular marrow with hyper-
eosinophilia (26.0%) (Fig. 1A). No increase in blasts was detected.
Cytogenetic analysis revealed the karyotype 46, XY in 20/20 of the
metaphases examined. Fluorescence in situ hybridization analysis
(FISH) showed no signals corresponding to BCR/ABL1gene fusion and
myelodysplastic syndromes(MDS) markers [−5/del(5q), −7/del(7q),
+8 and del(20q)]. FISH was also negative for rearrangements of
PDGFRA, PDGFRB, FGFR1 and CBFB. Because of the lack of genetic
mutations, the patient met the clinical criteria for idiopathic hyper-
eosinophilic syndrome (HES) according to established diagnostic
guidelines for eosinophilia in 2008 World Health Organization [4] and
was treated with predinisone, which led to an improvement in eosi-
nophils, and clinical symptoms.

Three years later, the man was examined for abdominal pain and
confirmed to have pylethrombosis by computed tomograph. He was
treated with thrombolytic therapy successfully. From then on, we
managed him with low dose interferon alpha subcutaneously at 3MU
per dose TIW (three times a week) and hydroxyurea. The leukocytes
and eosinophils were ranged from 5×109/L to 10 × 109/L and
0.4×109/L to 1.0×109/L, respectively, during outpatient following-
up. The man was again admitted to our clinic because of fatigue and
weight loss in August, 2017. The leukocytes was 5.4×109/L (26.5%
eosinophils), hemoglobin levels was 72 g/L, and the platelets was
187× 109/L, BM smear showed slightly hypercellular marrow with
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eosinophilia(11.0%), multilineage dysplasia, and blasts comprised
7.5% of nucleated cells (Fig. 1B). Cytogenetics were normal, consistent
with the findings obtained in September, 2009. MDS-EB-1(intermediate
1 according to the IPSS and intermediate according to the IPSS-R) was
diagnosed based on the definition of 2016 World Health Organization
(WHO) [5]. Therapy was changed to decitabine (20 mg/m2 in-
travenously on days 1–5). He underwent severe pulmonary infection in
the inhibition period of hematopoiesis, and didn't agree to receive cy-
totoxic chemotherapy any more, except of supportive cares.

In February, 2018, the patient complained of weakness and anemia
(Hb 61 g/L). The leukocytes and platelets were 55.01×109 /L(1%
eosinophils) and 10.0× 109 /L, respectively. BM was hypercellular,
with 80.5% blasts, 1% eosinophils (Fig. 1C). There is no new findings in
cytogenetics. Flow cytometry analysis demonstrated that the BM blasts
were positive for CD13, CD33, and CD117. The patient was diagnosed
as acute myeloid leukemia with myelodysplasia related changes (s-
AML) and prescribed with reduced intensity IA (idarubicin 6mg/m2 d1-
3, cytarabine 100mg/m2 d1-7) regimen. Despite two courses of che-
motherapy induction, the BM did not exhibit improvement. He expired
in May, 2018.

Target-NGS of 51 genes, which were known or suspected to have a
role in myeloid malignancies, was applied on BM genomic DNA to
retrospectivly analyze the molecular evolution from HES to s-AML. We
identified three mutations in HES phase, five and seven mutations in
MDS and s-AML samples, respectively. The mutated genes included
ETNK1, U2AF1, SETBP1, IDH2, and RUNX1. Based on the NGS results,
the patient's diagnosis at presentation in 2009 was revised as chronic
eosinophilic leukemia not otherwise specified (CEL-NOS), according to
the new diagnostic criteria [6]. NGS on saliva DNA confirmed that all
these alterations were somatic mutations. Additionally, variant allele
fractions (VAFs) provided by NGS can be informative. VAFs represent
the fraction of specific mutant sequences (the so-called “reads” pro-
vided by NGS) relative to total sequenced reads. Using a simplified
model, the original “founding” clones can be identified based on their
high VAF whereas clones acquired later in the development of disease
would have a distinctly lower VAF. The mutated genes and its VAFs in
different disease stages were listed in Table 1.

3. Discussion

The target NGS revealed clonal evolution in our case who initially
presented with CEL-NOS, successively transformed to MDS-EB-1 and
post-MDS s-AML. The CEL-NOS stage was characterized by a founding
clone harboring mutations in ETNK1 and U2AF1 and a subclone con-
taining a mutation in SETBP1. One study showed the evidence of re-
current somatic ETNK1 mutations in the context of MDS/MPN disorders

and may inhibit the catalytic activity of the enzyme [7]. Another study
found ETNK1 mutations to be largely restricted to patients with sys-
temic mastocytosis(SM) with associated eosinophilia and chronic
myelomonocytic leukemia(CMML) [8]. These findings suggest that
ETNK1 mutation may play a significant functional role in myeloid
malignancies or in acidophilic differentiation. U2AF1 mutations docu-
mented in MDS, MDS/MPN and AML, analysis of serial samples from
individual patients revealed that U2AF1 mutations occurred early in
leukemogenesis and often persisted in clonal remissions [9]. Engle et al.
also revealed that U2AF1 mutations preceded the other gene mutations
in the evolution of the malignant clone [10]. Based on the stage-specific
clonality, both ETNK1 and U2AF1 mutations were likely early events

SETBP1 mutations were a rare molecular event in AML and MDS,
but relatively common in MDS/MPN overlap syndrome [11]. It was
found to enhance ASXL1 mutation-induced differentiation block, and
played a role as critical drivers in the leukemic transformation from
MDS to AML [12]. In this case, SETBP1 mutation was present in a small
subclone at the CEL-NOS stage, but its VAF increased with progression
to MDS and s-AML stages. The exact role of SETBP1 in progression of
MDS to AML is unknown.

Two additional mutations, IDH2p.R140Q and RUNX1p.Tyr403fs,
were detected in a small subclone at the MDS stage, and the prior
mutations in ETNK1, U2AF1, and SETBP1 were still observed. IDH1/2
mutations can be found in pre-leukemic clone in AML patients without
concurrent presence of pathology-proven AML [13]. Makishima et al.
demostrated that IDH2 mutation tended to be newly acquired, and were
associated with faster s-AML progression [14]. Somatic mutations in-
volving RUNX1 are frequently observed in MDS. Tsai et al. observed
that MDS patients with RUNX1 mutations had a higher risk and shorter
latency for progression to AML in comparison with MDS patients
without RUNX1 mutations [15]. Collectively, these findings support the
notion that newly acquired mutations on RUNX1 and IDH2 in this

Fig. 1. Morphologic changes of bone marrow smear (WrighteGiemsa, ×1000). (A) Initial bone marrow showed slightly hypercellular marrow with marked eosi-
nophil infiltrates; no definite blasts were found in this specimen. (B) Second bone marrow smear revealed multilineage dysplasia and markedly increased abnormal
myeloblasts with eosinophils. (C) Third bone marrow smear showed hypercellular, with 80.5% blasts and 1% eosinophils.

Table 1
The mutated genes and VAFs in different disease stages.

Stages Mutated genes (VAFs,%)

HES ETNK1p.Asn244Ser(44.5%), U2AF1p.Gln157Pro(42.0%),
SETBP1p.Gly872Arg(22.0%)

MDS ETNK1p.Asn244Ser(46.5%), U2AF1p.Gln157Pro(44.0%),
SETBP1p.Gly872Arg(43.5%), IDH2p.R140Q(36.5%),
RUNX1p.Tyr403fs (21.8%)

s-AML ETNK1p.Asn244Ser(46.0%), U2AF1p.Gln157Pro(47.4%),
SETBP1p.Gly872Arg(46.3%), IDH2p.R140Q(45%), RUNX1p.Tyr355fs
(5.7%), RUNX1p.Ser389fs(16%), RUNX1p.Tyr403fs(38%)

VAFs, variant allele fractions.
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patient may be pathogenic, and contribute to disease evolution.
The s-AML stage was characterized by two more acquired RUNX1

mutations (RUNX1p.Tyr355fs, RUNX1p.Ser389fs). Both RUNX1 muta-
tions were identified at a very low VAFs (5.7% and 16%, respectively)
at the s-AML stage, but RUNX1p.Tyr403fs expanded (from 21.8% to
38%) and likely contributed to leukemic transformation. As RUNX1 is
considered to be a high-risk mutation, its presence, even in a small
subclone, at the s-AML stage is relevant to the biology of the patient's
disease course. Notably, we also observed the eosinophil levels went
down during disease evolution and remained in the normal range at s-
AML stage, this observations suggest that the dominant clones at CEL-
NOS and s-AML stages are different.

4. Conclusion

To our knowledge, this represents the first study to analyze the
progression from a CEL-NOS to MDS and s-AML by NGS to model clonal
evolution across the disease stages. ETNK1, U2AF1 and
SETBP1mutations were likely early events, and acquired mutations on
RUNX1 and IDH2 may be pathogenic, and contribute to disease evo-
lution. Future studies are needed to determine whether consistent
patterns of clonal evolution that drive CEL-NOS disease progression can
be identified.
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