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Abstract: In colon cancer, wingless (Wnt)/β-catenin signaling is frequently upregulated; however,
the creation of a molecular therapeutic agent targeting this pathway is still under investigation.
This research aimed to study how nitazoxanide can affect Wnt/β-catenin signaling in colon cancer
cells (HCT-116) and a mouse colon cancer model. Our study included 2 experiments; the first
was to test the cytotoxic activity of nitazoxanide in an in vitro study on a colon cancer cell line
(HCT-116) versus normal colon cells (FHC) and to highlight the proapoptotic effect by MTT assay,
flow cytometry and real-time polymerase chain reaction (RT-PCR). The second experiment tested the
in vivo cytotoxic effect of nitazoxanide against 1,2-dimethylhydrazine (DMH) prompted cancer in
mice. Mice were grouped as saline, DMH control and DMH + nitazoxanide [100 or 200 mg per kg].
Colon levels of Wnt and β-catenin proteins were assessed by Western blotting while proliferation was
measured via immunostaining for proliferating cell nuclear antigen (PCNA). Treating HCT-116 cells
with nitazoxanide (inhibitory concentration 50 (IC50) = 11.07 µM) revealed that it has a more cytotoxic
effect when compared to 5-flurouracil (IC50 = 11.36 µM). Moreover, it showed relatively high IC50
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value (non-cytotoxic) against the normal colon cells. Nitazoxanide induced apoptosis by 15.86-fold
compared to control and arrested the cell cycle. Furthermore, nitazoxanide upregulated proapoptotic
proteins (P53 and BAX) and caspases but downregulated BCL-2. Nitazoxanide downregulated
Wnt/β-catenin/glycogen synthase kinase-3β (GSK-3β) signaling and PCNA staining in the current
mouse model. Hence, our findings highlighted the cytotoxic effect of nitazoxanide and pointed out
the effect on Wnt/β-catenin/GSK-3β signaling.

Keywords: apoptosis; mouse colon cancer; molecular docking; nitazoxanide; PCNA; Wnt/β-
catenin signaling

1. Introduction

According to the Global Cancer Repository 2018 records, colon cancer is the third
most deadly cancer in the world [1]. Recent years have seen very significant progress in
the field of treatment of this debilitating disease. Many studies revealed the role of various
mediators in almost all steps of colon tumorigenesis, including initiation, promotion,
progression, and metastasis [2].

The development of gene mutations is thought to be the primary motivating factor
in the early stages of colon cancer [3] such as genetic changes related to the wingless
(Wnt)/β-catenin signaling. The latter pathway is a distinctive signaling pathway that
controls gene expression, migration, proliferation, and differentiation of colon cancer [3].
β-catenin, the key intermediate for Wnt signaling, is found in adherent junctions, in the
cytoplasm and also in the nucleus; in these cellular compartments, it controls several
biological interactions [4]. A high level of nuclear β-catenin is linked to poor prognosis in
colon cancer patients [5] and increased susceptibility to cancer recurrence and decreased
survival rate [6]. Among the molecular regulators of the Wnt signaling is the glycogen
synthase kinase-3β (GSK-3β) [7] which is considered as a multifunctional serine/threonine
kinase that controls a variety of cellular pathways [8,9]. Importantly, overexpression of Wnt
or β-catenin proteins was reported to induce the expression of proliferating cell nuclear
antigen (PCNA) [10].

Nitazoxanide [2-(acetyloxy)-N-(5-nitro-2-thiazolyl)benzamide] is an antiparasite medi-
cation marketed by Romark Laboratories in 2002 [11]. Nitazoxanide’s anti-cancer reactivity
was reported in some articles [12]. Nitazoxanide provided high anti-cancer activity in
various cancer cells [13] and tumor models [12,14]. The anti-cancer effect of nitazoxanide is
explained by different actions including autophagy and anti-cytokine activity [15]. Phar-
macokinetic properties of nitazoxanide involve oral absorption and hydrolysis to its active
metabolite, tizoxanide, which conjugates with glucuronide. Nitazoxanide is largely well
tolerated with no serious adverse effects for human [16].

It is important to find molecules and signaling pathways that are crucial for colon can-
cer and to create novel medications to target them. Wnt signaling was recently considered
as a target for treating colon cancer. The current study was planned to test the cytotoxic
activity of nitazoxanide in an in vitro colon cancer cell line and in vivo chemically induced
colon cancer. Furthermore, the scope of this paper was extended for exploring the impact
of nitazoxanide on Wnt/β-catenin signaling and tumor apoptosis.

2. Results
2.1. Experiment 1: In Vitro Cytotoxic Activity
2.1.1. Cytotoxic Activity against Colon Cancer Cells and Normal Colon Cells

Testing nitazoxanide for its cytotoxic activity against HCT-116 colon cancer cells and
FHC (normal colon cells) is shown in Table 1. The MTT results demonstrated potent
cytotoxic activity of nitazoxanide against the HCT-116 with the IC50 value of 11.07 µM
against the value recorded with 5-flurouracil (5-FU, IC50 = 11.36 µM), so the compound
was more cytotoxic than the 5-FU (Figure 1). Additionally, it was safe against the FHC
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with a relatively high IC50 value of 48.4 µM. Hence, it was concluded the activity and the
selectivity of nitazoxanide in its action. Hence, it was tested for its apoptotic activity using
flow cytometric analysis and the gene expression level.

Table 1. Inhibitory concentration 50 values of nitazoxanide against cancer colon HCT-116 and normal
colon (FHC) cells.

Compound

IC50 (µM)

HCT-116
(ATCC® CCL-247™)

Colon Cancer

FHC
(ATCC® CRL-1831™)

Normal Colon

Nitazoxanide 11.07 ± 0.89 48.4 ± 1.23

5-Flurouracil 11.36 ± 0.76 >50
Data are Mean ± SD of three independent triplets. Inhibitory concentration 50 (IC50) values were estimated using
nonlinear regression dose-inhibition curve fit.
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Figure 1. Percentages of cell viability of HCT116 cells treated with nitazoxanide using serial dilutions from 100 to 0.01 µM. 
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Annexin/Propidium Iodide (PI) Staining and Cell-Cycle Analysis 
Nitazoxanide (IC50 = 11.07 µM) was added to the HCT-116 cancer cells for 48 h. We 

investigated its apoptotic activity using the cell cycle analysis. Nitazoxanide significantly 
increased apoptotic cell death with 15.86-fold (28.72% versus 1.81% for the control). It en-
couraged the early, intermediate, and late apoptotic cell death by 4.88%, 15.26%, and 
8.58%, respectively. Moreover, DNA flow cytometry was employed for analysing the ki-
netics of the cell cycle in HCT-116 cancer cells treated with nitazoxanide. As seen in Figure 
2, nitazoxanide significantly increased cell population at the G2/M cell phase (23.99% ver-
sus 8.08% in the control test) and the cell population in the %Pre-G1 (28.72% compared to 
1.81% in the control test). However, nitazoxanide non-significantly decreased the cell pop-
ulation in both phases S% (39.67% reduction compared to 49.31% for control) and G0/G1 

Figure 1. Percentages of cell viability of HCT116 cells treated with nitazoxanide using serial dilutions from 100 to 0.01 µM.

2.1.2. Exploration of Apoptosis Indicators
Annexin/Propidium Iodide (PI) Staining and Cell-Cycle Analysis

Nitazoxanide (IC50 = 11.07 µM) was added to the HCT-116 cancer cells for 48 h. We in-
vestigated its apoptotic activity using the cell cycle analysis. Nitazoxanide significantly
increased apoptotic cell death with 15.86-fold (28.72% versus 1.81% for the control). It en-
couraged the early, intermediate, and late apoptotic cell death by 4.88%, 15.26%, and 8.58%,
respectively. Moreover, DNA flow cytometry was employed for analysing the kinetics
of the cell cycle in HCT-116 cancer cells treated with nitazoxanide. As seen in Figure 2,
nitazoxanide significantly increased cell population at the G2/M cell phase (23.99% versus
8.08% in the control test) and the cell population in the %Pre-G1 (28.72% compared to
1.81% in the control test). However, nitazoxanide non-significantly decreased the cell
population in both phases S% (39.67% reduction compared to 49.31% for control) and
G0/G1 by (36.34% reduction compared to 42.61% for control). Thus, we can conclude that
nitazoxanide prompted the arrest of the pre-G1 and G2/M-phase cell cycle and inhibited
the HCT-116 cancer cells progression.
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Figure 2. Cryptographs of annexin-V/propidium iodide staining. (A): untreated and (B): treated HCT-116 cells showing
the apoptotic effect of nitazoxanide (IC50 = 11.07 µM, 48 h) in treated cells. Also, histograms DNA content-flow cytometry
aided cell cycle analysis of (C): untreated and (D): treated HCT-116 cells with compound Nitazoxanide (IC50 = 11.07 µM)
for 48 h of incubation.

String Database Query Methods and Real-Time Polymerase Chain Reaction (RT-PCR)

After accessing the website (http://string-db.org, accessed on 10 April 2021), we se-
lected multiple protein query and wrote our desired set of proteins (p53, BAX, BCL2,
caspase-3, caspase-8, caspase-9) sequentially then; we got a network view (Figure 3A)
using the default setting to inspect cross-links weighted scheme to rank matched annotated
proteins and finally, we collected evidence about our protein’s interaction by the linked
colored lines between the proteins, as shown in (Figure 3B).

HCT-116 cells treated with nitazoxanide (IC50 = 11.07 µM) for 48 h were used for
performing the real-time polymerase chain reaction (RT-PCR) assays. In HCT-116 cells,
the mRNA expression of the pro-apoptotic proteins (P53 and BAX), caspases (-3, -8, and -9),
and the anti-apoptotic protein (BCL-2) was measured. Nitazoxanide significantly activated
the mRNA expression of P53 (≈4.09-fold) and BCL-2-associated X protein (BAX, 6.96-fold).
Further, nitazoxanide significantly increased the mRNA levels of caspases 3 (≈8.49-fold),
8 (3.06-fold), and 9 (5.90-fold) genes. By contrast, nitazoxanide significantly inhibited the
BCL-2 mRNA expression (≈0.28-fold) (Figure 4).

http://string-db.org
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cells incubated with the IC50 of nitazoxanide. Dashed line represents the control (Fold change = 1), while β-actin as a
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2.2. Experiment 2: In Vivo Antitumor Activity
2.2.1. Pathway Enrichment Analysis

Using the online bioinformatic KEGG and Reactome databases we found that Wnt
signaling regulates various developmental and adult process containing stem cell main-
tenance, cell proliferation, and cell death [17,18]. Wnt protein activates a transcriptional
cascade through binding to 1–10 humans Frizzled (FZD) receptors in combination with
the LRP5/6 co-receptors; hence it regulates many functions like proliferation and stem
cell self-renewal. Engagement of the FZD-LRP receptor by Wnt ligand leads to stabilizing
and translocating the cytosolic β-catenin to enter the nuclei. In the nucleus, β-catenin per-
forms as a co-activating factor for transcription dependent on lymphoid enhancer-binding
factor and T cell factor. However, when Wnt ligand is absent, the cytosolic β-catenin
is phosphorylated by a degradation complex containing GSK-3β, casein kinase 1, axin,
and adenomatous polyposis coli (APC) and afterward subjected to ubiquitination and
degradation by the 26S proteasome [17,19] (Figure 5).
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In the planar cell polarity (PCP) pathway, Wnt ligand binds to the FZD receptor leading
to stimulation of small Rho GTPases and JNK. The later enzymes control the cytoskeleton
and manage cell migration and polarity [20,21]. In some circumstances, a FZD-Wnt inter-
action upsurges intracellular calcium level and stimulates Ca2+/calmodulin-dependent
protein kinase (CaMK) II and protein kinase C; this Wnt calcium pathway stimulates cell
migration and prevents the canonical β-catenin reliant transcriptional pathway [22–24].
When Wnt binds to tyrosine kinase-like orphan receptors or RYK receptors, it controls cell
migration (Figure 5).

2.2.2. Effect of Nitazoxanide on the Levels of Wnt/Catenin/Glycogen Synthase Kinase-3β
(GSK-3β) Proteins in Colon Cancer Model

Figure 6A demonstrates the WB protein levels normalized to β-actin. Images show
decreased Wnt, β-catenin and GSK-3β proteins in the nitazoxanide treated groups (100
and 200 mg) and this was demonstrated by the thinner bands in a Western blot (Figure 6A).
The measured density for Wnt, β-catenin, and GSK-3β protein bands were found de-
creased in nitazoxanide treated group than the 1,2-dimethyhydrazine (DMH) control group
(Figure 6B–D).

2.2.3. Effect of Nitazoxanide on Pathologic Picture in Mice with Colon Cancer

Hematoxylin and eosin (H&E)-stained sections of the saline group at low magnifica-
tion (100×) showed regularly arranged colonic crypts with preserved goblet cells. High
magnification (400×) showed a regular arrangement of epithelial cells with oval to flattened
basal nuclei with regular nuclear membrane, fine chromatin, and cytoplasmic luminal
mucin secretions (Figures 7A1 and 6A2).

Sections from mice in the DMH control group showed markedly crowded distorted
colonic crypts with an almost total loss of goblet cells with prominent cellular crowding,
enlarged hyperchromatic nuclei with many scattered mitotic figures and apoptotic bodies,
changes appreciated in the full thickness of mucosa from the surface to base (Figure 6B1,B2).
Sections from nitazoxanide 100 treated group showed decreased crypt distortion with re-
stored goblet cells and mucus secreting activity in many crypts. Few scattered crypts
showed focal dysplastic changes (Figures 7C1 and 6C2). Sections from Nitazoxanide
200 treated group showed predominantly regularly arranged crypts with presented gob-
let cells and mucus secreting activity. Very Few cells showed slightly enlarged nuclei
(Figure 7D1,D2).
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Figure 6. Western blot analysis for Wnt/β-catenin/glycogen synthase kinase-3β (GSK3) proteins. (A): Western blot gels of
the target genes in (1) saline group, (2) 1,2-dimethylhydrazine (DMH) control group, (3&4) DMH + nitazoxanide 100 and
200 mg/kg groups, (B): Column charts for Wnt, β-catenin and GSK3B proteins relative to β-actin. Data are mean± standard
deviation (SD) and analyzed by one-way analysis of variance (ANOVA) and Bonferroni’s test. δ Compared to saline group,
Φ Compared to DMH control group, $Compared to DMH + nitazoxanide 100 group, p < 0.05.

Histopathologic scoring data are demonstrated in Figure 8 and classified as cryptic
distortion, dysplasia, goblet cell depletion, hyperplasia, inflammatory cell infiltrates as
well as the sum of the 5 scores. The DMH control group showed significant increases in all
the created individual scores and the total score compared to the saline group. Importantly,
DMH+ nitazoxanide 200 mg/kg group showed significant reductions in all the 5 individual
scores as well as the total histologic score (Figure 8A–F).

2.2.4. Effect of Nitazoxanide on Proliferating Cell Nuclear Antigen (PCNA)
Immunoractivity in Mice with Colon Cancer

PCNA immunostained sections of the saline group showed scattered positive cells in
the crypt base indicating low proliferative activity (Figure 9A1,A2). Sections from mice
in DMH control group showed markedly increased proliferative activity with numerous
positive nuclei at the crypt base and superficial part (Figure 9B1,B2). Sections from the
nitazoxanide 100 treated group showed decreased proliferative activity with few cells
showing nuclear positivity at crypt bases (Figure 9C1,C2). Sections from the nitazoxanide
200-treated group showed scattered few cells showing nuclear positivity at the crypt base
(Figure 9D1,D2). Panel 8E demonstrates the mean of the number of PCNA positive nuclei in
colon specimens of the study groups. The DMH control group showed significant elevation
in the number of PCNA positive nuclei while mice groups treated with nitazoxanide
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100 mg/kg or nitazoxanide 200 mg/kg showed significant reductions in the PCNA staining
(Figure 9E).
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Figure 7. Histopathological picture for colon samples stained with hematoxylin and eosin (H&E). (A1) and (A2) images
of saline group showed regular mucus secreting glands with preserved goblet cells (arrow) and basal flattened nuclei
(arrowhead). (B1) and (B2) images of DMH control group showed nuclear enlargement with hyperchromasia (arrowhead)
with loss of mucus secretion and prominent mitotic figures (arrow) with apoptotic bodies (dashed arrow). (C1) and (C2)
images of nitazoxanide 100 treated group showed epithelial cells with mucus-secreting activity (arrow) and few scattered
cells showing dysplastic changes (arrowhead). (D1) and (D2) images of nitazoxanide 200 treated group revealed marked
improvement with regular mucus-secreting epithelial cells (arrow) with very few cells showing slight nuclear enlargement
(dashed arrow). H&E, (A1, B1, C1 & D1: 100×, A2, B2, C2 & D2: 400×).
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Figure 9. Immunohistochemistry for proliferating cell nuclear antigen (PCNA) in colon samples.
(A1) and (A2) images of saline group showed regular mucus and mild staining and basal flattened
nuclei. (B1) and (B2) images of DMH control group showed high nuclear staining. (C1) and (C2)
images of nitazoxanide 100 mg/kg treated group showing moderate PCNA staining. (D1) and (D2)
images of nitazoxanide 200 treated group low staining for PCNA. PCNA immunohistochemistry,
(A1, B1, C1 and D1: 100×, A2, B2, C2 and D2: 400×). (E) Column chart for the number of PCNA
positive nuclei per field, 5 random fields per tissue section. δ Compared to saline group, Φ Compared
to DMH control group, p < 0.05.
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2.3. Experiment 3: In Silico Mechanism of Action Simulations

We tried to elucidate the simulated mechanism of nitazoxanide binding and used
the structure-based drug design tool to dock it inside the β-catenin protein with protein
data bank code (PDB = 3SL9) to validate the β-catenin signaling pathway. Full analysis of
drug–target interactions of nitazoxanide, with binding energies, 2D and 3D interactions
are summarized in Table 2. Nitazoxanide was docked within the β-catenin protein and the
binding energy was−10.58 Kcal/mol, and it formed two hydrogen bonds (HB) interactions
through the two carbonyl groups as hydrogen bonding acceptor with Asn 290 as the key
interacting amino acid (Table 2).

Table 2. Summary of molecular docking stimulation of nitazoxanide.

Docked
Compound

Docking Energy
(Kcal/mol)

Drug-Target
Interactions Interacting Moiety

Nitazoxanide −10.58 2 HB with Asn 290 -C = O (as hydrogen bond acceptor)

5-Flurouracil −8.31 1 HB with Asn 290 -C = O (as hydrogen bond acceptor)

HB: hydrogen bond, mol: mole.

A
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3. Discussion

It is known that nitazoxanide was created first as an antiprotozoal drug and approved
for treating the Cryptosporidium parvum and Giardia lamblia that infest the intestine [25].
Studies also demonstrated that nitazoxanide displays a broad spectrum activities against
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viruses, bacteria, parasites and cancers [16,26], however the pathway that being targeted
by nitazoxanide in human cells was previously known a little.

In the current study, nitazoxanide was tested for its cytotoxic activity in 2 models of
colon cancer (in vitro and in vivo models) and some mechanistic approaches were tested.
The influence of nitazoxanide on some apoptosis genes including BAX, P53, caspase (-3, -8
and -9), and BCL-2 was tested in vitro while its effect on Wnt/β-catenin/GSK-3β proteins
was tested in vivo. The latter was confirmed with a molecular docking study.

We believe that String database extract curated data using the following sources:
(1) systematic co-expression analysis, (2) detection of shared selective signals across
genomes, (3) automated text-mining of the scientific literature and (4) computational
transfer of interaction knowledge between organisms based on gene ortholog. Hence,
STRING analysis was conducted to confirm that the selection of our gene’s expression in
HCT116 work beside some other genes that may participate in the whole process.

Interestingly, in the current in vitro study, a 48-h incubation period with nitazoxanide’s
IC50 increased the percentage of apoptotic cells in colon cancer cell line. Further, colon
cancer cells showed greater mRNA expression for the pro-apoptosis proteins like P53,
BAX, and caspases (-3, -8 and, -9) but lower mRNA expression for BCL-2. These genes
interplay and the interaction was shown using the STRING bioinformatics database. These
findings were in accordance with the network analysis using STRING. Apoptosis is known
as the programmed cell death. During apoptosis, numerous extrinsic factors influence
p53. The active p53 undergoes attachment to an exact sequence in the DNA causing
transcriptional activation of many genes involved in apoptosis as BCL-2 proteins family.
In addition, BAX changes the anti-apoptotic effect of BCL-2 protein resulting in release of
cystolic mitochondrial cytochrome c of colon cancer human cells. The release of cytochrome
c is further managed via additional intrinsic activators of the BCL-2 proteins family [27].

In accordance with the present results, nitazoxanide was documented to diminish
the growth of the tumor by c-Myc inhibition and inducing apoptosis in breast cancer
xenografts in mice [15]. Furthermore, the anti-cancer properties of nitazoxanide have
been examined and validated previously in human colon cancer cell lines [28] and animal
models [15]. Nitazoxanide hinders critical metabolic and pro-death signals like autophagy,
cause unfolding for protein response, autophagy, anti-cytokine actions and inhibition of
c-Myc [16]. A non-oncologic experiment showed that nitazoxanide possesses a direct
inhibitory effect on IL-6 production in vitro and in vivo mice models [29]. However, the
mechanism by which nitazoxanide was able to block IL-6 production is not known [16].

In the current study, Wnt/β-catenin/GSK-3β proteins were upregulated in the in vivo
chemically induced colon cancer in mice. Wnt signaling is considered as one of the
highly conserved pathways that perform many important regulatory roles such as tissue
homeostasis and biological processes The Wnt signaling pathways are subdivided into the
non-canonical β-catenin-independent and the canonical β-catenin-dependent pathways.
The latter performs balancing roles in physiologic functions and pathologic features of
the adult intestine for example, it preserves the crypt stem cell compartments in health.
When it is stimulated by mutation, it enhances the development of colon cancer [30].
The current results agree with those documented by Senkowski et al. [31]. In agreement,
aberrant Wnt/β-catenin signaling in colon cancer promotes chromosomal instability [32,33].
Evidence came from observing downregulation in DICKKOPF-1 gene which is a Wnt
antagonist in colon cancer [34].

In the in vivo colon cancer experiment, nitazoxanide triggered a dose-dependent
repression in Wnt/β-catenin/GSK-3β protein production. These reductions were followed
by a change in the production of PCNA antigen; a downstream target of β-catenin. Overall,
these data are supported by previous findings that demonstrated an inhibitory effect for
nitazoxanide on colon cancer progression by abrogating β-catenin [35,36].

In the current study, nitazoxanide downregulated the colon production of Wnt and
β-catenin protein. One paper reported that nitazoxanide activates the 5’ AMP-activated
protein kinase (AMPK) signaling and downregulate the mechanistic target of rapamycin
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(mTOR) and Wnt signaling in a cell culture based screening; authors claimed that this
action occurred at clinically achievable concentrations [37]. The probable mechanism may
be due to the increased citrullination caused by nitazoxanide and there resulting stabilizing
peptidyl arginine deiminase type-2 that finally causes degradation of β-catenin.

Moreover, our results revealed that GSK-3β is downregulated by nitazoxanide as
demonstrated by Western blotting assay. It was previously documented that GSK-3β has
different effects on cancer cells [38,39]. GSK-3β negotiates the nuclear factor-ҡ(NF-ҡB)
pathway and so it plays a vital role in cell survival [40,41] specifically in colon cancer in
which there is coactivation for both Wnt/β-catenin and NF-ҡB pathways through ubiquitin
system dysregulation [42]. Some studies revealed that treating colon cancer cell lines with
various concentrations of the GSK-3β inhibitors reduced the viability of cells and stimulated
apoptotic machinery in a dose-dependent way [43–45].

4. Materials and Methods
4.1. Medications

5-Flurouracil (5-FU) vials were purchased from the Merck Company (Cat. No. 343922,
Merck Company, Branchburg, NJ, USA) whereas nitazoxanide was provided by Unidrug
Innovation Pharma Technologies Ltd. (Batch No. NTZ/1603014, Analytical reference
#QNTZ/16014, Indore, India) and dissolved in distilled water.

4.2. Experiment 1: In Vitro Experiment
4.2.1. Cell Culturing and Cytotoxic Activity Using the MTT Assay

Both normal colon (FHC; ATCC® CRL-1831™) and colon cancer (HCT-116; ATCC®

CCL-247™)) cells were procured from the American Type Culture Collection (ATTC) and main-
tained in Dulbecco’s Modified Eagle Medium/F-12 (DMEM⁄F12; cat no. D0547.DMEM⁄F12,
Sigma-Aldrich, Saint Louis, MO, USA). Both cell types were provided with 2 mM L-
glutamine (Catalog #: BE17-605E Lonza, Bornem, Belgium) and 10% fetal bovine serum
(FBS) purchased from (CAT.NO.12103C Sigma-Aldrich, St. Louis, MO, USA), 1% peni-
cillin/streptomycin (Lonza, Belgium). Cell incubation was done at 37 ◦C in a 5% carbon
dioxide atmosphere (NuAire). Cell plating at a density equal to 5000 cells was undertaken
in triplicate in a plate of 96 wells [46]. On the second day, cells were treated with 5-FU or
nitazoxanide at the (0.01, 0.1, 1, 10, and 100 µM) concentrations. Cell viability was assessed
after 48 h using MTT solution (Promega, Madison, WI, USA) [47]. 20 µL of MTT dye were
transferred to wells and then incubation of the plate was allowed for a period of three hours.
Colour intensity was subsequently read at 570 nm employing a BIO-Rad enzyme-linked
immunosorbent assay (ELISA) microplate reader (iMark™ #1681130, BIO-Rad, CA, USA).
The viability was calculated relative to a control and the IC50 values were determined
using the GraphPad prism 7 as previously reported [48,49].

4.2.2. Investigation of Apoptosis in the Colon Cancer Cells

This routine work for apoptosis investigation was undertaken only in the HCT-116
cells, not the normal cells. As the IC50 for nitazoxanide was >48 µm, so nitazoxanide was
not considered cytotoxic to normal colon cells, therefore, we thought there was no need to
investigate apoptosis markers.

Annexin V/PI Staining and Cell-Cycle Analysi

Analysis of the cell cycle is a key test for determining each phase cell population
when treated with cytotoxic substances. Apoptosis rate in the colon cancer cells (HCT116)
was quantified using annexin V-FITC (V-fluorescein isothiocyanate) (BD Pharmingen, San
Diego, CA, USA). Cells were transferred to 6-well culturing plates (3–5 × 105 cells per well)
and incubated overnight. Cells were then treated with nitazoxanide for 48 h. Next, media
supernatants and cells were rinsed with ice-cold phosphate-buffered saline (PBS). The next
step was suspending the cells in 100 µL of annexin binding buffer containing 1.4 M NaCl,
25 mM CaCl2 and 0.1 M HEPES/NaOH (final pH equals 7.4) and then incubated with 1:100
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5-FU annexin V-FITC solution and 10 µg/mL propidium iodide (PI; Sigma, St. Louis, MO,
USA) in the dark for half an hour. Stained cells were then measured by a Cytoflex flow
cytometer (Beckman Coulter Inc., California, USA). Data were analyzed using cytExpert
software (V2.4) [50,51].

4.2.3. Real Time-Polymerase Chain Reaction for the Selected Genes

HCT-116 cells were treated with nitazoxanide (IC50 = 11.07 µM) for 48 h. After com-
pleting the treatment period, total cell RNA was extracted utilizing Qiagen Rneasy® Mini
Kit (cat.no. 74104, Hilden, Germany). Then, 500 ng of RNA were used to synthetize cDNA
by utilizing i-Script cDNA synthesis kit from BioRad (cat.no. 1708891, Hercules, USA).
Finally, each RT-PCR reaction was performed using 25 µL of Fluocycle®II SYBR® pur-
chased from Euroclone (cat.no.ERD002100BIM, Milan, Italy), 10 ng of cDNA and 2 µL from
forward and reverse primers (prepared at 10 µM solutions). We completed the reaction mix
by adding 19 µL of nuclease free water. RT- PCR using StepOne™ Real-Time PCR (cat.no.:
4376357, Foster City, USA). The real-time PCR instrument was adjusted on the following
cycling conditions: denaturation at 95 ◦C for a 5-min period; 35 cycles of 95 ◦C for 15 s,
51–60 ◦C cycles for 30 s according to the assessed target gene, and 72 ◦C for 60 s [50,52].
Then, the Ct values were collected for the calculation of the relative genes’ expression in all
samples by normalization to the β-actin housekeeping gene [53]. According to previous
studies, the expression of β-actin is assumed to remain constant and useful for normal-
ization for variations in signal quantification [54,55]. The specificity of the PCR analysis
was determined by the melting curve and gel electrophoresis. Table 3 demonstrates the
sequences of the gene primers.

Table 3. The set of polymerase chain reaction (PCR) primers for the selected genes.

Primer Sequence Annealing Temperature

P53 FOR: 5′-CTTTGAGGTGCGTGTTTGTG-3′

REV: 5′-GTGGTTTCTTCTTTGGCTGG-3′ 57 ◦C

BCL-2 FOR: 5′-GAGGATTGTGGCCTTCTTTG-3′

REV: 5′-ACAGTTCCACAAAGGCATCC0-3′ 56 ◦C

BAX FOR: 5′-TTTGCTTCAGGGTTTCATCC-3′

REV: 5′-CAGTTGAAGTTGCCGTCAGA-3′ 55 ◦C

Casp-3 FOR: 5′- TGGCCCTGAAATACGAAGTC-3′

REV: 5′- GGCAGTAGTCGACTCTGAAG -3′ 56 ◦C

Casp-8 FOR: 5′- AATGTTGGAGGAAAGCAAT -3′

REV: 5′- CATAGTCGTTGATTATCTTCAGC -3′ 51 ◦C

Casp-9 FOR: 5′- CGAACTAACAGGCAAGCAGC -3′

REV: 5′- ACCTCACCAAATCCTCCAGAAC -3′ 58 ◦C

β-actin FOR: 5′-GCACTCTTCCAGCCTTCCTTCC-3′

REV: 5′-GAGCCGCCGATCCACACG-3′ 60 ◦C

4.3. Experiment 2: In Vivo Experiment
4.3.1. Ethics Statement

The experimental protocol was permitted by the Research Ethics Committee (approval
number 201907RA5, Faculty of Pharmacy, Suez Canal University).

4.3.2. Animal Environment

Hamada Abdelhaleem Company in Giza (Egypt) supplied our animal house with
male Swiss albino mice (Body weigh range was 21–28 g). The mice were maintained under
a normal day/night cycle and hygienic environment. Mice were allowed to acclimatize
to the study conditions for 12 days prior to experimentation. Basal diet and water were
provided ad libitum.
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4.3.3. Induction of Colonic Cancer and Experimental Groups

DMH was procured from Sigma-Aldrich (USA) and prepared in the desired concen-
tration in normal sterile saline. For inducing colon cancer, mice received subcutaneous
injections of DMH (25 mg/kg/week) for 12 weeks [56].

Mice were allocated randomly to four groups of 10 mice each: (i) Saline control,
(ii) DMH-induced colon cancer control group, (iii) DMH + 100 mg/kg nitazoxanide, and
(v) DMH + 200 mg/kg nitazoxanide. Daily pharmacological treatment with orally gavaged
nitazoxanide was launched from the 7th week of induction of colonic cancer till the end of
the therapeutic period (at the end of week 12).

4.3.4. Signaling Pathway Enrichment Analysis

Choosing the target pathway was carried out using online databases including Reac-
tome (accessible online: http://www.reactome.org, accessed on 10 April 2021) and KEGG
pathway (Accessible online: http://www.genome.jp/kegg, accessed on 10 April 2021).

4.3.5. Western Blot Analysis for Wnt, β-Catenin and GSK-3β Proteins

Colonic specimens were homogenized in radioimmunoprecipitation assay (RIPA)
buffer containing inhibitors for proteases and phosphatases. Then, samples were cold-
centrifuged at 13,000× g for a period of 20-min for splitting up supernatant proteins. Then,
5 µL supernatant samples were assayed for their protein concentration by Quick Start™
Bradford Protein kit from Bio-Rad. Samples containing similar protein concentrations were
boiled at 95 ◦C to ensure primary denaturation and then added to sodium dodecyl sulfate
polyacrylamide gel. Then, the gel’s proteins were transferred to nitrocellulose membranes.
Blocking of the remaining part of the membrane was done by incubating it with 5%
suspension of Bio-Rad dried milk for an hour. After that, the primary antibodies were
prepared in the desired concentration by dilution in Tris-buffer saline and Tween 20 (TBST).
Then, the nitrocellulose membranes were subjected to incubation with the primary antibody
solutions. The selected antibodies were as follows: Wnt-1 (E-10): #sc-514531 [1:1000], GSK-
3β (11B9): #sc-81462 [1:1000] and actin (C-2): #sc-8432 [1:500] (SantaCruz Biotechnology,
USA). In addition, β-catenin antibody (#9562) [1:1000] was obtained from Cell Signaling
Technology, Inc. (USA). The next step was the incubation in the antibody solutions at 4 ◦C
overnight with gentle vortexing. After each incubation period, the blots were washed 3 to
5 times with TBST; each wash was maintained for five minutes. Compatible horseradish
peroxidase conjugated secondary antibodies were applied to the blotted proteins for 1 h.
Then, the blot was washed four times using 1 × TBS, 0.1% Tween 20 Detergent (TBST) for
5 min. Visualization of the target proteins was achieved by a detection kit from Amersham
BioSciences (Buckinghamshire, UK). ImageJ software (NIH) was employed to quantify the
immunoreactivity based on a densitometry method and normalizing the readings against
β-actin housekeeping protein.

4.3.6. Inspection of Hematoxylin and Eosin-Stained Colon Specimens

The colonic tissue sections were H&E stained, and microphotographed a digital
camera (Tucsen ISH1000) on a CX23 Olympus light microscope at original magnification
×100 and ×400. Colon specimens were blindly examined for general crypt architecture
and features of dysplasia (nuclear enlargement and hyperchromasia with mitoses, and loss
of goblet cells. Scoring of histopathological changes was blindly carried by grading from
0–3 according to the severity of the findings. The evaluated criteria were crypt distortion,
colon dysplasia, goblet cell depletion, and hyperplasia. Thereafter, the summation of the
total scores was taken and presented [56].

4.3.7. Immunohistochemistry for PCNA

4-µm sections were deparaffinized, rehydrated, and incubated with Tris-EDTA, pre-
pared at pH = 9, for antigen retrieval. Incubation of the slides with-PCNA antibodies
(NB500-106, diluted as 1:500, Novusbio) was processed overnight. The next step was by

http://www.reactome.org
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the addition of biotinylated secondary antibodies to the colon specimens for 1 h. Then,
counterstaining was achieved by staining with Mayer’s hematoxylin. After that, PCNA
immunostaining within the cells was imaged at ×100 and ×400. Blind quantification of
the immunostaining was undertaken using the ImageJ software (NIH) for counting the
PCNA positive nuclei in 4 sections imaged at ×400 from each animal.

4.4. Experiment 3: In Silico Molecular Docking Simulations for Nitazoxanide

A molecular docking towards the β-catenin protein was done for demonstrating
the probable interaction. First, nitazoxanide structure was optimized energetically and
chemically and subjected to docking within PDB = 3SL9 whose structure was manipulated
following a previous method [52]. The molecular docking calculation was validated by the
molecular operating environment (MOE) 2014. Finally, the Chimera software was utilized
as visualizing software to explore the drug-target interactions.

4.5. Statistical Analysis

Using the SPSS program, the normality of the distribution of the current data was
confirmed first by the Kolmogorov–Smirnov test. Data that passed the test were analyzed
employing one-way analysis of variance (ANOVA) and Tukey’s post-hoc test and presented
in mean ± standard deviations. Data of colon cancer histologic grading was demonstrated
in medians and quartiles and analyzed by non-parametric ANOVA. p < 0.05 was the
accepted significance level. Inhibitory concentration 50 (IC50) values were estimated
employing nonlinear regression dose-inhibition curve fit practiced by GraphPad prism 7.

5. Conclusions

Because the mechanism of antitumor activity of nitazoxanide was not completely
studied, the present study aimed to further explore this activity focusing on the inhibitory
effect on Wnt/β-catenin signaling and the consequent impact on tumor proliferation
and apoptosis.

We found that nitazoxanide robustly reduced Wnt/β-catenin-dependent tumor pro-
liferation suggesting the promising profits of nitazoxanide in colon cancer treatment es-
pecially those with identified Wnt mutations. Future studies are warranted to confirm
these results in other colon cancer cell lines and rodent models of colon cancer. In addition,
clinical trials are needed to use nitazoxanide in the safe dose ranges and decide its ability
to treat colon cancers.
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