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A Philosophical Framework for Integrating Systems
Pharmacology Models Into Pharmacometrics

SB Duffull

The framework for systems pharmacology style models does not naturally sit with the usual scientific dogma of parsimony
and falsifiability based on deductive reasoning. This does not invalidate the importance or need for overarching models based
on pharmacology to describe and understand complicated biological systems. However, it does require some consideration
on how systems pharmacology fits into the overall scientific approach.
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Systems pharmacology models have received considerable

attention in the past decade. A recent perspective highlight-

ed the need to move away from a reductionist, target-

centric approach of drug development into a new holistic

systems approach.1 The change in thinking aligns with con-

sideration of the system as a whole rather than as isolated

parts. The study by van der Greef and McBurney1 demon-

strated the difficulty in validating a target when considered

in isolation of the whole system. Indeed, inference from a

model for a target based on a reductionist approach may

differ considerably from a model of the same target that

considers holistically the system and the myriad of interplay

between its individual underpinning components.
Science dictates, however, that we systematically analyze

the structure and behavior of a system. The logic most

commonly applied to systematic analysis is defined in the

process of deduction; a process in which the falsifiability of

a proposal (hypothesis) is tested and then empirical infer-

ence about the system is gained. Popper2 describes deduc-

tive inference as the key to all empirical science, which has

been the principle philosophy of biostatistics3 and repre-

sents one of the most common approaches used in phar-

macometrics. This approach, however, leaves no room for

constructing hypotheses and theory based on standard axi-

omatic principles and observations. It also leaves no room

for the action of nonfalsification of a hypothesis. Of note,

Fisher4 was a strong protagonist for considering inference

from an experiment as aligning with inductive logic because

the inference would be used in a setting other than which it

was tested. His approach argues that if it were only used in

the setting it was tested then it would be of little value.
The purpose of this article is to provide a philosophical

framework for considering the place of mechanistically driv-

en systems models in pharmacometrics. Pharmacometrics

over the years has been heavily led from a statistical stand-

point due to the complexity of nonlinear mixed effects mod-

els, which has focused, appropriately, on data analysis. The

new kid on the block is systems pharmacology, although

complementary to data analysis, it does not naturally fit into

the data analysis framework of hypothesis testing, which is

the underpinning philosophical basis of many frequentist

statistical applications. The complementary nature occurs
by virtue of the combination of advanced statistical techni-
ques with advanced mechanistic understanding. The clear
benefits of linking wet lab (data generation) with dry lab
(hypothesis generation) has been described before by
others (see for example the early descriptions by Kitano5,6).
Despite the apparent fit between these two approaches,
practitioners are often entrenched in the deductive
framework.

Therefore, there is a tension between the reductionist
(principally deductive) and holistic (principally inductive)
approaches in pharmacometrics.7 The strong historical
favor for the deductive approach with testable data-driven
models has led us to believe the aphorism “all models are
wrong. . .,” which is then widely applied to all models.

Why some models may be wrong
We are told, “all models are wrong” – but why are they
wrong? George Box wrote “All models are wrong but
some are useful” in a Technical Report in 1979.8 In his
report, Box referred to the ideal gas law PV5RT
Pressure3Volume5R3Temperatureð Þ as being a good

approximation to the true system. The approximation was
based on kinetic assumptions relating to the mass of the
gas particles and their collision processes. Since publication,
this statement has been quoted extensively (7,020 results in
Google Scholar) and particularly in the pharmacokinetic-
pharmacodynamic and pharmacometric literature (and argu-
ably most PhD theses in the discipline).

The question arises as to why all models are wrong, and
perhaps this statement has been taken too literally. Here,
four reasons are proposed why some models may be
wrong:

1. Because the model is linear (and life is not linear).
2. Because the model is built from observed data and conditions and

fails to accommodate the unobserved (latent) variables.
3. Because unanticipated recursion is present.
4. Because the model is a simplification based on an approximation.

A further layer to the four listed reasons implies that a

model that is developed and “right” for one purpose may
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not have applicability (i.e., be “wrong”), for another purpose.

This will be evident in all of the reasons explored here

and relates to how the model is built, that is whether the

model is built to describe a particular dataset (data analy-

sis) y or is built to describe a system from which a dataset

may arise (systems pharmacology). This difference is the

cornerstone of the link between data analysis and systems

pharmacology.

Linearity
Linearity and normality are the key to simple inferential

regression analyses. These systems solve readily without

the need for complicated methods and high-powered com-

puting. However, we know that life is seldom linear, albeit a

linear approach is a common and acceptable approximation

to many systems. I quote Box “Equally, the statistician

knows, for example, that in nature there never was a nor-

mal distribution, there never was a straight line.”9 Any sys-

tem that has a finite boundary on a response variable or a

parameter will show, at the boundaries, evidence of

nonlinearity.
In pharmacology, we are reminded by the law of mass

action that governs receptor-binding interactions (an initial

exposition by Hill10 was instrumental in our understanding).

These reactions follow a rectangular hyperbola with asymp-

totes at -KA (the equilibrium dissociation constant for the

ligand A) and at the maximum effect (typically occurring at

maximal occupancy). Because most receptor-ligand interac-

tions are governed by these processes, which are evidently

nonlinear, then linearity is only ever an approximation to the

true state.
A common approach to linear models lies in the disease

progression framework. Here, the duration of observation,

while long (often years), is much shorter than the life span

of the system. Therefore, a linear approximation to the dis-

ease process often provides a reasonable approximation.

However, these models will fail to predict at limits of the

process in which failure of complex biological processes

occur and a rapid decline in health is evident.

Latent variables
Any experimental setting will yield a finite array of varia-

bles and conditions under which the experiment was stud-

ied. This will, therefore, yield a subset of the whole set of

the variables (and conditions), which may influence the

system. There are likely to be variables that are not

observed (and are therefore latent) that may influence the

system, either conditionally on an observed variable or

independently and directly on the dependent variable

(observations). Box11 and later Sheiner12 (who wrote

“Analysis of a learning trial proceeds by building a proba-

bility model of the relationship between outcome variables

on the one hand and exposure and prognostic variables

on the other, taking into account the intrasubject correla-

tion of responses due to unmeasured individual prognostic

features.”) both recognized the implications of unmea-

sured variables. Therefore, any regression analysis

should, but usually cannot, consider the full model where:

y5f hk ; x k ; hk 0 ; x k 0ð Þ1E:

Here, y is a n 3 1 vector of observations, hk is a k3 1
vector of parameters that link the observed explanatory
variables xk (of dimension n 3 k ) to the response; hk 0 is a
k 031 vector of parameters that link the nonobserved varia-
bles xk 0 (an n 3 k 0 matrix of latent variables) to the
response (see Figure 1) and E is a vector of normally dis-
tributed random variables with expectation of zero. Because
the latent variables either may independently or via depen-
dence structures with other variables influence the
response observation, then any model based on k observ-
able variables may lead to wrong conclusions based on
extrapolation, although it may be useful for interpolation.

Recursion
Here, recursion is used to describe a process in which an
object is defined in terms of itself. The simplest version of
recursion occurs in pharmacological systems in which the
object (a state) is subject to a feedback loop that is initiated
by the state. Natural loops and feedback are common in
biological systems (see, for example, the coagulation sys-
tem13; see Figure 2 for a conceptual schematic). Approxi-
mations to these systems by empirical data analysis

approaches are liable to misspecify the system and lead to
erroneous interpretation for both interpolated and extrapo-
lated predictions.11 These systems cannot be defined by
the observations that are made in isolation of the mecha-
nism of the system.

If we take a simple example, where there are two
response variables for instance insulin and glucose. This
example is chosen because the mechanism of action of
insulin is not disputed and the mechanistic framework of its
actions has been well described. We know that insulin
decreases blood glucose concentration and in converse a

Figure 1 The response variable vector y is observed. There are
k explanatory variables (covariates) {x1, . . ., x k } that are
observed and a model is built that defines the relationship with
parameters {h1, . . ., hj}. We see that there are also k 0 latent vari-
ables with associated parameters. The model based on x k may
fail to extrapolate beyond the current experiment due to the
unforeseen influence of the latent variables.
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glucose load increases endogenous plasma insulin con-
centration. Because, in the diabetic state, the dose of
insulin is governed by the physician, then patients with
higher fasting blood glucose will receive larger insulin
doses. An empirical analysis of these data will find a posi-
tive correlation between fasting blood glucose concentra-
tion and insulin dose (Figure 3). It might be argued that
this finding is trite, as the mechanism is so well known
that this is a predictable feature. However, if we imagine
another setting in which a recursion was not anticipated,
then this finding, in isolation of understanding this simple
recursive system, would yield the wrong interpretation that
insulin dose (the independent variable) increases blood
glucose concentration (the dependent variable). The histo-
ry of science is littered with examples in which systems
were mechanistically misunderstood leading to incorrect
inference (e.g., whether the earth orbits the sun or vice
versa). The key to interpreting this simple finding lies in
anticipating what we think might happen from an experi-
ment. If we see a response that is contradictory to expec-
tation, then we must either review our expectation or be
suspicious that an unexpected recursion is present in the
system.

Other examples have been clearly determined. A simple
but compelling example was described in relation to the link
between dose and clearance (CL) for drugs that undergo
therapeutic drug monitoring.14 In their work, because the
dose is adjusted to achieve a prespecified target concentra-
tion, then a natural correlation would seem to be evident
between CL and dose, which would then support an

erroneous nonlinear model on CL. Further, excellent exam-
ples are provided by Lendrem et al.,15 in which they show
that intuition-based designs yield models that fail to deliver
appropriate predictions.

Approximations
Data-driven analysis requires the investigator to assemble
a parsimonious model that is identifiable given the available
input information and observation data. Parsimony may be
driven from (1) the data or from (2) the known mechanism.
The former is often (but should not be) confused for the lat-
ter. (1) We see the application of the Michaelis-Menten
equation (written in terms of an Emax model) almost ubiq-
uitously for any circumstance in which a drug causes an
effect, even if there is an absence of an obvious application
of receptor occupancy. In this case, the relationship, while
useful, is empirical and serves only to allow for nonlinearity
in the response variable over a range of the observable
covariates. However, as with all empirical models, all
approximations are only good over a (limited) range of the
response values and experimental conditions. (2) In other
circumstances, the approximations arise via simplification of
a known mechanistic model, for instance, application of the
Michaelis-Menten equation for describing target-mediated
drug disposition in circumstances when rapid equilibrium
binding is assumed. The approximation can be tested (see
for example Ma16) in circumstances when the underlying
mechanism is known, but cannot be tested when the
approximation is applied in the absence of known mecha-
nism. The key difference between these approaches lies in
the deductive approach to testing the model. In approach
(1), it is a hypothesis test of fit of the model to the data,
whereas in approach (2), it is a test of the applicability of
the approximation itself. Although each yields a decision,
the decisions are disparate and only the latter yields mech-
anistic inference.

Figure 2 Two response variables are observed y(1) and y(2). The
empirical analysis, driven by parsimony, does not consider that
they are linked (recursively) and the subsequent analyses treats
them as independent variables with explanatory variables x (1)

and x (2) that drive their respective responses of interest. It will
be seen that when the mechanism is ignored that the variables
x (2) will be seen to influence y(1) and vice versa.

Figure 3 Fasting blood glucose (FBG) is plotted against insulin
dose per day. Different colors represent different patients.
Because there is a temporal delay in the recursion (FBG was tak-
en prior to the insulin dose being calculated) then the expected
trend (that insulin reduces FBG) is reversed and the apparent
controllable (independent) variable is dependent on the observa-
tion (dependent variable). These data arise from a study on insulin
dosing, Ethics (University of Otago Human Ethics Committee
[HD16/013]).
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Why some models may not be wrong
A systems model-based approach that avoids these issues
with empirical models may provide the basis for understand-
ing the system as a whole. In 1967, George Box17 stated, “If
we can know mechanistically how a system works and can
describe this mathematically then we can use this to predict
the behavior under future experimental designs.” It is possi-
ble that models that are strongly mechanistically based will
avoid the four pitfalls faced above. Certainly, issues around
the assumption of linearity, understanding recursive princi-
ples that underpin the data structure, and quantification of
the limitations with approximations are (in theory) knowable.
Issues with latent variables remains unquantified (and per-
haps unquantifiable) but may be implicitly handled by consid-
ering the system as a whole rather than just a portion of the
system that pertains to the observable data.

There are many examples of the mechanism-driven
approach in pharmacometrics. Two examples are described
here, which represent different approaches to the problem
of identifying mechanism. In the first approach, we see that
a mechanism is derived from theory and experimental evi-
dence and is then transformed into a mechanistically driven
mathematical model, in this sense, the model was con-
structed to describe the observations. In the second exam-
ple, we will see that a fully constructed mathematical model
of a system that exists already is used to describe a mech-
anism that is contained within itself, here the full model
contains considerably more structure than is needed to
describe the observations at hand.

Example 1
In the first example, the theory of mass action was applied by
Mager and Jusko18 to binding of drugs to their target with the
prospect that this would provide the basis for understanding
their pharmacokinetics, termed target-mediated drug disposi-
tion (a review of this has been described by ref. 19). In the
work of Mager and Jusko,18 a theoretical binding model was
proposed under the target-mediated drug disposition frame-
work. This model was developed based on the standard
receptor-binding theory and assessed to understand its impli-
cations using simulations. This work demonstrated that a data
driven, noncompartmental analysis of the results led to con-
clusions regarding dose dependence of volume of distribution
at steady state and CL that differed depending on the simula-
tion example. This was corroborated in their work with clinical
data. The underlying theory of their work is a relaxation of the
assumption that the free concentration of ligand (C) greatly
exceeds the number of receptors (a function of maximum
effect [Emax]) and, hence, binding to the receptor does not nor-
mally substantively affect the free concentration (e.g., as per
ref. 20). Relaxation of this assumption is a natural kinetic
extension of binding and is further described by Cao and
Jusko21 to provide the mechanistic basis of target-mediated
drug disposition. Of note, the full kinetic expression of the
binding process is identical to the full kinetic model of standard
receptor binding. Importantly, these models are based on the-
oretical constructs of the activity of drugs, which is borne out
by experiments. Once the full kinetic framework of binding is
established, then it is a matter of choosing an approximation
of the system under assumptions of steady state or

equilibrium binding (see ref. 16 for discussions on various

approximations) that are most well suited to describe the

observed data.

Example 2
In the second example (from ref. 22), an existing systems

pharmacology model for coagulation was built based on liter-

ature evidence13 and later updated.23 This model contains

73 ordinary differential equations and 178 parameters. The

research question being asked was related to the recovery

of fibrinogen after snakebite by Australian elapid snakes.

The input data was binary (bite or no bite) and the observa-

tion data consisted of plasma fibrinogen concentrations. The

full coagulation model is unidentifiable under this input-

output model structure and, hence, cannot be used for esti-

mation purposes. However, a submodel, relating to snake-

bite and fibrinogen, is contained within the full model and,

therefore, two approaches to modelling the data were possi-

ble: (1) develop an empirical/semimechanistic approach

based on turnover models and Emax functions, or (2) develop

a mechanistic approach by extracting the submodel from the

full model. The latter method was chosen and the full model

was lumped from 73 to 5 ordinary differential equations

using proper lumping (readers are referred to ref. 24 for an

overview and application of proper lumping). The submodel

was formed and a prediction from the model provided a rea-

sonable prediction of the data. Once the model was

extracted, the parameters were estimated based on the data

and the model provided a good overall fit.
Both examples require simplification from a fuller model

to a submodel (although the scale of simplification is vastly

different). However, in both cases, the starting point was a

credible mechanism and the final outcome was a model

that describes the data accurately and that can be used for

inductive inference.
It is important to note that the examples described here

do not represent an exhaustive list of potential applications

of systems models. Another, and important, use of systems

models lies in their ability to direct future research. Current-

ly, when the link between input and output is convoluted, it

may be very difficult to set up experiments based on reduc-

tionist approaches to assess potentially important mecha-

nisms. Systems models can be used in a pseudo-deductive

manner by eliminating those mechanisms that are not com-

patible with known data. The recent work of Shivva et al.25

provides an example in which mechanisms relating to sub-

models were turned on and off to determine the plausible

overall mechanistic structure that most closely aligned with

their data for absorption of ketones.
The science of pharmacology, and thereby pharmaco-

metrics, should strive to understand, quantify, and capture

in mathematical models the underlying mechanisms and

biological processes, even if we have little hope (now) of

identifying every nuance of the underlying process.

Systems pharmacology models and science
System pharmacology models provide a logical framework

for identifying and understanding the mechanisms that

underpin drug actions. This process is largely based on

inductive inference (i.e., the construction of a framework
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that provides the scaffold for conjecture and hypotheses
that themselves may be subjected to deductive inference).
This framework, therefore, does not follow the traditional
deductive processes outlined by Popper.2

In contrast to the Popper2 approach, George Box9 pro-
poses that science should be a continual deductive-inductive
cycle in which a hypothesis can be falsified (or not) and
modified based on deductive inference. Although not explicit-
ly described in his work, this leaves the opportunity for the
hypothesis to remain unchanged if it were not falsified by a
“reasonable experiment.” In so doing, strengthening our
resolve in our hypothesis. It is therefore expected that the
inference gained from failing to falsify is a form of inductive
reasoning that scientifically underpins the model and its
inferences.

Of importance, here, a “reasonable experiment” is
defined as one that has been designed to provide a good
test of the hypothesis. Some contention has arisen by the
erroneous assumption that any regression analysis based
on observational data is sufficient to be deemed a reason-
able experiment and, hence, hypotheses are often incor-
rectly falsified or not falsified based on inadequate scientific
reasoning. Anderson and Holford26 raise an interesting
case in which they argue that the precision with which the
allometric exponent 53=4ð Þ; which arises from theory, can
be estimated, is generally so poor that a typical pharmaco-
kinetic study may not be able to distinguish three-quarters
from two-thirds or indeed one. The allometric exponent is
used to scale CL to a standard size, typically with the
following form:

CL5h3
WT

WTref

� �3=4

where h is the typical value of CL for an individual of the

reference WT i:e:; WTrefð Þ, and WT is total body weight.

Here, Anderson and Holford26 define “a typical pharmacoki-

netic study” as a poor experiment for this type of deductive

reasoning.
A systems pharmacology model, based on deductive

reasoning, is not classified therefore as traditional science.

However, if we inductively approach the thoughts of Box9

and Sheiner12 to a logical conclusion, then systems phar-

macology provides the overarching mechanistic framework

from which individual experiments of interest can be

resolved. In this framework, the individual components of

a systems pharmacology model are amenable to falsifica-

tion. However, in contrast with the Popper2 view, a failure

to falsify can serve as probabilistic evidence in support of

the overarching model. Here, we can say that a failure to

falsify satisfies the overall model on the basis that the

model itself represents what we believe to be the current

state of truth (Figure 4).
It is clear that building models based on strong mecha-

nistic axioms and testable subtheories provides a rational

basis for constructing a mechanistically relevant mathemati-

cal representation of a system. The basis of this model can

then be used to provide the underpinning mechanism that

avoids the shortfalls of the four issues that face empirical

modelers.
A controversy that has faced systems pharmacology

models is their (often) extreme size with hundreds of differ-

ential equations and hundreds to thousands of parameters.

Any such system is defined as a supersaturated system

(i.e., one where the number of parameters greatly exceeds

the available data) and is typically depicted in pharmaco-

metrics as having excessive degrees of freedom. Such a

Figure 4 A schematic of the inductive-deductive reasoning that leads to the development and evaluation of systems pharmacology
models. In this schematic, the systems model is described as a theory. The theory is developed iteratively (the ith iteration is shown)
and comprises axioms and many sub-theories that can serve as hypotheses (the jth hypothesis is shown). Each of these hypotheses is
amenable to falsifiability, which leads to updating the subtheories or support for the existing structure. A failure to falsify is defined as
satisfying. Note the axioms remain unperturbed by the cycle.
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system can therefore describe almost any observation.
Here “almost” is the key distinction, as although, in theory,
any observation could be described, the nature of systems
pharmacology models means that some sets of conditions,
or parameter values, are impossible due to system con-
straints. For example, parameter values being positive or
the more subtle but important issue that only some regions
of the parameter space provide settings that are compatible
with life. A simple example arising from the insulin-glucose
system. If we consider a system in which the half-life of
endogenous insulin was 1 day and the half-life of glucose 1
hour, then a glucose meal would result in severe, potentially
fatal hypoglycemia.

Nevertheless, despite there being a constrained range of
plausible parameter values, the issue remains that systems
pharmacology models are grossly underdetermined (from an
available data perspective) and, hence, the parameters are
unidentifiable. This latter claim is of course based on the eye
of the beholder. Let us consider the following simple model:

y tð Þ5y0e2 k11k2ð Þ:t :

It is straightforward to see that this model is not identifiable
as there are an infinite number of values that k1 and (there-
fore) k2 can take that solve for y (see Figure 5a). However,
if we apply mechanism to this expression and apply the
rate constants to the elimination of a drug via two path-
ways, and we can measure either each pathway separately
or one pathway and the sum of both pathways (for
instance, if we observe both the central and an output com-
partment for one of the routes), we can see that the system
is now globally identifiable (see Figure 5b).

Large models, therefore, are not obviously identifiable or
not identifiable by visualization of a realization of the struc-
ture, or based on the number of differential equations or
parameters. Rather, it is based on whether a reasonable
experiment can be conducted that can render the system
to be identifiable. Another approach is to let the data deter-
mine identifiability during the modelling process. Although

outside the scope of this article, approaches in mathemat-

ics for rank reduction during numerical analysis, typically

based on Monte Carlo sampling to explore the posterior

distribution, can naturally accommodate issues with

identifiability.27

CONCLUSION

Models that are constructed to describe a system and its

underpinning mechanistic structure holistically are likely to

provide a more sound starting position for future interpreta-

tion and inference. The shortfalls that occur using reduc-

tionist platforms are potentially serious unless they align

with knowledge of the bigger system. It is prudent to note,

however, that we cannot hope to know mechanism perfectly

and therefore all models have the capacity to be both use-

ful and potentially incorrect. The benefit of falsifying and

importantly failing to falsify provides the opportunity for

future growth and learning.
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