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Abstract

insights into functioning of living systems.

used in such analysis.

used freely at http://GenomicsPortals.org.

Background: A large amount of experimental data generated by modern high-throughput technologies is
available through various public repositories. Our knowledge about molecular interaction networks, functional
biological pathways and transcriptional regulatory modules is rapidly expanding, and is being organized in lists of
functionally related genes. Jointly, these two sources of information hold a tremendous potential for gaining new

Results: Genomics Portals platform integrates access to an extensive knowledge base and a large database of
human, mouse, and rat genomics data with basic analytical visualization tools. It provides the context for analyzing
and interpreting new experimental data and the tool for effective mining of a large number of publicly available
genomics datasets stored in the back-end databases. The uniqueness of this platform lies in the volume and the
diversity of genomics data that can be accessed and analyzed (gene expression, ChIP-chip, ChIP-seq, epigenomics,
computationally predicted binding sites, etc), and the integration with an extensive knowledge base that can be

Conclusion: The integrated access to primary genomics data, functional knowledge and analytical tools makes
Genomics Portals platform a unique tool for interpreting results of new genomics experiments and for mining the
vast amount of data stored in the Genomics Portals backend databases. Genomics Portals can be accessed and

Background

A large amount of experimental data generated by mod-
ern high-throughput technologies is available through
public repositories such as GEO [1] and ArrayExpress
[2]. Our knowledge about molecular interaction net-
works and functional biological pathways is rapidly
expanding and is being systematically organized into
functionally related gene lists [3,4]. Jointly these two
sources of information hold a tremendous potential for
enhancing the interpretation of experimental results and
gaining new insights into function of living systems.
Mining such data has been a productive avenue in gen-
erating new hypothesis as well as validating experimen-
tal results [5]. Unfortunately, repositories currently
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housing much of the primary genomics data lack
mechanisms for effective querying and analysis.

Inadequacies of the major data repositories to serve as
access points to genomics data have resulted in numer-
ous fragmented projects providing access to data from a
single dataset [6,7], a set of thematically related datasets
[8-10], or the results of genomics data analyses [11-15].
Except for the GeneChaser server [11], which provides
access to results of differential expression analysis for all
GEO DataSets, most of these resources are relatively
small scale. Furthermore, they are generally focused on
a single data type (mostly gene expression) and none of
them facilitate the use of a functional knowledge base to
construct query gene lists.

On the other end of the spectrum, several prominent
efforts are directed towards constructing lists of func-
tionally related gene lists [3,4], but they do not offer the
capacity for querying genomics data based on these lists.
The small exception is the capability of MSigDB server
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[4] to submit directly list of genes to the Gene Atlas ser-
ver providing access to two microarray datasets [7].

The power of integrative analyses utilizing genomics
data and functional knowledge has been demonstrated
in the analysis of individual datasets [16] and systematic
efforts to expand our understanding of gene functions
[17-20]. In some cases, mining of new functional rela-
tionships predicted by integrative analysis of functional
knowledge and genomics data is facilitated through pre-
dictive web servers [17]. Despite all these efforts, the
integrated resources for accessing and analysis of both
functional knowledge and the primary genomics data on
a large scale are still lacking. Genomics Portals platform
was designed to fill this gap.

The access to gene expression regulatory data such
ChIP-chip and ChIP-seq transcription factor binding
and epigenomics data is even more difficult and fewer
resources are available. Most of the datasets are still
deposited to the main genomics repositories. However,
the only meaningful way to access this data is through
UCSC and ENSEMBL Genome Browsers [21,22]. Both
of these browsers are genomic feature - centric and do
not provide meaningful analysis options and graphical
displays for multiple gene promoters at the same time.
On the other hand, presenting such data using heatmaps
of many genes at a time has been commonly used in
publications and is an effective way of exposing patterns
in such data [23]. In the spirit of “group of genes
queries” used throughout Genomics Portals, we facilitate
the analysis and graphical presentation of this data in
the form of heatmaps for a fixed window around the
transcription start site and the whole list of genes at a
time. We are unaware of any server other than Geno-
mics Portals that offers similar functionality for acces-
sing and analyzing this kind of data.

Genomics Portals platform was designed around the
three conceptual problems faced daily by biomedical
scientists:

1. Characterizing experimentally derived gene lists
in the context of relevant publicly accessible geno-
mics data (>82,000 genome scale data vectors; more
than 1.8 billion data points). By simply pasting the
experimentally derived gene list (e.g. differentially
expressed genes, co-expressed genes, transcription factor
regulated genes, epigenetically modified genes, etc) into
the query box and then selecting the relevant datasets,
one is able to download the primary data, perform basic
analysis and generate publication-quality graphics
depicting the expression patterns of the genes queried.
The whole process can take less than one minute.

2. Functional analysis of newly generated data. By
depositing newly generated data into Genomics Portals
databases, one can leverage extensive knowledge base
(>20,000 gene lists specific to biological pathways,
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diseases, transcriptional factor regulatory domains, etc),
or browse our collection of analytical results to con-
struct meaningful gene lists for querying their own data.

3. Integrative mining of public genomics data.
Researchers can simply use the knowledge base and
their own imagination to construct query gene lists and
select genomics datasets to mine.

The conceptual structure of Genomics Portals is
depicted in Figure 1. The Figure emphasizes the integra-
tive nature of the platform. Diverse types of whole gen-
ome datasets are integrated with the functional
knowledgebase and basic statistical and machine learn-
ing procedures into a comprehensive data mining envir-
onment. A typical analysis (Figure 2) starts by
constructing a list of genes by either using the prede-
fined lists, or pasting a gene list of interest; querying
one of the databases with genome-scale data; and pro-
ducing analysis summaries. Based on the analysis
results, one can further refine their gene query list and
repeat the procedure on a different dataset.

Implementation

Genomics Portals knowledge base and gene list
construction

Genomics Portals knowledge base consists of >20,000
lists of functionally related genes, Entrez GeneRIFs, and
BioGRID gene-gene interaction data. One can construct
a query gene list by pasting their own list, by manipulat-
ing the predefined gene lists, by an open text search of
GeneRIFs, and by searching for interaction partners of a
gene or a group of genes. One can also elicit a gene list
by browsing pre-computed clustering results for differ-
ent datasets.

Numerous efforts are underway to systematically col-
lect and organize the functional information about
genes. Our first goal is to assemble lists of functionally
related genes from such collections. Following are sets
of gene lists we gathered using publicly available
resources: Gene Ontologies [24], KEGG pathways [25],
Mouse Phenotypes [26], L2L lists of published differen-
tially expressed genes [27], and miRBase predicted
microRNA targets [28]. Additionally, we created lists of
computationally predicted transcription factor targets,
disease related gene lists based on text-processing Gen-
eRIFs, and a limited set of custom created gene lists
taken from the literature that were not found in the L2L
database.

For a most of gene expression datasets we also per-
formed unsupervised cluster analysis followed by in-
depth functional annotation of the clustering structure.
The cluster analysis was performed using the Bayesian
model-based procedures [29,30] as well as simple hier-
archical clustering. The functional annotation of the
clustering structures was performed using the CLEAN
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Figure 1 Conceptual structure of Genomics Portals. Diverse types of whole genome datasets are integrated with the functional knowledge
base and basic statistical and machine learning procedures into a comprehensive data mining environment.

framework [31]. The integrative browsing of the data
and functional annotations is facilitated through the
Functional TreeView (FTreeView) application which is a
Java web-start based clustering browser [31] developed
based on the open source Java TreeView browser [32].
Using FTreeView, one can identify clusters of genes
based on their data profile and correlation with specific
functional categories and use such gene lists to query
and analyze genomics data in other datasets.

Select the
dataset to query

Retrieve and
analyze data

Construct

the query list 3 3

; Refine the query list

Figure 2 Typical analysis flow. A typical analysis (Figure 2) starts
by constructing a list of genes by either using the predefined lists
or pasting a gene list of interest, querying one of the databases
with genome-scale data, and producing analysis summaries. Based
on the analysis results, one can further refine their gene query list
and repeat the procedure on a different dataset.

> Integrate with
Pathways

Genomics Portals genomics data

The vast majority of the genomics data deposited in our
databases is public data downloaded from the major repo-
sitories (GEO, ArrayExpress, and UCSC Genome Brow-
ser), or produced by the computational analyses of
genomics data (e.g. computationally predicted transcrip-
tion factor binding sites). A small portion of the database
is private data belonging to our collaborators which is
accessible after a log-in. No registration or login is
required for accessing the public data. In general, “geno-
mics data” refers to genome-scale vector of measurements
produced by various experimental assays (expression
microarrays, CGH microarrays, ChIP-chip and ChIP-seq,
etc.) or computationally constructed scores (CpG islands,
transcription factor binding scores and microRNA target
scores). Genomics datasets are organized thematically into
different data portals. Different portals can contain data-
sets related to different diseases (e.g. Breast Cancer and
Prostate Cancer), specific types of genomics data (e.g. Epi-
genomics and Transcription Factors), or different
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biological processes (e.g. Development). The same dataset
can be assigned to different portals.

Gene expression data

Gene expression data in our databases consists of the
complete collection of human, mouse and rat GEO
DataSets (>1,500), and close to 100 manually curated
GEO series of particular interest. The majority of the
manually curated datasets are not available as GDS
DataSets. For some of the manually curated datasets we
have re-processed the raw outputs (e.g. CEL and GPR
files).

ChIP-chip and ChIP-seq data

Most of these datasets have been manually curated and
re-processed. The data is summarized as the average
measurement intensities within non-overlapping 50 bp
windows for the -4 kb to +1 kb regulatory region
around each RefSeq sequence for the given genome
build. This representation provides for a straightforward
manipulation and graphical representation of such data
for gene lists. The definition of “measurement intensi-
ties” depends on the primary data that was downloaded
from the repository and it can range from typical log2-
scaled fluorescence intensities for hybridization-based
experiments to sequence read counts and various
approaches to identifying and quantifying “peaks” for
high-throughput sequencing technologies.
Computationally constructed scores

Most of this type of data is derived from computational
assessments of DNA features within the genomic regula-
tory regions such the existence of transcription factor
(TF) binding motifs and CpG islands. Computationally
predicted transcription factor binding scores are pro-
vided as whole gene (i.e. Refseq) scores that assess the
overall likelihood of a transcription factor binding within
the gene’s promoter and high resolution datasets that
provide locations of putative TF binding sites at the
same resolution used for ChIP-chip and ChIP-seq data.
All scores were calculated using in-house developed
scoring algorithms and TRANSFAC transcription factor
binding motif definitions [33].

Genomics Portals analysis tools

In designing Genomics Portals we sought to strike a bal-
ance between the key limiting factors such as the com-
plexity of query interfaces and the computational
complexity of the analyses performed on the data, and
the usefulness of the results produced. The portal is
designed so that a basic output of the genomics data
queries can be obtained in less than one minute with
only a few clicks of the mouse. This includes query of
our knowledge base or pasting one’s own gene list,
selecting the genomics data to query, and retrieving the
data in the form of a spreadsheet or an R ExpressionSet.
At this point, the user can either use their own data
analytical tools or perform basic manipulation and
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analysis of the retrieved data within the portal. Subse-
quent analyses are performed using the retrieved data
and the simple interface that deploys R and Bioconduc-
tor procedures using the Rserver infrastructure. The
basic manipulations consist of sub-setting the data,
selecting grouping variables for the samples in the data-
sets, identifying differentially expressed genes, cluster
analysis, assessing enrichment of differentially expressed
genes within the query list, etc. The results of such ana-
lyses are provided as static annotated heatmaps, or can
be browsed using our FTreeView browser. Analyses of
results can also be incorporated within the images of
KEGG pathways.

Genomics Portals computational infrastructure

The basic computational infrastructure behind Geno-
mics Portals consist of Java-based web interfaces and
data viewers, MySQL databases for organizing knowl-
edge base and genomics data, and R scripts for perform-
ing analysis of retrieved data using the RServer
infrastructure to connect Java with R. The relational
databases storing genomics data are loosely based on
the MySQL version of ArrayExpress, MaxD http://www.
bioinf.man.ac.uk. Query gene lists are constructed and
genomics datasets selected using Java-based interfaces.
Java programs then call appropriate R scripts that query
genomics databases (using RMySQL) and perform the
analysis using various Bioconductor packages. The hard-
ware infrastructure mirrors these three basic computa-
tional modules (Figure 3) and consists of the database
server containing all MySQL databases, the web-server,
and the computational server that runs RServer and is
used for performing computational tasks. The modular-
ity of the infrastructure ensures the responsiveness of
the web server even under heavy computational load
and effectively leverages computational resources of
three different 8-core servers.

Maintenance and Updates

Processing and uploading of all data in back-end data-
bases are performed by executing standardized R scripts
utilizing RMySQL package. All scripts performing any
kind of operation on the back-end databases are docu-
mented and archived. In principle, we are able to re-cre-
ate all databases from raw data by re-running archived
R scripts. All updates to the data housed in the back-
end databases are semi-automated, meaning that stan-
dardized R scripts performing updates are manually exe-
cuted. Three aspects of the portal are periodically
updated:

+ The gene annotation table which is constructed by
combining gene_info and homologene.data tables
downloaded from respective NCBI ftp sites.

+ Gene lists constructed from public annotation
efforts (GO, KEGG, L2L and miRBase) are
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Figure 3 Hardware infrastructure. The hardware infrastructure mirrors three basic computational modules and consists of the database server
containing all MySQL databases, the web-server, and the computational server that runs RServer and is used for performing computational tasks.
The modularity of the infrastructure ensures the responsiveness of the web server even under heavy computational load and effectively
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periodically updated by executing appropriate R
scripts. For GO and KEGG updates we utilize most
recent Bioconductor data objects. For L2L and miR-
Base lists, we download the current version from the
primary web sites.

« For gene lists constructed by analyzing public data
(Disease gene lists and Mouse phenotype gene lists),
the process is similar except it proceeds in two
steps. The current version of primary data (Gene
RIFs and Mammalian phenotype ontologies) is
downloaded and re-analyzed using existing R scripts
to construct the gene list which are then uploaded
to the back end database.

Processed primary genomics data is continually added,
but there are no planned updates of the data that has
already been uploaded. Each curated dataset is associated
with a standardized R script that was used to process the
raw data and upload the dataset to the back-end data-
base. When an error is detected in any of the datasets, we
generally remove the dataset, correct the error in the
script used to upload the dataset and re-upload the data-
set. This way, each manipulation of the data is documen-
ted by the R program that performed it. The download
and processing of curated GEO data sets (GDS) was per-
formed in batch using again specifically developed R pro-
grams, and new datasets will be periodically added as
they become available using the same scripts.

Results

Case Study: Characterizing experimentally identified
proliferation signature

We demonstrate the utility of the Genomics Portals
through a case study investigating a proliferation gene

expression signature in rat mammary epithelium
induced by different fatty acid diets [34]. That study
established the increased proliferation of mammary
epithelium as a consequence of several different dietary
regiments in virgin female Spraque-Dawley rats. The
study also identified a set of 85 genes whose expression
levels were correlated with the increased proliferation.
We used Genomics Portals to study the functional
importance of these genes in five different biological
processes examined in four gene expression datasets
(Miller, Fournier, Herschkowitz, and Moggs) [35-38]. All
analyses shown here were performed using the Geno-
mics Portals web-interface. The step-by-step instructions
for reproducing these results are described in Genomics
Portals User Manual which is provided in additional file
1 as well as in the online help.

All four gene expression datasets used in the analysis
investigate proliferation-related biological processes. For
each of the datasets, we assessed the enrichment of dif-
ferentially expressed genes in specific comparisons
among the proliferation genes identified in the rat diet-
ary study (Figure 4). For each comparison of interest,
Genomics Portals scripts calculated Empirical Bayes p-
values using the [imma package [39] for the selected
genes and a randomly selected list of probes of the same
length. The enrichment of the statistically significant
genes in the query list was then assessed using logistic
regression (LRpath) [40]. The query list naturally con-
sisted of rat gene identifiers which were automatically
translated to appropriate human and mouse homologs
while executing queries.

The Miller dataset [35] is a well-annotated gene
expression dataset profiling 251 primary human breast
tumors. This dataset was re-processed and curated
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before deposited into the back-end databases under the
id “GSE3494Entrez”. The comparison of interest in this
case (Figure 4A) was between the largest (top quartile)
and smallest (bottom quartile) tumors with the assump-
tion that large tumors are “more proliferative” than
small tumors. Indeed the genes in the query list were
up-regulated in large tumors and enriched for differen-
tially expressed gene (LRpath p-value < 10™).

The Fournier dataset [36] (Genomics Portals id
“EGEOD8096Entrez”) profiles gene expression of
growth-arrested human mammary epithelium in-vitro.
The comparison made was between the proliferating
and growth-arrested cell lines (Figure 4B). Again, query
genes were generally down-regulated in growth-arrested
mammary acini and were enriched for differentially
expressed genes (LRpath p-value < 10°7®).

The Herschkowitz dataset [37] (Genomics Portals id
“GSE3165gpl891”) compares gene expression profiles of
13 different murine breast cancer models. The compari-
son made in our analysis was between all tumor tissues
and normal controls (Figure 4C). Query genes were gen-
erally up-regulated in tumor tissues indicating, as
expected, higher proliferation when compared to normal
mammary tissue (LRpath p-value < 107®).

The Moggs dataset [38] (Genomics Portals id
“gdsGDS1326”) examines transcriptional effects of estro-
gen on ER- breast cancer cell line after re-expression
ESR1. While estrogen exposure generally increases the
proliferation of ER+ breast cancer cells, in the ER- cell
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line with re-expression of ESR1 estrogen exposure
reduces the proliferation. In our analysis we compared
expression levels of our gene list before and after estro-
gen exposure in for both ER- cell line (MDA-MB-231)
with and without re-expression of ESR1. In concordance
with the observed phenotype, for the cell line with re-
expressed ESR1 genes in our list are repressed after
estrogen treatment (Figure 4D) in the statistically signifi-
cant fashion (LRpath p-value < 107®). For the same cell
line without re-expressing ESR1, there was no discern-
ible effect on expression of genes in our list (Figure 4E)
after estrogen treatment (LRpath p-value = 0.6). Inter-
estingly, the majority of genes in the re-expression
experiments (Figure 4D) did not individually show sta-
tistically significant differential expression (at p-value <
0.05 level). However, jointly, the distribution of their p-
values was strongly enriched for small p-values in com-
parison to randomly selected list of genes.

We established the universality of the proliferation sig-
nature identified in the rat dietary studies across four
very different biological systems. Using the Genomics
Portals interface, the entire process of querying and gen-
erating results in Figure 4 can be completed in less than
10 minutes. The strategy of assessing the statistical sig-
nificance of enrichment by differentially expressed genes
by comparing the query list p-values to the randomly
selected probes is implemented to reduce the computa-
tional burden that would be imposed by retrieving data
and calculating p-values for all probes. We assessed the
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Figure 4 Proliferation signature in four transcriptional datasets. Genomics Portals were used to study the functional importance of 85
genes constituting in the rat mammary cell proliferation signature in five different biological processes examined in 4 gene expression datasets.
A) The comparison of between the largest (top quartile) and smallest (bottom quartile) tumors with the assumption that large tumors are “more
proliferative” than small tumors in the Miller dataset. B) The comparison between the proliferating and growth-arrested cell lines in the Fournier
expression dataset. C) The comparison between all 13 different murine breast cancer models and normal controls in the Herschkowitz
expression dataset. D) The transcriptional effects of estrogen on ER- breast cancer cell line after re-expression ESR1 in the Moggs expression
dataset. E) The transcriptional effects of estrogen on ER- breast cancer cell line without re-expression ESR1 in the Moggs expression dataset.
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validity of this strategy for the four datasets at hand by
examining off-line the empirical cumulative distribution
functions of p-values for genes in the query list (open
circles) and genes probes not associated with genes in
the query list (solid line) (Figure 4). For all four situa-
tions yielding statistically significant LRpath tests, the
query list was obviously enriched for differentially
expressed genes, which was also confirmed by the Kolo-
mogorov-Smirnov test for differences between the two
distributions. For the non-statistically significant com-
parison (Figure 4E), there was no difference between the
empirical distributions functions for all probes (Figure
4E).

In addition to using gene expression data, we further
characterized our proliferation signature using ChIP-seq
data for E2F1 transcription factor (TF) [41] and by com-
paring histone modification marks between differen-
tiated mouse embryonic fibroblasts (MEF) and a stem-
cell “like” cell line [42]. In the original paper, an
extended set of genes identified through cluster analysis
was linked to regulatory domain of E2F transcription
factors by examining the overlap with E2F targets estab-
lished in ChIP-chip [43] and global expression profiling
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[44] experiments, and computationally predicted E2F
targets. Here we used Genomics Portals to examine the
newer ChIP-seq dataset assessing DNA binding of 15
different transcription factors, including E2F1, in mouse
embryonic stem cells (Figure 5). In addition to most of
the genes having a ChIP-seq peak for E2F1 within the
regulatory region examined (-4 kb to +1 kb around
TSS), there were several other transcription factor that
seemed to have unusually many peaks for these genes.
To test this hypothesis we again used the comparison to
a “random” sample by LRpath. Instead of the p-values,
in this situation Genomics Portals by default uses the
maximum “peak intensity” calculated for each gene
across its whole regulatory region. Such statistical analy-
sis confirmed that in addition to E2F1 (p-value < 107'%),
n-Myc (p-value < 107), Tcfp2l1 (p-value < .001), c-Myc
(p-value < .01), and Klf4 (p-value < 0.01) all show signs
of increased binding to regulatory regions of these
genes.

A similar analysis of two epigenomics histone marks,
H3k4me3 (Figure 6A) and H3k27me3 (Figure 6B) across
five human cell line at different “differentiation” stages
[42] indicate that there is a subset of genes in our
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Figure 5 Proliferation signature in transcription factor binding ChIP-seq data. Genomics Portals were used to examine the promoter
binding events in the ChiP-seq dataset assessing DNA binding of 15 different transcription factors, including E2F1, in mouse embryonic stem
cells. A) Binding patterns for all 15 transcription factors in the promoter regions (-4 kb to +1 kb around TSS) of the 85 genes constituting the rat
mammary epithelium proliferation signature. B) n-Myc binding patterns in the promoters of a subset of the genes constituting the proliferation
signature. This higher-resolution figure was generated by filtering-out other 14 transcription factors.
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five human cell line at different “differentiation” stages.

Figure 6 Proliferation signature in epigenomics ChiP-seq data.
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proliferation signature with strong tri-methylation of
histone 3’s lysine 4 across all 5 cell lines. On the other
hand, tri-methylation of histone 3’s lysine 27, in addition
to differences between genes, also shows differences
between different cell lines. Further examinations of
functional relevance of these observations are beyond
the scope of this paper.

Discussion

By constructing Genomics Portals we sought to provide
meaningful access to diverse genomics datasets currently
residing in major public repositories for biomedical
researchers without much technical bioinformatics
expertise. There is a myriad of bioinformatics solutions
that facilitate download and analysis of such datasets.
For example, to process and populate our database we
used R [45] and Bioconductor packages [46]. However,
to acquire data and perform appropriate analyses using
these tools requires a certain level of technical bioinfor-
matics expertise. Genomics Portals allows researchers
without such expertise to perform meaningful analysis
of these datasets.

The general strategy of focusing on lists of function-
ally related genes as the basic unit for querying and ana-
lyzing genomics data is in-line with current thinking
that specific functions of a living system are conferred
by a coordinated action of a specific set of genes. In this
paradigm, a single gene analysis is superseded by the
joint analysis of all genes that are functionally related
under certain conditions. The utility of such approaches
has been demonstrated in numerous studies and con-
firmed in the case study we presented in this manu-
script. Of course, a single gene can be treated as the list
of size one and Genomics Portals allows queries and
analysis based on the single gene as well. The second
guiding idea in constructing the platform is the need to
integrate functional data (gene expression), regulatory
events data (epigenomics, TF binding) and the knowl-
edge base (lists of functionally related genes).

Our decision to use R as the analytical engine within
Genomics Portals provides us with virtually limitless
possibilities for the analysis of data acquired in a given
query. In the current implementation we sought to
strike a balance between the key limiting factors such as
the complexity of query interfaces and the computa-
tional complexity of the analyses performed on the data,
and the usefulness of the results produced. This resulted
in a highly streamlined interface with relatively few ana-
lytical options. Users who wish to perform additional
off-line analyses can do so by downloading the data
retrieved in the query. In future implementations we
plan to “expose” more of the Bioconductor functionality
through an additional “Advanced Analysis” web-
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interface while still keeping the current simple interface
as the main option.

Other natural extensions of current infrastructure will
be allowing for simultaneous queries of multiple datasets
and addition of data from other organisms. The imple-
mentation of simultaneous queries of multiple datasets
will be straightforward. However, query times and com-
putational resources required to perform such queries
will be additive in the number of datasets queried. This
option will be included once we ascertain that our com-
putational infrastructure is sufficiently robust to provide
the current level of interactivity at such increased level
of functionality. Expanding the data coverage to any
other organism covered by Entrez Gene identifiers will
also be rather straightforward. Since genomics data for
different species always reside in different databases,
adding such data will almost certainly not affect the per-
formance of the portal.

The case study presented here is demonstrating the
usage of only a small portion of the platform. Compre-
hensive online documentation is provided for complete
description of the data and analytical options available
through Genomics Portals.

Conclusions

Genomics Portals represents a powerful new tool for
gaining knowledge from results of new genomics experi-
ments as well as for mining a large collection of primary
genome-scale datasets.

Availability and requirements

Project name: Genomics Portals
Project home page: http://GenomicsPortals.org
Operating system: platform independent
Programming language: Java, MySQL, R
Other requirements: None
License: The tool is available online free of charge
Any restrictions to use by non-academics: None

Additional file 1: Genomics Portals User Manual. The online help file
containing screenshots and step-by-step instructions on how to use
Genomics Portals.

Click here for file

[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
27-S1PDF]
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