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Abstract

Motivation: Understanding the factors involved in DNA double-strand break (DSB) repair is crucial for

the development of targeted anti-cancer therapies, yet the roles of many genes remain unclear. Recent

studies show that perturbations of certain genes can alter the distribution of sequence-specific mutations left

behind after DSB repair. This suggests that genome-wide screening could reveal novel DSB repair factors

by identifying genes whose perturbation causes the mutational distribution spectra observed at a given

DSB site to deviate significantly from the wild-type. However, designing proper controls for a genome-wide

perturbation screen could be challenging. We explore the idea that a genome-wide screen might allow us to

forgo the use of traditional non-targeting controls by reframing the analysis as an outlier detection problem,

assuming that most genes have minimal influence on DSB repair.

Results: We propose MUSICiAn (Mutational Signature Catalogue Analysis), a compositional data analysis

method that ranks gene perturbation-specific mutational spectra without controls by measuring deviations

from the central tendency in the distributions of all spectra. We show that MUSICiAn can effectively estimate

pseudo-controls for the existing Repair-seq dataset, screening 476 genes and 60 non-targeting controls. We

further apply MUSICiAn to a genome-wide dataset profiling mutational outcomes induced by CRISPR-Cas9

at three target sites across cells with individual perturbations of 18,406 genes. MUSICiAn successfully recovers

known genes, highlights the spliceosome as a lesser-appreciated player in DSB repair, and reveals candidates

for further investigation.

Availability: github.com/joanagoncalveslab/MUSICiAn.

Key words: mutational spectra, control-free, outlier detection, compositional data analysis, DNA repair, DNA

damage response

Introduction

Double-strand breaks (DSBs) in DNA are critical cellular

events that occur spontaneously due to endogenous processes

like replication or external agents like ionizing radiation. Left

unaddressed, DSBs can lead to genomic instability and eventually

cell death or cancer (Ceccaldi et al., 2016). As a result, cells have

evolved a suite of mechanisms to repair DSBs, including the non-

homologous end joining (NHEJ), microhomology-mediated end

joining (MMEJ, also called alt-NHEJ), and homology-directed

repair (HDR) pathways (Scully et al., 2019). Understanding the

roles that genes play in DSB repair can importantly contribute

to the development of targeted therapies for diseases such as

cancer (Trenner and Sartori, 2019; Awwad et al., 2023). For

example, PARP inhibitor drugs are indicated to treat cancers with

impaired HDR or BRCA gene function, whose synthetic lethality

with PARP is leveraged to block DSB repair and cause a fatal

accumulation of DNA damage in HDR- or BRCA-deficient cancer

cells (Chen, 2011). The ability to discover further opportunities for

targeted therapy requires deeper insight into gene function, yet for

many genes the link with DSB repair remains unclear.
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In searching for these links, research has turned to large-scale

gene functional screens enabled by CRISPR technology (Awwad

et al., 2023). Originally, functional screens for DSB repair focused

on the effect of gene silencing or knockout on readouts such as

cell growth and proliferation to identify repair factors (Hurov

et al., 2010; Smogorzewska et al., 2010; Zimmermann et al., 2018;

O’Connell et al., 2010; Olivieri et al., 2020). While valuable

to characterize gene essentiality, inhibition of cellular growth

is only indirectly related to DSB repair and could lead to

results confounded by other mechanisms of cellular activity. For

more precise readouts and biological insights, recent advances

use CRISPR targeting to induce DSBs and deep sequencing to

analyze how disruption of gene function alters the mutational

spectra, or the frequency distributions of mutations arising at

DSB sites following repair (van Overbeek et al., 2016; Wyatt

et al., 2016; Bothmer et al., 2017; Shen et al., 2018; Shou et al.,

2018; Hussmann et al., 2021). Multiple studies have demonstrated

that knockouts of certain genes yield distinct, sequence-specific

mutational spectra (van Overbeek et al., 2016; Shen et al.,

2018; Hussmann et al., 2021), but focused on the screening

of known DSB repair genes. Notably, the first genome-wide

study characterizing the effect of gene perturbation on mutational

spectra will soon be released. We obtained early access to the

data from this study, termed Mutational Signature Catalogue

(MUSIC), to be made available upon publication.

Using CRISPR targeting with mutational spectra as readout,

the primary approach to link genes to DSB repair is to quantify

how much the mutational spectrum deviates from the expected

wild-type distribution following the knockout of each individual

gene. The larger the deviation, the higher the confidence that

the perturbed gene has an effect on the outcomes and could thus

be involved in DSB repair. Recent work by Hussmann et al.

(2021) defined this deviation as the “overall outcome redistribution

activity”, quantified by a chi-squared-like statistic relying on non-

targeting controls to determine the expected wild-type spectrum.

For genome-wide screens, a limited set of non-targeting controls

might not be suitable. While the majority of genes is not expected

to produce an effect on the mutational spectra, it is unclear

if targeting such genes could indirectly or mildly influence the

outcomes, an effect which would not be appropriately captured by

non-targeting controls. At the same time, it would be challenging

to design realistic controls for all levels of variation at play in a

genome-wide screen, while trying to maximize the coverage per

mutational spectra and mitigate batch effects. We explore an

alternative approach leveraging the assumption that most genes

in a genome-wide perturbation screen have minimal impact on the

mutational spectra to frame the identification of DSB repair genes

as an outlier detection problem (Aggarwal, 2016), and investigate

if it can forgo the need for conventional controls.

When analyzing mutational spectra, it is also important

to consider their compositional nature. In other words, each

mutational spectrum is a distribution of relative frequencies over

a collection of mutation categories whose overall sum is one.

This composition property introduces a negative correlation bias

caused by dependencies between the different frequencies, where

an increase for one mutation type necessarily causes a reduction

in others. Ignoring the dependencies in compositional data using

standard data analysis techniques can lead to misleading results

and interpretation (Aitchison, 1983). Additionally, the covariance

structure of mutational spectra is likely to be skewed by the outlier

gene knockouts that significantly affect DSB repair, emphasizing

the need for methods tailored for compositional data analysis.

We introduce MUSICiAn (Mutational Signature Catalogue

Analysis), a computational approach to score gene associations

with DSB repair via genome-wide mutational spectra analysis.

MUSICiAn operates without non-targeting controls, framing the

task as an outlier detection problem under the assumption

that most genes do not influence DSB repair. MUSICiAn uses

the compositional data analysis (CoDA) framework to address

dependencies and outliers in genome-wide mutational spectra

data, for an improved estimation of pseudo-controls. By ranking

gene knockouts based on their robust deviation from the overall

mutational spectra distribution, MUSICiAn provides a control-free

approach for genome-wide discovery of DSB repair-related genes.

We evaluate the MUSICiAn estimation of pseudo-controls

on the Repair-seq dataset, screening 476 DSB genes and 60

non-targeting controls (Hussmann et al., 2021). We further

apply MUSICiAn to the genome-wide MUSIC mutational spectra

dataset, covering 18,406 genes, to investigate the ability of this

control-free method to recover established repair genes and suggest

new candidates for experimental validation.

Methods

We introduce the MUSICiAn method using outlier detection to

identify DSB repair genes from genome-wide CRISPR mutational

spectra without traditional controls. The aim is to quantify the

effect that each gene knockout produces on the mutational spectra

relative to the expected wild-type or control spectra. In the

absence of controls, MUSICiAn leverages the assumption that

most genes are not involved in DSB repair to estimate the center

of the mutational spectra distribution as a representative point,

close to which the spectra will be most alike the expected wild-

type. To quantify the deviation, MUSICiAn calculates a distance

between each spectra and the estimated center also taking the

covariance of the spectra distribution into account. This is done

using a combination of data transformation and robust covariance

estimation designed to address dependencies and outliers in the

mutational spectra data. Finally, MUSICiAn creates a unified gene

outlier score based on the distances obtained across target sites.

Data and preprocessing

Mutational outcome data. We analyzed data from two gene

perturbation screens with CRISPR induced mutational outcome

readout, Repair-seq and MUSIC (Supplementary Fig. S1 for an

illustration of the experimental setup). The Repair-seq screen

used CRISPR interference with each of 1,573 single-guide RNAs

(sgRNAs) to individually silence each of 476 DSB repair genes,

and 60 non-targeting control sgRNAs (Hussmann et al., 2021).

To generate mutational outcomes, Repair-seq used CRISPR-Cas9

to create DSBs for a single target site across the population of

cells with and without silenced genes, in two biological replicates.

The genome-wide MUSIC screen was similarly set up, but used

CRISPR knockouts rather than interference, with 89,571 sgRNAs

spanning 18,406 genes, and generated outcomes for three target

sites in two biological replicates each. We downloaded the raw

Repair-seq sequence data (Hussmann et al., 2021) from the

NCBI Sequence Read Archive, Bioproject PRJNA746980, runs

SRR15164738 and SRR15164739. We also obtained early access to

the MUSIC sequence data, to be made available upon publication.
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We called mutations from the sequence data using the Sequence

Interrogation and Quantification (SIQ) tool (van Schendel et al.,

2022) v4.3 with parameters “-m 2 -c -e 0.05”, specifying a

minimum number of 2 reads for counting an event, the collapsing

of identical events to a single record with the sum of counts, and a

maximum permitted base error rate of 0.05. The SIQ tool mapped

the reads to the sgRNAs used for gene perturbation and identified

mutations observed at the CRISPR-Cas9-induced DSB sites.

Mutation aggregation and categorization. To reduce

sparsity and improve statistical power, the fine-grained mutational

outcomes output by the SIQ tool were aggregated into 8

higher-level categories: wild-type, denoting a sequence without

mutations; deletion with 1\2\3+bp\no microhomology, for a

deletion overlapping the cut site with a microhomology (MH) of

length 1bp to 3+bp or no MH at all, where an MH is a short

homologous sequence on both sides of the DSB and used for repair

by MMEJ (Lieber, 2008); insertion, for a new sequence added at

the cut site; deletion with insertion, for a combination of deletion

and insertion; and homology-directed repair, for any insertion

matching the donor template DNA (Supplementary Table S3 for

SIQ vs. MUSICiAn categories). Any other rare mutation types,

such as single-base substitutions, were excluded, since they are

not typical outcomes of DSB repair. Wild-type reads were also

excluded to avoid confounding by gene essentiality, as a decrease

in wild-type read abundance could indicate that the gene was

essential for survival, but not if it was relevant for DSB repair.

We thus considered a final set of 7 mutation categories.

Quality analysis and filtering of perturbation sgRNAs.

For each replicate, we filtered out perturbation sgRNAs yielding

a total read count below 700 across the 7 mutation categories,

and excluded genes with less than 3 associated perturbation

sgRNAs. Additionally, we controlled for inconsistencies in the

effect of the different sgRNAs used for perturbation of the same

gene, which could be indicative of sgRNA off-target effects,

less effective gene perturbation, or any other undesirable effect.

We excluded sgRNAs whose count profiles over the 7 mutation

categories showed a median pairwise Pearson’s correlation below

0.6 with the profiles for other sgRNAs perturbing the same

gene within the same replicate (and target site), or a median

pairwise Pearson’s correlation below 0.6 with replicate profiles

for the same sgRNA and target site (Supplementary Tables S1

and S2). To avoid numerical issues with the data transformation

applied by MUSICiAn later on, in the rare cases where some

mutation categories had zero counts, we imputed real values drawn

independently from a uniform distribution between the detection

limit DL and 0.1×DL, where DL = 1. (Lubbe et al., 2021).

Generating mutational spectra per gene. We first computed

mutational spectra by dividing the count of each of the 7 mutation

categories by the total per sgRNA and replicate. Then we

aggregated across sgRNAs by calculating the geometric mean of

the sgRNAs-associated spectra per gene and replicate, producing

replicate spectra per gene (two for each target site). Finally, we

computed the geometric mean between replicate spectra per target

site, resulting in one mutational spectra per gene and target site.

After every aggregation step, the frequencies in each mutational

spectra were divided by the sum to make sure they summed to one.

MUSICiAn scoring of gene effect on mutational spectra

2. Calculate distance of each 
spectrum to the centre of the 

distribution of all spectra

A B

C

A B

C

A B

C D

1. Generate mutational spectra 
for gene knockouts at 

multiple CRISPR target sites

3. Combine scores across 
target sites to produce final 

scoring

ILR transform +
MCD + 

Mahalanobis distance

Standardise +
average across sites

Fig. 1: Overview of MUSICiAn scoring of gene effect on mutational

spectra. The method quantifies the effect of gene perturbation

using the Mahalanobis distance of the gene mutational spectrum

to the estimated center of the spectra distribution of all genes,

under the assumption that most genes have a negligible effect.

Estimation is improved using ILR-transformed spectra and robust

covariance (MCD) to mitigate biases from data closure and

outliers. Distances are normalized and averaged across target sites

to produce a unified gene effect score.

The MUSICiAn method scores genes for DSB repair association

by computing the distance between the mutational spectrum of

each perturbed gene and the estimated center of the distribution of

all spectra obtained for a given target site (Fig. 1). For experiments

with multiple targets, target-specific scores can be normalized and

averaged to produce one single gene score. Genes with larger scores

have a more prominent effect on the mutational spectra, thus also

a higher likelihood of being involved in DSB repair. Genes with the

lowest scores are assumed to approximate the wild-type or control

distribution. We are interested in both the most outlying and the

most central spectra for downstream analysis.

Gene scoring. To calculate gene effect scores, MUSICiAn

computes the Mahalanobis distance (Mahalanobis, 2018) per

gene spectrum relative to the overall spectra distribution per

target site, assuming that most genes are not directly involved

in DSB repair and have negligible effect (Fig. 1). We chose

the Mahalanobis distance as it takes the distribution and

covariation of the data into account, unlike the Euclidean distance.

Informative Mahalanobis distances require reliable covariance

estimation, which is affected by: data closure, where dependencies

between spectra categories summing to one introduces a negative

correlation bias (Aitchison, 1983); and outlier genes with a

significant impact on mutational spectra and therefore also on

the distribution. To mitigate data closure, MUSICiAn applies

an isometric log-ratio (ILR) transformation (Egozcue et al.,

2003) to the mutational spectra using the defaults for scikit-bio

0.5.4. The ILR transformation maps the data from a constrained

simplex space to an unconstrained Euclidean space, allowing for

independent statistical analysis of components. To mitigate outlier

effects, MUSICiAn uses the minimum covariance determinant

(MCD) as a robust covariance matrix estimator (Filzmoser et al.,

2009), using scikit-learn 1.2.1 defaults.

The MUSICiAn method calculates the robust Mahalanobis

distances for each ILR-transformed spectra, and unifies the

individual distances into gene scores across target sites by: (i)

selecting the common genes with mutational spectra in all target

sites to act as a reference, (ii) calculating the mean and standard

deviation of the distances of the reference genes per target site, (iii)

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 28, 2025. ; https://doi.org/10.1101/2025.01.27.635038doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.27.635038
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 Seale et al.

normalizing all gene distances per site by subtracting the means

and dividing standard deviations to place them on a common

scale, and (iv) averaging the normalized gene distances across

sites, ignoring missing values, to produce a final unified gene score.

Pseudo-control selection. The target-specific distances and

unified gene scores enable the selection of “pseudo-controls” as

the lowest-scoring genes per target or common across target

sites. These pseudo-controls enable comparative analyses by

estimating the central tendency of traditional controls, but may

not recapitulate their natural variation.

Evaluation

Before applying MUSICiAn to the genome-wide MUSIC dataset,

we assessed the outlier detection and pseudo-control selection on

the Repair-seq dataset, the only other dataset available of CRISPR

mutational spectra for multiple individual gene knockouts. While

not a genome-wide dataset, Repair-seq included non-targeting

controls, allowing us to assess if and how well MUSICiAn could

estimate the wild-type distribution center. Furthermore, Repair-

seq data focused on genes involved in DNA repair, so we also

checked if MUSICiAn could recover similar mutational patterns for

the genes screened in both studies. We preprocessed the Repair-

seq data as described and held out the non-targeting controls from

the scoring for later validation.

Estimation of pseudo-controls. We used PCA to visualize the

effect of ILR transformation and robust MCD covariance, proposed

to mitigate compositional data closure and outlier spectra, on

the estimation of the mutational spectra distribution center and

selection of pseudo-controls for the Repair-seq dataset. We applied

PCA in four scenarios: Classical Covariance, using the original

mutational spectra with the classical covariance estimation; MCD

Covariance, using the original spectra with the outlier-robust

MCD covariance estimation; ILR & Classical Covariance, using

ILR-transformed spectra with classical covariance estimation; and

ILR & MCD Covariance, using ILR-transformed spectra with

MCD covariance estimation. After ILR transformation, location

and covariance estimation, we back-transformed the data to

centered log-ratio (CLR) space to analyze the relation between

PCA components and mutation categories (Filzmoser et al., 2009).

To evaluate pseudo-control selection, we identified 60 pseudo-

controls for each scenario and calculated the Jensen-Shannon

distance (JSD) between the geometric means of the non-targeting

control and the pseudo-control spectra. As a baseline, we also

calculated the distance from the non-targeting control spectra to

the geometric mean across all gene-targeting sgRNAs, without

pseudo-control selection. The JSD quantifies the distance between

distributions, where a lower distance indicates greater similarity

between distributions.

Cross-dataset estimation of pseudo-controls. To further

assess the selection of pseudo-controls, we analyzed the consistency

in mutational patterns retrieved for the MUSIC and Repair-seq

datasets, using pseudo-controls estimated by MUSICiAn jointly

from the two datasets. Specifically, we applied MUSICiAn to

select 60 pseudo-controls for the set of all mutational spectra

associated with the 434 genes shared across both datasets, with

four target sites in total (three for MUSIC, one for Repair-seq). We

then calculated the difference in mutation frequency per category

between each gene-related mutational spectra and the geometric

mean of the pseudo-controls. Finally, we performed hierarchical

clustering (Ward Jr, 1963) on the resulting difference matrix,

using Ward cluster linkage and distance between samples based

on Pearson’s correlation.

Gene scoring and ranking performance. To evaluate the

quality of the MUSICiAn-derived gene effect scores for the genome-

wide MUSIC dataset, we examined if MUSICiAn could effectively

recover genes with known links to DSB repair by scoring or

ranking them higher than other genes based on their effect on

the mutational spectra. We assessed performance separately using

precision-recall (PR) curves against known DSB repair genes from

two sources: 476 experimentally validated genes curated by Repair-

seq for their AX227 CRISPRi library (Hussmann et al., 2021), and

295 genes whose annotations matched the regex “double-strand

break repair|interstrand cross-link repair” (interstrand cross-link

repair genes often crosstalk with DSB repair pathways such as HR,

Michl et al. (2016)) in any field in the Gene Ontology (Ashburner

et al., 2000; Consortium, 2021). For baseline comparison, we

calculated PR curves after randomly ranking all genes in the

MUSIC dataset. We preferred PR rather than ROC curves, given

that the dataset is highly imbalanced, where most genes have no

known association with DSB repair and are therefore considered

negative for the purpose of the evaluation.

Functional enrichment for top 500 ranked genes. We

performed enrichment analysis for the top 500 genes ranked

by MUSICiAn against the background of all genes in the

MUSIC dataset, using the “gseapy” python package 1.0.4. We

employed four sets of annotations, including KEGG pathways

“KEGG 2019 Mouse” (Kanehisa et al., 2023), and Gene Ontology

terms across the three ontologies “GO Biological Process 2023”,

“GO Molecular Function 2023”, “GO Cellular Component 2023”.

We performed a hypergeometric test per term within each gene

set, and the resulting p-values were FDR corrected using the

Benjamini-Hochberg method. (Benjamini and Hochberg, 1995).

We further estimated the effect of the genes annotated with each of

the top 10 enriched terms or pathways on the mutation frequencies

separately for the 4 annotation sets. To do this, we fitted an

ordinary least squares (OLS) regression model per term t and

mutation outcome category o to explain the variation in mutation

frequency (Frequency) based on term or pathway membership

(Group), according to the following R-style formula

Frequencyg,o ∼ Groupg,t, (1)

where each sample is a mutational spectra for a given gene

knockout g. The Frequencyg,o variable denotes the frequency of

the given mutation outcome o for gene g, and Groupg,t is a binary

variable indicating if gene g is a member of term or pathway

t. As case samples, we took the mutational spectra of all genes

annotated with the enriched term in question. As control samples,

we used the set of 100 pseudo-controls or lowest scoring genes,

with valid mutational spectra across all target sites, and that were

not members of any of the enriched pathways. We used the same

control samples for the regression analysis of every annotation

set, and report the regression coefficients and Benjamini-Hochberg

corrected p-values for the Group variable.
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A

B

Fig. 2: Evaluation of MUSICiAn-selected pseudo-controls based on

the estimated mutational spectra distribution center for Repair-

seq. Effect of ILR transformation and MCD covariance on

(A) the estimated center of the mutational spectra distribution

and (B) the selected pseudo-controls, using the original or

ILR transformed spectra with classical or MCD covariance.

For (A), actual center (black cross) of the mutational spectra

distribution as the geometric mean of the 60 actual controls (yellow

points), and center estimated by MUSICiAn (red cross) based

on the mutational spectra under gene-silencing (blue points),

projected onto the two axes of largest variation in the data (first

two principal components). For (B), Jensen-Shannon distances

between the geometric means of the 60 actual non-targeting

controls and either all mutational spectra or the 60 pseudo-controls

closest to the center estimated using each of the four combinations

of spectra and covariance types.

Results

MUSICiAn can estimate absent control mutational spectra

We first assessed the ability of MUSICiAn to estimate pseudo-

control mutational spectra in the absence of actual controls. To do

this, we applied MUSICiAn to the Repair-seq dataset, containing

mutational spectra for one target site across knockouts of 476

different genes and 60 actual non-targeting controls. The actual

controls were left out to be able to quantify how well they could

be recovered by MUSICiAn. We also isolated the contributions

of the ILR transformation and robust covariance (MCD) used by

MUSICiAn to investigate if they improved the estimation of the

distribution center location and covariance, and ultimately the

selection of pseudo-controls, in the presence of outlier spectra and

negative correlation bias.

To visually examine the effect of ILR transformation and MCD

on the distribution, we applied PCA to the original and ILR-

transformed mutational spectra separately using classical PCA

and a robust variant of PCA based on the MCD. The estimated

center of the distribution appeared to align the best with the

center determined based on the actual controls (geometric mean

of the 60 non-targeting controls) when both ILR and MCD were

used to respectively address data closure and outliers in the

mutational spectra data (Fig. 2A, “ILR & MCD Covariance” vs.

others). We further observed that the pseudo-controls selected

as the 60 mutational spectra closest to the center of the

distribution estimated by MUSICiAn, using any of the four

combinations of spectra and covariance types, were far more

similar to the actual non-targeting controls than the average

across all spectra. Specifically, the Jensen-Shannon (JS) distances

between the geometric means of pseudo-controls and non-targeting

controls were one order of magnitude smaller than those between

the geometric means of all spectra and non-targeting controls

(respectively < 0.005 and 0.012, Fig. 2B). Moreover, the selection

of pseudo-controls using the preferred combination of techniques

in MUSICiAn, ILR transformation and robust MCD covariance,

produced the closest match with the actual non-targeting controls

than the other three (JS distances 3.73×10−3 against 3.77×10−3,

4.42× 10−3, and 4.69× 10−3; Fig. 2B). This result supported our

choice to place ILR transformation and MCD at the core of the

MUSICiAn outlier detection algorithm.

We note that the majority of the 476 genes characterized in

the Repair-seq screen are known to be involved in DNA repair,

and therefore the assumption that most genes should not have an

impact on the mutational spectra was in theory not necessarily

met for this dataset. However, in practice, a large proportion of

DNA repair genes still showed little effect on mutation frequencies

(Fig. 2). The fact that MUSICiAn was able to recover controls in

this scenario highlights that it could be applicable to more focused

studies beyond genome-wide screens whenever a similar reasonable

assumption can be made, for instance based on prior knowledge

or the actual distribution of the data.

MUSICiAn controls reveal known repair patterns across studies

We further questioned if MUSICiAn could estimate pseudo-

controls for mutational spectra aggregated from different studies,

such that consistent mutational repair patterns would be revealed

when applying the same controls as a baseline across the studies.

To address this, we jointly analyzed the mutational spectra for

knockouts of the 434 genes screened in both the genome-wide

MUSIC and the focused Repair-seq studies. After selecting pseudo-

controls, we calculated the differences between the frequencies in

each mutational spectrum, obtained under silencing or knockout

of a specific gene, and the geometric mean of the pseudo-controls

(Fig. 3). We also performed hierarchical clustering of genes and

mutation categories based on those differences (Fig. 3). The

results revealed consistency in how HDR and insertion events were

influenced by silencing of specific genes across targets and studies,

as well as broadly consistent patterns for other mutation types

with larger variations that could be attributed to differing target

site-specific characteristics within and between studies.

Gene clustering also identified meaningful groups, including the

Fanconi anemia core complex and related genes, whose silencing

suppressed HDR events (Fig. 3). Interestingly, Helq displayed a

mutational pattern similar to these genes, suggesting a potential
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Fanconi Anaemia Co mplex

Artemis:DNA-PKcs complex

Lig4/ Xrcc4Rnf8/Rnf168MRN Complex
Xrcc5/Xr cc6 Msh2/Msh6

Fig. 3: Heatmap of the difference in mutation frequencies between each spectrum obtained for the knockout of a specific gene and the

geometric mean of the pseudo-control spectra selected by MUSICiAn, per mutation category and target site. Shown are the top 100

genes with the highest MUSICiAn outlier score across target sites (3 for MUSIC, denoted T1-T3, and 1 for Repair-seq). The horizontal

axis represents genes. The vertical axis represents mutational outcomes, coloured by target site. Data was clustered on both dimensions,

genes and mutation categories, using hierarchical clustering with Ward cluster linkage and distance between spectra based on Pearson’s

correlation coefficient.

association with FA and HDR, a topic of ongoing debate (Jenkins

et al., 2021; Thomas et al., 2022). Other notable clusters included:

mismatch repair MutS homolog genes (Msh2, Msh6 ); ring finger

protein genes with roles in DNA damage sensing and repair

(Rnf8, Rnf168 ); NHEJ genes involved in early recognition of

DNA damage and recruitment of additional repair factors (Xrcc5,

Xrcc6 ), and in the processing of DNA ends (Artemis complex

Prkdc and Dclre1c); and the MRN complex with roles in ATM

checkpoint activation in response to DNA damage and also the

tethering of broken DNA ends for further processing by NHEJ and

HDR (Mre11a, Rad50, Nbn). The consistency in gene silencing

effects on mutational spectra across the MUSIC and Repair-seq

datasets, along with the identification of groups of genes with

related function in DNA damage response, provided support

for the effectiveness of the MUSICiAn control-free analysis in

estimating pseudo-controls, quantifying effects, and ultimately

generating meaningful insights from CRISPR targeting under gene

silencing screens with mutational spectra readout.

MUSICiAn recovers known gene-DSB repair associations

In addition to estimating pseudo-controls, MUSICiAn attributes

an outlier score to each gene, which determines the multivariate

effect of gene silencing on mutational spectra to suggest (novel)

associations between the gene and DNA damage response. In

this context, we first applied MUSICiAn to the genome-wide

MUSIC dataset to assess if it could recover known repair genes.

Genes were ranked by their MUSICiAn outlier score, and the

ranking was evaluated against the set of 476 genes curated by

Repair-seq and an alternative set of 295 genes retrieved from the

Gene Ontology (GO). The closer to the top of the ranking these

genes appeared, the better the results. We also performed the

same evaluation on a randomly shuffled ranking as a baseline for
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Random (AP = 0.02)
MUSICiAn (AP = 0.08)

Fig. 4: Performance of MUSICiAn, recovery of known DNA repair

genes. Precision-recall curves using MUSICiAn ranking (orange)

or random ranking (blue) against the following gold standards for

evaluation: (left) curated genes in Repair-seq and (right) genes

annotated with DSB repair-related in Gene Ontology.

comparison. The MUSICiAn method showed superior rankings for

known associations with area under the precision-recall curve (AP)

of 0.07 and 0.08 for the Repair-seq and GO gene sets, respectively,

compared to an AP of 0.02 for the random baseline (Fig. 4).

Pathway enrichment analysis of the top 500 genes using

KEGG annotations revealed significant associations with the

“Fanconi anaemia” and “Homologous recombination” pathways

(Fig. 5). A link with “Nucleotide excision repair” was also

identified, supporting the idea that single and double-strand repair

mechanisms are functionally intertwined (Zhang et al., 2009).

Another enriched pathway, “Cell Cycle”, is known to influence

DNA repair pathway choice (Zhang et al., 2009; Clay and Fox,

2021). Many DSB repair genes were also implicated in the “DNA

replication” pathway (Burgers, 1998; Cortez, 2019).

Functional enrichment analysis of the top 500 genes using GO

annotations revealed links with repair-related biological processes

(Fig. 5), including “DNA repair”, “double-strand break repair”,
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Fig. 5: Top 10 enriched KEGG pathways and GO terms among

the top 500 genes ranked by MUSICiAn across targets for the

genome-wide MUSIC dataset. Top left to bottom right - KEGG

pathways, GO biological processes, GO molecular functions, and

GO cellular components. The horizontal axis shows the ratio

between the numbers of genes annotated with the pathway or GO

term among the top 500 ranked genes vs. all genes. Circle color

denotes the negative log10 of the FDR-corrected p-value, and circle

size indicates the number of genes annotated with a pathway or

GO term among the top 500 ranked genes.

“double-strand break repair via homologous recombination”, and

“interstrand cross-link repair”, further reinforcing the ability of

MUSICiAn scores to capture and prioritize effects of genes on

mutational spectra following the repair of CRISPR-induced DSB

sites. Regarding molecular function, various binding activities,

including DNA, damaged DNA, and ubiquitin-like protein ligase

binding, as well as single-strand DNA helicase activity were

identified, all functions required for DNA damage signalling and

repair (Zhao et al., 2020; Schwertman et al., 2016; Pederiva et al.,

2016) (Fig. 5).

Overall, MUSICiAn recovered known patterns and associations

relevant to the repair of double-strand DNA breaks. While the AP

performance may appear modest, it is significantly better than

random. Nevertheless, mutational spectra exhibited relatively

low coverage per sgRNA (median: MUSIC 2361.08 vs. Repair-

seq 565201.97), leading to noisier mutational spectra that posed

additional challenges in differentiating between true repair factors

and noisy samples. Moreover, the assumption that mutational

spectra deviating from the expected wild-type arise upon silencing

of genes associated with DNA repair does not preclude the

existence of other genes involved in DNA repair that do not affect

mutational spectra. Such genes may not play a central role in

the pathway, or their loss of function may be compensated by

other genes, resulting in smaller effects and appropriately lower

MUSICiAn rankings, while negatively biasing the AP.

MUSICiAn identifies lesser-appreciated players in DSB repair

After analyzing established genes and pathways, we also examined

several lesser-recognized pathways and processes emerging from
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Fig. 6: Effect of genes annotated with the top 10 enriched

pathways on mutation frequency. We considered all genes in the

top 10 pathways enriched amongst the top 500 genes ranked by

MUSICiAn based on the genome-wide MUSIC spectra, with the

final number of genes available per target dependent on the quality

of the obtained mutational spectra. Each dot denotes a linear

regression analysis of gene effect on mutation frequency per term

or pathway (vertical axis, with gene count), mutation category

(horizontal axis), and target site (panels for targets T1-T3 in

MUSIC). Dot color denotes the regression coefficient, and dot size

indicates the negative log10 of the FDR-corrected p-value. Points

with non-significant corrected p-values (> 0.05) were excluded.

the MUSICiAn analysis of the MUSIC dataset. Intriguingly,

“Ribosome biogenesis in eukaryotes” was the top enriched KEGG

pathway (Fig. 5), aligning with emerging literature from the

last decade suggesting a potential cross-talk between ribosome

biogenesis and DNA repair pathways (Ogawa and Baserga, 2017).

Recent studies have also implicated the nucleolus, a major site of

ribosome synthesis and the top enriched cellular component, in the

regulation of cellular processes, including DNA repair (Lindström

et al., 2018; Scott and Oeffinger, 2016; Korsholm et al., 2020).

The proteasome and spliceosome were additionally identified as

enriched pathways. The proteasome plays a role in the regulation

of the Rnf8 -Rnf168 pathway, which itself works to recruit repair

factors to DSB sites (Schwertman et al., 2016; Krogan et al., 2004),

and the inhibition of which has been previously shown to reduce

HDR events (Cron et al., 2013). As for the spliceosome, there is

growing evidence of a role in DNA repair, with studies suggesting

that splicing regulates the expression of Rnf8, further controlling

ubiquitin-signaling at DSBs (Pederiva et al., 2016).

Enriched pathways promote homology-directed repair

We analyzed how the genes in the identified pathways influenced

the frequencies of different mutation types by fitting a linear

regression model per pathway, mutation type, and target site, and

using the mutation type frequency per gene knockout and target

site as response variable. Some pathways lacked sufficient gene

representation to fit a reliable regression model (< 3 samples) and

were excluded on a per-analysis basis (Fig. 6).
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Based on the fitted models, we observed that the genes in each

of the enriched pathways promoted HDR events and repressed

insertion events across the target sites in the MUSIC genome-

wide screen (Fig. 6, T1, T2, T3). Since NHEJ has been associated

with introducing insertions at CRISPR-induced DSB sites (Lieber,

2008; Molla and Yang, 2020), we suggest that the rise and fall in

the frequency of insertion and HDR events could reflect a change

in the fraction of DSBs repaired via the NHEJ and HDR pathways.

On the other hand, patterns pertaining to the promotion or

inhibition of deletion events with or without MH were more

sequence-context dependent, making it difficult to associate an

inhibited pathway with how it might influence NHEJ and MMEJ.

We note that the additional variation exhibited by MUSIC target

site T1 could be an artifact of the noisier mutational profiles

obtained for that target.

MUSICiAn identifies novel gene-DSB repair associations

Analysis of the top 5 genes ranked by MUSICiAn for the genome-

wide MUSIC dataset (Fig. 7) revealed two well-known DSB repair

genes, H2ax (Scully and Xie, 2013) and Xrcc5 (Taccioli et al.,

1994). The others three genes, Atp6v1g1, Metap2, and H2ac18,

were not annotated with the “double-strand break repair” GO

term. The top-ranked gene was Atp6v1g1, for which one other

study has reported an effect on HDR repair frequency after

knockdown of Atp6v1g1 via RNA interference (Adamson et al.,

2012). The MUSIC spectra for target sites T2 and T3 showed a

relative decrease in the frequency of HDR events after CRISPR

knockout of Atp6v1g1 compared to the geometric mean of the

pseudo-controls. A similar tendency was observed for Metap2, a

gene associated with ribosomal activity, and for H2ac18, a histone

gene. Identifying histones is not surprising, as the chromatin state

regulates DNA damage response by modulating accessibility to

DNA damage sites by repair factors (Hunt et al., 2013). However,

to our knowledge, no previous studies have identified an influence

of Metap2 or H2ac18 on DNA repair pathways or HDR in

particular. Further experimentation will be required to validate

the impact of these top-ranking genes on mutational spectra and

to investigate their role within the DSB repair process.

0.0 0.5
Homology directed repair

Deletion with insertion
Deletion 3+bp microhomology

Deletion 2bp microhomology
Deletion 1bp microhomology
Deletion 0bp microhomology

Any insertion
T1

0.0 0.5
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T2
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T3

GeometricMean(Pseudo-Controls)
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H2ac18
H2ax
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Xrcc5

Fig. 7: Mutational spectra of the top 5 genes ranked by MUSICiAn

based on the genome-wide MUSIC screen. Colored dots denote

the frequency obtained under knockout of the indicated gene The

vertical axis shows mutation types. The horizontal axis shows

frequency. The grey lines represent 300 randomly sampled genes.

The black lines show the geometric mean of the pseudo-controls.

The colored dots show the top genes. Some dots are not shown for

T1, as the sgRNAs were filtered out during quality analysis.

Conclusion

In this work, we introduced MUSICiAn, a control-free method

to identify genes involved in DSB repair from gene perturbation

screens with mutational spectra readout. MUSICiAn is developed

for genome-wide perturbation screens, and leverages the fact that

most genes have negligible influence on DSB repair and mutational

spectra to frame the discovery as an outlier detection task. The

goal of MUSICiAn is to both estimate the central tendency and

identify genes with outlying spectra by analyzing the distribution

of all mutational spectra.

Pseudo-controls estimated by MUSICiAn provided a good

approximation of the actual non-targeting controls available for

the Repair-seq dataset, showing that MUSICiAn could also be

effective at sub-genome scale, provided the assumption that

most genes have minimal effect on the spectra can reasonably

be made. Notably, the combination of ILR transformation and

robust covariance used by MUSICiAn contributed to an improved

estimation of the central tendency and pseudo-controls.

Further MUSICiAn analysis of the genome-wide MUSIC data

demonstrated an ability to recover known DSB repair genes and

suggest candidates for further investigation, including Atp6v1g1,

Metap2, and H2ac18. Our findings indicated that genes involved

in ribosome biogenesis, the proteasome, and the spliceosome could

play a significant role in modulating the frequency of HDR events,

suggesting their involvement in DSB repair.

Obtaining sufficient coverage in genome-wide perturbation

studies with sequence-based output remains a challenge that

has also been noted in prior studies (Hussmann et al., 2021).

Low coverage could limit the ability to detect subtle changes in

mutagenic activity for rarer outcomes as the data becomes too

sparse. To address this, we chose to aggregate mutational outcomes

into broader categories. However, MUSICiAn could be applied

with any collection of outcomes, as fine-grained as desired, and as

the resolution across the different outcomes allows.

Overall, the results of MUSICiAn on the Repair-seq and the

genome-wide MUSIC datasets highlighted that the method can

effectively estimate pseudo-controls and identify genes with an

impact on mutational spectra, enabling analyses of large-scale

screens where designing realistic controls may be challenging.
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