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Abstract

A computer program that tracks animal behavior, thereby revealing various features and mechanisms of social animals, is a
powerful tool in ethological research. Because honeybee colonies are populated by thousands of bees, individuals co-exist
in high physical densities and are difficult to track unless specifically tagged, which can affect behavior. In addition,
honeybees react to light and recordings must be made under special red-light conditions, which the eyes of bees perceive
as darkness. The resulting video images are scarcely distinguishable. We have developed a new algorithm, K-Track, for
tracking numerous bees in a flat laboratory arena. Our program implements three main processes: (A) The object (bee’s)
region is detected by simple threshold processing on gray scale images, (B) Individuals are identified by size, shape and
spatiotemporal positional changes, and (C) Centers of mass of identified individuals are connected through all movie frames
to yield individual behavioral trajectories. The tracking performance of our software was evaluated on movies of mobile
multi-artificial agents and of 16 bees walking around a circular arena. K-Track accurately traced the trajectories of both
artificial agents and bees. In the latter case, K-track outperformed Ctrax, well-known software for tracking multiple animals.
To investigate interaction events in detail, we manually identified five interaction categories; ‘crossing’, ‘touching’, ‘passing’,
‘overlapping’ and ‘waiting’, and examined the extent to which the models accurately identified these categories from bee’s
interactions. All 7 identified failures occurred near a wall at the outer edge of the arena. Finally, K-Track and Ctrax
successfully tracked 77 and 60 of 84 recorded interactive events, respectively. K-Track identified multiple bees on a flat
surface and tracked their speed changes and encounters with other bees, with good performance.
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Introduction

The majority of ethological studies rely on accurate observation

of animal behavior. Animal behaviors have been studied by

monitoring the movement of target animals in both field and

laboratory environments. In such experiments, the model animals

are contained in circular or rectangular arenas. Behavioral

information is gathered by recording the trajectories and variation

of animal movements within the arena. To date, small animals

such as flies [1], mice [2–4], spiders [5], and cockroaches [6,7]

have been used as model animals. Social insects such as bees [8]

and ants [9] are also popular for studying animal social

mechanisms. In these ethological studies, necessary data on

animal sociality are collected by means of video recordings and

computer analysis. Recent developments in recording equipment,

such as digital video cameras and webcams, provide high

functionality at reasonable cost, enabling long-term movements

of target animals to be captured rapidly and easily. However,

although human observers can easily monitor the target animals

using these recordings, extracting behavioral data from the movie

images remains a laborious and time-consuming manual task. In

addition, manual analyses of sequential images may yield

insufficient quantitative and objective ethological data.

Recent automatic tracking programs for collecting ethological

data from video images have enabled us to analyze various animal

behaviors in the laboratory quickly and precisely; for example:

[10–12]. For example, the program developed by Delcourt et al.

has successfully tracked juvenile Nile tilapias (O. niloticus), which

often swim in schools, and has identified three different crossing

patterns [13]. The open-source program Ctrax, published by

Branson et al. [1], was developed for tracking multiple flies

walking in an arena. Ctrax has been widely used for tracking not

only flies [1,14–17] but also ants[18,19], cockroaches [20–22] and

fish [23–25]. These programs detect individuals by subtracting

background images. The location of target animals at time t is

estimated from a constant-velocity model, based on positional

change from time zero to t-1. Therefore, these models are of

limited applicability because target animals must move on a

constant background such as an arena, and their movements are

assumed continuous, streamlined and unvaried. Because of these

limitations, automatic tracking remains an important challenge in
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the behavioral analysis of animals with diverse movements, such as

ants and honeybees.

Various equipments and methods have been developed and

applied for tracking animal behaviors such as flies, mice and ants.

For example, the video-based systems tracked targets based on

shape and/or color [26–28]. These characteristics are usually used

to identify and track them. For more accurate identification, the

barcodes were used for identification by Mersch et al. [29]

The PFID chip was also used for tracking animal behavior [30].

As same as the video-based tracking using a barcode, the animals

can be identified by attached unique PFID chip. Furthermore, the

fusion video-RFID tracking method was already applied by

Weissbrod et al. [31]. Even the methods with physical attachments

are helpful for identification; many researchers want to use the

video-based tracking because of its convenience and little influence

on the animals.

The waggle dance of honeybees, discovered by Karl von Frisch

in 1967 [32], is one of the most famous social behaviors. By

conducting this dance, the honey bee shares information of

profitable food sources with her nest mates. The waggle dance has

roused much interest among ethologists, rendering the honey bee

a popular model animal for studying social behaviors. Other social

behaviors displayed by honeybees include division of laborious

tasks such as cleaning and building of combs, caring for the queen

and brood, defending the hive from potential predators and

controlling the moisture and temperature in the hive [33]. Adult

honeybees also transfer food to other adults in their colony

(trophallaxis), which serves a communicational, nutritional and

transport function [34–37]. From the type, quality and willingness

of the donation, the recipient obtains information about the food

condition in the colony or within a smaller subgroup of bees.

Trophallaxis is typically conducted with the bees facing each other

in a line. The trophallactic strategy has been adopted in robots

[38]. Although the capabilities of an individual are limited and

few, the bees collectively achieve high performance. Cooperation

enables the colony to survive cold winters, which individual bees

could not survive, and rapidly boosts the foraging workforce in

spring, when other social insects (such as bumble-bees and wasps)

remain in the colony-founding phase. Monitoring and analyzing

individual behaviors together with social interactions is expected to

reveal the social structure and performance of a honeybee colony.

The social behaviors of bees are generally investigated on flat

surfaces. Some researchers have analyzed the waggle dances on a

flat vertical observation hive [39], while others have monitored the

response of young bees to temperature in a flat circular horizontal

arena [40]. Such flat-surface experiments are important for

observing and analyzing the social behaviors of honeybees.

However, automatic tracking of honeybee behavior is not readily

achieved using existing computer software, because honeybees

display complex and unique behaviors such as contact with other

individuals and accidental movement, i.e. resting or stopping

within the hive. Such behaviors require analysis by a new tracking

method.

Previously, we developed a method that tracks hundreds of

unmarked honey bees walking in an observation hive [41]. In this

method, individuals are distinguished and tracked based on body

size and shape, and the spatiotemporal overlapping of bee regions.

Within a few minutes, the algorithm tracked more than 350 in a

colony of about 700 bees in an observation hive. However, precise,

longer-term tracking of several bees in an arena could not be

undertaken without losing bees from time to time. Number

retention is an important prerequisite for studying the social

behavior of honeybees. Furthermore, we developed a software to

track multiple bees on a flat arena [42], based on the previous

algorithm [41]. The software could estimate the moving area of

each individual to trace the complex behaviors of bees. Our

software could detect independent central points of each bee frame

by frame with nearly 95% accuracy. However, the program still

has limitations to connect with these points as the movements such

as the interactions between bees.

In this article, we describe an improved method for tracking

unmarked multiple honeybees, based on the previous work [42].

There is the difference between previous and current programs

that current program adopted two processes, predicting the linear

movement or regional matching, as a method to identify

individuals when they overlapped. Our method implements three

major processes: (A) Regions occupied by bees are detected, (B)

Individuals are identified, and (C) The behavioral trajectory of an

individual is constructed, based on the known complex behaviors

of bees. Overlapping individuals are identified in our program by

one of two processes; predicting their linear movement or regional

matching. Our new software, named ‘‘K-Track’’, was validated by

tracking 16 honey bees moving on a circular arena, and

comparing the results with those obtained from Ctrax (0.3.9) [1],

a well-known free software package for animal tracking. We

demonstrate the superior tracking performance of our program,

compared to ‘‘Ctrax’’.

Methods

To precisely assess the movements of an animal species, the

behavioral properties of the animal must be ascertained. The main

problem in simultaneously tracking multiple bees is the difficulty in

identifying and separating overlapped or contacting individuals.

Complex patterns arise from the combination of individual’

movements, especially when three or more bees interact. We

assume that, in the absence of interaction (a reasonable

proposition on frame-rate time scales) a single bee moves linearly

forward. However, in practice, the movement of a bee is often

influenced by interactions with other bees, and the linear

prediction is incorrect even on short time scales. In this case,

our tracking algorithm would lose contact with the bee. As a

contingency strategy for such frequent events, the neighboring

regions were searched for the target bee and the target position

updated by matching and detecting all local individuals.

The new method is adopted for tracking multiple bees in a

movie depicting spatiotemporal changes of bee body sizes, shapes

and locations. Individual bees are treated as rigid objects,

distinguished and separated by ‘‘size’’ and ‘‘shape’’ when they

are extracted from original images. Our algorithm can assign each

tracked object a unique identification number (ID) by analyzing

the temporal changes of two key aspects. The trajectory of a bee is

obtained by connecting the centers of mass of individuals which

are assigned specific ID numbers in sequential frames. The

workflow of our proposed method proceeds as shown in Fig. 1: (A)

The region occupied by an object (bee) is delineated by simple

threshold processing of gray scale images, (B) Individuals are

identified from spatiotemporal contextual information on size,

shape and location, and (C) Behavioral trajectories are drawn by

connecting the centers of mass of individuals sharing the same ID

number through all movie frames.

Extraction of a candidate bee’s regions
In process A, an image is split into two images; ‘foreground’ and

‘background’. Ideally, all tracked objects should exist in the

foreground image. If the background image is obtained first, the

source image (Fig. 2A) is readily divided into the two categories. If

no background image is recorded before the bees enter the arena,

Development of a Tracking Method for Multiple Bees

PLOS ONE | www.plosone.org 2 January 2014 | Volume 9 | Issue 1 | e84656



Development of a Tracking Method for Multiple Bees

PLOS ONE | www.plosone.org 3 January 2014 | Volume 9 | Issue 1 | e84656



the background must be deduced from the movie data. This is

achieved as follows: the gray scale levels of both bees and

background are constant under stable light conditions. In our

honeybee arena, the background is brighter than the animals, so

the gray scale values of bee-associated pixels are lower than those

of the background pixels. The background image (Fig. 2B) is

obtained by allocating the maximum gray scale value to each pixel

within all movie frames. A series of foreground images (Fig. 2C) is

then obtained by subtracting the generated background image

from the source images. To identify the sizes and shapes of the

bees, all foreground images are converted to binary images

(Fig. 2D) based on a predetermined threshold.

For testing the robustness of our software, we investigated the

relationship between the threshold value and the trajectory’s

accuracy. We used the Trajectory Completeness Factor (TCF)

value [43] to express this accuracy. If the calculated trajectory of

tracking software fits in the correct trajectory, the TCF value is 1.

If the software fails to track a target, the TCF value is less than 1.

In this study, the software binarized the images of the movie1

using the threshold value 43 and tracked the bees using this result.

The TCF values between 38 and 53 of the threshold value are

1.00, showing that our software succeeded to track all bees in this

range (Fig. S1). This shows that our software has strong robustness

for the variation of threshold.

Detection of a bee’s regions
Process B aims to detect and identify all bees from the

previously fabricated binary images. Honey bees possess almost no

distinguishing features that allow individual identification in

general. They are very similar in size, shape and color. Individual

differences are smaller than the discretization variability. The

noise introduced by the video recording technique and poor light

conditions (red light). Regardless of such difficulties, our algorithm

assigns every tracked bee a unique number that holds over the

entire video period. To achieve this, we assume that the size of one

bee varies slightly during each run. As a pre-processing step, our

method detects the bee regions from the body size of a single bee,

without individually identifying it. Identifying numbers are then

assigned to the bee regions to produce a prediction and

identification model for bees, parameterized from each focal

movie. The number of pixels in a single bee region is calculated

from the initial movie frames (20 seconds; 500 frames), which also

reveal the valid size range of single honey bees (RSS: Range of

Single-bee Size). The RSS is an effective measure for detecting

individuals in all subsequent video frames. To allow the tracking of

multiple bees, our method imposes an important restriction: The

regions of an individual bee at time t and time t-1 must be

overlapped (Fig. 3). In other words, a bee cannot move further

than its own body length in any two consecutive frames. The

algorithm then categorizes all bee-associated regions by size and

by spatiotemporal overlapping in the movie frame sequence.

Identification of bee’s regions
Our program defines the size and sharp of one bee. Moreover,

we assume that the bee’s shape remains unchanged in an

overlapping situation of two bees. Therefore, the program can

calculate the number of individuals and the location of each bee at

current time using the current overlapping area and the location of

each bee at previous time [41]. In the next step of the algorithm,

bee regions are first classified into three categories based on region

size; 1) Single Bee Size (SBS): the region fits within the RSS, 2)

Plural Bee Size (PBS): the region is bigger than the maximum RSS

and 3) No Bee Size (NBS): the region is smaller than the minimum

RSS. Next, the number of regions in the previous frame

overlapped on each current region is determined. 1) No

overlapping Bee Region (NBR): the number of the overlapping

regions is zero, 2) One overlapping Bee Region (OBR): the

number is one, and 3) Two or more overlapping Bee Regions

(TBR): the number is two or more. From these two characteristics

(size and overlap), individual bees can be distinguished in each

movie frame. In the first frame, unique ID numbers are assigned to

Figure 1. Workflow of our proposed method. The method consists of three main processes; (A) Detecting bee candidate regions using gray-
scale transmission and threshold processing; (B) Identification and numbering of individuals, achieved by extracting individuals from regions
containing two or more bees; and (C) Assigning x and y position coordinates to each bee, outputting the results and connecting them into
trajectories.
doi:10.1371/journal.pone.0084656.g001

Figure 2. Snap shots to illustrate each step of the data analysis.
(A) original image, (B) background image to make from original images,
(C) the image to process background subtraction, (D) the image to
process the binarization, (E) the result image of identification of bees
and (F) the tracjectories of every individuals.
doi:10.1371/journal.pone.0084656.g002

Figure 3. Spatial overlapping patterns are classified by size
changes between current and former regions. (A) Single bee
moves straight ahead. Region size is within range of single-bee size
(SBS) and overlap is one-bee region (OBR). (B) Two bees appear as a
merged entity in the source image. Region size is SBS and overlap is
two-or-more bee region (TBR). (C) Two bees bump into each other.
Region size exceeds range of single-bee size (PBS) and overlap is TBR.
doi:10.1371/journal.pone.0084656.g003
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SBS regions (Fig.2E). In subsequent frames, ID numbers are

recovered as follows:

1) SBS and NBR: This region contains a single new bee. A new

unique number is assigned to this region.

2) SBS and OBR (Fig. 3A): The current bee SBS(t) is assigned

the ID number of the previous overlapping bee SBS(t-1).

3) SBS and TBR (Fig. 3B): The current region SBS(t) contains

two individuals. The correct SBS(t)s are delineated by the

linear motion assumption. The current SBS(t)s are assigned

the ID numbers of the overlapped SBS(t-1) bees.

4) PBS and TBR (Fig. 3C): The current region PBS(t) is divided

into two SBS(t)s by regional matching, using spatiotemporal

contextual information between the current region and SBS(t-

1)s. The divided SBS(t) region is assigned the ID numbers of

the SBS(t-1) bees. [35].

5) Other cases: No processing is executed.

Output of behavioral trajectories and locational data
In process C, the location data and the behavioral trajectory of

individual bees are logged during the image processing (Fig. 2F).

The bee location is the position of the center of mass of each

identified bee’s region. These coordinates are finally exported into

a CSV-format file. From the bee location data, the velocity,

acceleration and direction of the bee’s movements are simulta-

neously determined, as well as the distance moved by individuals

(estimated from temporal changes in the bees’ locations).

Furthermore, our method can generate visual trajectories of bee

behavior by interpolating between all locations of all individuals

frame by frame [41]. The tracking results are also exported as an

image file, with the overlapping locus of each bee on the original

frames. These quantitative values will assist the further analysis of

individual and collective honeybee behaviors. The method is also

applicable to many other animals that move and interact in

comparable arena setups.

Experiments and Results

Developed environment for the software
Our tracking software, called ‘‘K-Track’’, was developed in

Microsoft Visual Studio 2010 (Visual C++) with the Computer

Vision Library: OpenCV 2.31 on a laptop computer with an Intel

Core i5 - 2.50 GHz (CPU), 8 GB (Memory), 256 GB (HDD) and

Microsoft Windows 7 Professional 64bit (OS). Our software was

developed as a 64 bit console application run on the 64 bit version

of Windows, because a large RAM (more than 4 GB) is required

to store all frame images and the individual positions over all time

frames and to keep a working memory space. Larger memory

space would allow researchers to realize more efficient image

processing and longer-term tracking of multiple individuals.

Set up of experimental movies
We prepared four sets of 1-minute movies (1,500 frames),

named ‘movie-A’, ‘movie-1’, ‘movie-2’ and ‘movie-3’, to evaluate

our software. In ‘movie-A’ the movements of software-simulated

and multi-artificial agents were recorded. These agents were

driven by the honeybee-inspired BEECLUST algorithm [6,40,44].

This movie contains relatively simple movements and was used to

evaluate the basic performance of our software. The movie was

played at 25 frames per second, the rate of the PAL format, and

the frame size of each image was 6006600 pixels. The sizes of

individual honeybees and the arena were extracted from the

experimental movies, which incorporated two additional behav-

ioral components; a bee could vary its direction by rotating its

body axis, or it could suddenly stop. These behaviors were added

to the original BEECLUST algorithm in order to mimic real bee’s

behavior.

Movies 1–3 are experimental benchmark-movies of sixteen

young honeybees (Apis mellifera L.) walking in a circular arena

(radius 30 cm). These movies were recorded by an infrared

camera fixed 175 cm above the arena in the Artificial Life Lab. at

the Karl-Franzens-University Graz, Austria [45]. The behaviors

displayed in the movies differ widely in terms of (1) average speed

of movement, (2) number of interactions between two or more

individuals, and (3) long-term resting behavior. More specifically:

Movie-1: characterized by slow movement, few interac-

tions, and periods of long-term resting.

Movie-2: characterized by moderate movement, some

interactions, and no long-term resting.

Movie-3: characterized by rapid movement, many

interactions and no long-term resting.

As described below, the frequency and quality of movie images

(25 frames per second (PAL format) and 5326576 pixel size for the

circular arena) was sufficient for tracking the behaviors of young

bees in the arena. Furthermore, when evaluating our software, we

paid attention to overlapping patterns, including the interactions

among bees, which embody the most important social behaviors.

Prior to each experiment we investigated the overlapping patterns

in the arena, obtained from the experimental movies. We

manually classified them into five categories; 1) crossing: Two

bees touch at time T1 and do not change their moving directions

before and after the time T1 (Fig. 4(a)), 2) touching: Two bees

come from same directions. They touch at time T1 and change

their moving directions before and after the time T1 (Fig. 4(b)), 3)

passing: Two bees come from different directions. They touch at

time T1 and change their moving directions before and after the

time T1 (Fig. 4(c)), 4) overlapping: Two bees overlap at time T1

and do not change their moving directions before and after the

time T1 (Fig. 4(d)), 5) waiting: After they touch at time T1, one bee

keeps stopping until another bee pass by (Fig. 4(e)). Three of these

classifications (Fig. 4(a), (b) and (d)) have been previously identified

by Delcourt et al. [2]; the passing and waiting categories were

deduced from our behavioral analysis of bees.

Experiment 1 (movies of multi-artificial agents)
In the first experiment, K-Track tracked multi-artificial agents

that mimic honey bee movements (movie-A). The aim of this

experiment was to evaluate the basic performance of our tracking

system. The algorithm performance was compared to that of the

current state-of-the-art algorithm Ctrax [1]. Ctrax did not work

with the default parameter values on our data. So, appropriate

Ctrax parameter setting, particularly for the ‘‘Background

Model’’, ‘‘Background subtraction’’ and ‘‘Shape’’, was chosen as

carefully as possible. Results were obtained as a new movie

containing the dynamics of the trajectories of all objects (Fig. 5). As

shown in Fig. 5A, K-Track offered excellent tracking results with

no misidentification, whereas Ctrax mis-tracked twice (Fig. 4B) on

the same movie. We also evaluated the accuracy of position

estimation by measuring maximum, minimum and average

Euclidean distances between the assigned and calculated values

(Fig. 4C). The average errors in object centers of mass were less

than 1.2 pixels in K-Track (less than 1.0 mm in real space). In

Ctrax, the average errors were below 1.7 pixels for correctly

identified individuals, but the distance errors were very large

because individuals were exchanged in frames 580 and 1366.

Development of a Tracking Method for Multiple Bees
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Clearly, K-Track can track multiple bees on a flat surface more

accurately than Ctrax (Mann-Whitney U-test, P = 3.44361027).

Experiment 2 (movies recorded from honey bee
experiments)

Next, the performances of the K-Track and Ctrax algorithms

were tested on three honeybee movies (honeybees being the target

animals of our algorithm). Interactive behaviors were the focus of

this investigation. We also checked the trajectories of each

individual bee. In each movie, five interaction patterns (see

Fig. 4) were manually counted (Table 1). Each tracking result was

evaluated by using a standard measure called the Trajectory

Fragmentation Factor (TFF) and the Trajectory Completeness

Factor (TCF) to measure the performance of multi-target tracking

software [43,46]. The TFF value is the necessary number of

calculated trajectories to draw a correct trajectory of the target and

the TCF value is the accuracy of tracking trajectory. If the

calculated trajectory of tracking software fits in the correct

trajectory, both TFF and TCF values are 1. If the software fails

to track a target, the TFF value is more than 1 and the TCF value

is less than 1. The K-Track’s TFF average of all three movies is

1.29 (movie-1: 1.00, movie-2: 1.13, movie-3: 1.75). The K-Track’s

TCF average of the movies is 0.84 (movie1: 1.00, movie2: 0.89,

movie3: 0.63). Both numbers suggest K-Track is highly accurate

for tracking multiple honey bees.

Tracking results of movie-1. First, K-Track and Ctrax

were tested on relatively simple bee movements (movie-1). The

bees in this movie moved slowly and interacted less than in other

movies. The tracking results of the two programs are shown in

Table 1A and Fig. 6. While K-Track captured all bee interaction

events, Ctrax failed in 7 instances (Passing: 1, Waiting: 6). Thus,

Ctrax did not always identify the behavioral states ‘waiting’ and

‘passing’, which are frequently exhibited by bees. Regarding

trajectory tracking, K-Track completely tracked all movements

with no duplicate ID assignments (see Fig. 6A). By contrast, Ctrax

lost the movements of some individuals and could not thereafter

identify them (see Fig. 6B). In this movie, some of the bees

remained stationary over significant periods of time. Ctrax

regarded these bees as part of the background and permanently

lost their locations.

Tracking results of movie-2 and movie-3. We then tested

both algorithms on movie-2, which contains more complex

honeybee movement patterns than movie-1. The comparison

results are summarized in Table 1B. We note that K-Track made

one mistake while Ctrax missed nine interaction events. As before,

Ctrax tended to misinterpret ‘waiting’ and ‘passing’ states. Finally,

both algorithms were tested on the third movie (movie-3) in which

complex bee behavior is displayed. In this movie, K-Track and

Ctrax made 6 and 8 tracking errors, respectively (see Table 1C).

The positions at which K-Track fails, and the switched identifi-

cation numbers and their timing, are shown in Fig. 7A and 7B. All

errors occur near the edges of the arena. Our behavioral tracking

algorithm assumes linear forward motion of the bees over a short

period. However the circular wall forces the bees to turn and move

along the curved edge of the arena. Under such conditions, K-

Track cannot always correctly separate the individuals.

In summary, K-Track and Ctrax failed to separate and identify

overlapped individuals in seven (8.3%) and twenty four (28.6%)

interactions, respectively. Even in the middle of the arena, Ctrax

failed to capture ‘‘waiting’’ and ‘‘passing’’ interactions, while K-

Track could adequately process these data. Both algorithms failed

around the arena edge, where linear movements are curtailed by

the curved boundary. The superior performance of K-Track for

tracking multiple interacting bees was confirmed.

Detection of interaction events. Automatic image process-

ing and tracking has several advantages over manual image

processing. For example, K-Track automatically detects the

position and timing of contacts between two or more bees from

the distances between individuals (Fig. 8). The interactions among

multiple individuals, such as approach, contact and separation of

one bee from another, are crucial for analyzing group behavior of

animals. We classified such events by calculating the Euclidean

distance between two bees. A bee-to-bee encounter was defined as

one bee facing another at a distance of less than one body length.

As an example, the Euclidean distances between target bee ‘‘9’’

and another colony member (‘‘2’’ or ‘‘6’’) were calculated at

different times. The temporal changes in these distances are

plotted in Fig. 8A. K-Track also calculated the velocity of bee ‘‘9’’

and assessed five candidates for interaction by whether the

distance between individuals reduced below a specified threshold

during 30 seconds (Fig. 8B). In this experiment, the threshold value

was 15 pixels (the length of the major axis of the honeybee body).

The walking speed of bee ‘‘9’’ was suddenly slowed by all five

encounters, but was recovered in three cases. Thus, we confirmed

that K-Track can observe detailed interactions and movements

among multiple agents, and can evaluate them quantitatively.

Discussion

K-Track demonstrates superior performance in tracking mul-

tiple honeybees compared to the current state-of-the-art algo-

rithm, Ctrax. Among 84 crossing events observed in three

experimental movies, K-Track and Ctrax successfully tracked 77

and 60 honeybee interactions, respectively. Of the two algorithms,

Figure 4. Five types of interaction patterns between two bees were extracted from the movies and classified as follows; (a)
crossing: Two bees touch at time T1 and do not change their moving directions before and after the time T1, (b) touching: Two bees
come from same directions. They touch at time T1 and change their moving directions before and after the time T1, (c) passing: Two bees come
from different directions. They touch at time T1 and change their moving directions before and after the time T1, (d) overlapping: Two bees overlap
at time T1 and do not change their moving directions before and after the time T1, (e) waiting: After they touch at time T1, one bee keeps stopping
until another bee pass by.
doi:10.1371/journal.pone.0084656.g004
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K-Track provided higher accuracy for tracking multiple honey

bees with complex crossing and contacting. We note that K-Track

was specifically designed for complex honeybee interactions.

Analyzing their movies of interacting juvenile Nile tilapias,

Delcourt et al. [13] classified crossing events as ‘‘crossing’’,

‘‘touching’’ or ‘‘overlapping’’. In addition to these categories, we

observed ‘‘passing’’ and ‘‘waiting’’ in the interaction behaviors of

honey bees. Of the five main honeybee interactions, ‘‘crossing’’,

‘‘touching’’ and ‘‘overlapping’’ occurred only 12 times in 84

crossing events. The majority of events (72) comprised ‘passing’

and ‘waiting’, which was not reported in Delcourt et al. [13]. To

compare the results of the two algorithms in detail, we reclassified

the five crossing patterns into two groups, one comprising the

behavioral states ‘‘crossing’’, ‘‘touching’’ and ‘‘overlapping’’, the

other holding the states ‘‘passing’’ and ‘‘waiting’’. In the first

group, both algorithms successfully tracked individuals throughout

10 out of 12 events (83.3% tracking accuracy in both algorithms).

In the second group, however, K-Track achieved 93.1% tracking

accuracy (67 out of 72 events), while that of Ctrax was 69.4% (50

out of 72). Such a difference in tracking accuracies indicates that

conventional software is less suitable than K-track for tracking the

behaviors most commonly observed in honey bee collectives. In a

broader sense, this implies that K-track can more accurately track

animals displaying variable crossing events.

All of the 7 tracking failures observed in K-Track occurred

around the edges of the circular arena, indicating that future

improvements to the algorithm should focus particularly on these

regions. K-Track assumes that a bee travels ahead without

Figure 5. Tracking movements of bee-inspired agents in K-Track and Ctrax. (A) K-Track’s trajectories. K-Track correctly identifies the
positions of all agents. (B) Ctrax’s trajectories. Several mistakes occur in two frames (t = 580 and t = 1366). (C) Comparison table of the average errors
made by K-Track and Ctrax.
doi:10.1371/journal.pone.0084656.g005
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changing the direction of her body axis during a crossing event.

However, at the arena wall, the focal honeybee is prevented from

linear movement and often bends her body near the circular edge,

thereby following the curvature of the arena wall. Currently, our

program does not reproduce this behavior. In future work, the

movements of bees near the walls will be studied in detail to

analyze the interaction patterns and the variation of moving

directions in those regions. These new dynamics should be

adopted into a new rule set which accounts for the special

conditions at the wall. Furthermore, we plan to apply K-Track to a

statistical estimation model of behavioral attributes, based on the

bees’ individual motion histories.

Potentially, K-Track may collect and present target interaction

images for ethological studies. For example, the interaction

patterns of honeybees tend to scatter throughout the movie. To

extract interaction information, researchers must therefore check

all frames in the movie. This manual checking is time consuming,

labor consuming and error-prone, and constitutes a large problem

for researchers. Our system specifies that interactions occur only

when the distance between approaching bees becomes less than

the bee’s body size. Consequently, K-Track can easily extract only

those scenes involving bee interactions, and specify the exact

locations of interactions in successive frames. While animal

interaction is generally regarded as a tracking problem, K-track

Table 1. The numbers and errors of interaction patterns detected from experimental movies.

K-Track Ctrax

Occurrence FalseNumber FalseRate(%) FalseNumber FalseRate(%)

A Movie1 Touching 2 0 0.0 0 0.0

Passing 3 0 0.0 1 33.3

Waiting 10 0 0.0 6 60.0

B Movie2 Crossing 1 0 0.0 0 0.0

Passing 5 0 0.0 2 40.0

Overlapping 1 0 0.0 0 0.0

Waiting 15 1 6.7 6 40.0

Multiple 1 0 0.0 1 100.0

C Movie3 Crossing 3 0 0.0 1 33.3

Passing 18 1 5.6 0 0.0

Overlapping 2 2 100.0 1 50.0

Waiting 14 2 14.3 3 21.4

Multiple 9 1 11.1 3 33.3

Sum 84 7 8.3 24 28.6

The movements from crossing to waiting are represented in Fig. 4. The ‘‘Multiple’’ indicates that three or more bees interact. Failure occurs when two or more bees
interact near the edge of the arena. The high false rate of the ‘‘Overlapping’’ state may be caused by motion rather than by the interaction pattern. Our program K-Track
outperforms ‘‘Ctrax’’ in terms of tracking accuracy.
doi:10.1371/journal.pone.0084656.t001

Figure 6. Tracking results of movie-1 by K-Track and Ctrax. The numbers shown on individuals are the identified IDs. Squares and big circles
represent the start and the end points of tracking without losing the bee and re-identifying it with a new ID after the tracking. (A) Tracking results
achieved by K-Track, (B) Tracking results achieved by Ctrax. The trajectories achieved by Ctrax are shorter than those by K-Track, indicating that Ctrax
more frequently loses track of the bees.
doi:10.1371/journal.pone.0084656.g006
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is especially designed for such interactions and considers them in

predicting the future movements of individuals. The algorithm

retains individual IDs after interaction events. Because our

algorithm exploits interaction data and identifies and classifies

interaction events, it may greatly assist ethological honeybee

research. Determining the localized interactions among clearly

identified bees provides valuable information for models of

pheromone exchange among bee groups. It is also useful for

investigating trophallactic interactions and for analyzing the

inhomogeneous distribution of social interactions in subgroups of

the honeybee collectives. From the movie scenes, our software

extracts the particular area in which two bees interact and

identifies the bees by their ID numbers. In this way, the bees’

historical behavior before the interaction event is available for

automated or computer-aided analysis. Additionally, we developed

an automatic program for editing specific areas in images, which

can efficiently present the target area in the frames using various

functions such as zooming [47]. By combining this automatic

editing program with K-Track, we can extract specific areas in

specific scenes containing interactive behaviors of target animals.

K-Track can be automatically upgraded to collect such target

images and display them effectively and emphatically. This new

software should greatly benefit ethological researchers in analyzing

the interactive behaviors of their target animals.

The performance of the tracking software depends on the target

animals. K-Track succeeded to track the walking movements of

the Argentine ants (Linepithema humile) [48]. It can be applied for

small insects, but it still has some problems, such as animal size

and frame rate of movie, in general use. We also applied K-Track

for tracking grovelling behaviors of earthworms, but we failed it

because of the big changes of body size during their movements.

Other tracking methods were already developed by many

researchers. De Chaumont et al. used a body model of a mouse

through a set of geometrical primitives linked by physical

constraints to track individuals [27]. However, this software can

track only two mice. Ohayon et al. used a unique back pattern of a

mouse [26]. The mice have unique patterns of their backs, but the

bees would not have identifiable features as mice. Freund et al.

used mice with PFID transponders to detect their locations [30]

and Weissbrod et al. used a method in mixing a video-based

tracking and a PFID-based tracking [31]. It is easy to tag them

with PFID, but is difficult to apply bees with these devices.

Branson et al. used the method that each detected fly in frame t

is associated with a fly tracked in the previous frame t-1 [1]. Kabra

et al. applied the Ctrax for classification of fly behaviors [49].

These methods are good performance for the flies that always

move linearly, but would be not adapt for the complex behaviors

of bees with long-time resting or waiting. Dankert et al. used the

localized body model by fitting a Gaussian mixture model (GMM)

Figure 7. Processing of movie-1 by K-Track. (A) Trajectories produced by K-Track. Squares and circles represent start and end points of
individual trajectories of each bee. Triangles show the interaction points between two or three bees. Triangles tend to aggregate around the edge of
the arena, indicating that interactions frequently occur there. (B) The temporal state transition of each bee. The numbers on the inverted triangles are
the frame numbers in which bee IDs were exchanged. The numbers in the right-hand circles are the exchanged IDs. Six exchanges occurred in
Movie-3.
doi:10.1371/journal.pone.0084656.g007

Figure 8. Temporal changes of distance and speed between two bees. (A) The distance between bee ‘‘ID = 9’’ and bees ‘‘ID = 2’’ and ‘‘ID = 6’’,
which contact bee ‘‘ID = 9’’. (B) The area spans less than 20 pixels. The dotted-line shows the length of the bee’s major axis. Below the dotted line, the
two bees are assumed touching. In the lower part of the figure, ‘‘W’’, ‘‘P’’ and ‘‘T’’ represent the identified interaction patterns ‘‘waiting’’, ‘‘passing’’
and ‘‘touching’’, respectively (see Fig. 1).
doi:10.1371/journal.pone.0084656.g008
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with three Gaussians (background, other parts and body to the

histogram of the values using the Expectation Maximization (EM)

algorithm [28]. This method, however, track only two fries,

simultaneously.

Moreover, Mersch et al. [29] developed the tracking software

for multiple ants. They used the ants with ARTags to identify

individuals. Similar to PFID, it is impossible to set a ARTag to

each bee without a stress. Therefore, our software is quite effective

to track multiple bees easily.

Conclusions

In this paper, we proposed a novel method for tracking

unmarked multiple honey bees in a flat laboratory arena, which

focuses on identifying interaction events among honeybees. Based

on this method, we developed a prototype software named ‘‘K-

Track’’. The performance of ‘‘K-Track’’ was compared with that

of the open-source tracking software ‘‘Ctrax’’. The test subjects

were one movie of sixteen agents and three movies of experiments

involving sixteen young bees moving in a circular arena. The

proposed algorithm showed better performance in tracking

multiple bees compared to Ctrax, in terms of both robustness

(fewer tracking errors and losses in movies showing complex

motion patterns), and richness (number of identified behavioral

states) of the behavioral classifier. In future work, we plan to

extend our software to handle more complex interaction patterns,

such as interactions among three or more bees. Furthermore, we

plan to apply our software to other social insects including ants.

The current K-Track was released on INCF Software Center

(http://software.incf.org/) under the BSD license.

Supporting Information

Figure S1 The relation between the threshold value for
binarization and the TCF value. Our software binarized the

images of the movie1 using the threshold value 43 and tracked the

bees. The TCF values between 38 and 53 of the threshold value

are 1.00.

(TIF)

Movie S1 Tracking result’s movie of Figure 5.
(AVI)

Movie S2 Tracking result’s movie of Figure 6.
(AVI)
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