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ABSTRACT Natural and human-made disasters can cause tremendous physical dam-
age, societal change, and suffering. In addition to their effects on people, disasters have
been shown to alter the microbial population in the area affected. Alterations for micro-
bial populations can lead to new ecological interactions, with additional potentially
adverse consequences for many species, including humans. Disaster-related stressors can
be powerful forces for microbial selection. Studying microbial adaptation in disaster sites
can reveal new biological processes, including mechanisms by which some microbes
could become pathogenic and others could become beneficial (e.g., used for bioreme-
diation). Here we survey examples of how disasters have affected microbiology and sug-
gest that the topic of “disaster microbiology” is itself a new field of study. Given the
accelerating pace of human-caused climate change and the increasing encroachment of
the natural word by human activities, it is likely that this area of research will become
increasingly relevant to the broader field of microbiology. Since disaster microbiology is
a broad term open to interpretation, we propose criteria for what phenomena fall under
its scope. The basic premise is that there must be a disaster that causes a change in the
environment, which then causes an alteration to microbes (either a physical or biological
adaptation), and that this adaptation must have additional ramifications.

KEYWORDS disaster microbiology, climate change, extreme weather, microbial adap-
tation, natural disaster, human-made disaster, bioremediation, emerging pathogens

Adisaster is defined broadly by Merriam-Webster as “a sudden event, such as an acci-
dent or a natural catastrophe, that causes great damage or loss of life,” (1) and can be

caused by natural hazards (geophysical, hydrological, climatological, meteorological, or bio-
logical) or human-made hazards (conflicts, industrial accidents, transportation accidents,
environmental degradation, or pollution), according to the International Federation of Red
Cross and Red Crescent (2). Disasters impose immense technological, physical, financial,
psychological, and health burdens upon the people affected and threaten our infrastruc-
ture around the globe. The term “disaster microbiology” was used in a recent report by the
American Society for Microbiology on the effects of climate change on microbes and
defined as a “proposed field of study focused on the microbial impacts from severe storms
and natural disasters” (3), which inspired this article. In the history of science, scientific
fields emerge when communities form with common scientific interests (4). Formal estab-
lishment of a field also creates an environment in which there is “creation of cohesive com-
munities, preservation of information, [and] establishment of normative standards” (4). At
this time, the field of disaster microbiology is not yet recognized as a distinct entity, but in
this article, we argue that sufficient knowledge and research exist to create a new tent that
would house these efforts and promote their further development and collaboration
across currently separated disciplines. The focus of this article is anthropocentric simply
because we know most about human consequences and because as humans we are nec-
essarily concerned about human well-being, but it is important to note that any disaster
also affects all other species living in the area.
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The emergence of the field of disaster microbiology would allow microbiologists, epi-
demiologists, ecologists, environmental engineers, and infectious disease and other experts
to organize their research around the shared goal of mitigating microbial consequences
from such events and to learn the basic science that accompanies microbial adaptation to
catastrophe. This field would seek to understand how natural and artificial disasters drive
adaptation of environmental microbes and change microbial interactions with humans,
and how both combined have implications for human health. As public health researchers
and disaster preparedness organizations make recommendations for plans to treat and
avoid disaster-incited infectious disease outbreaks, disaster microbiology could inform
them on how microbes respond to disaster and which are at highest risk of causing out-
breaks depending on disaster type, geography, and socioeconomic conditions.

NATURAL DISASTERS

Natural disasters have long been seen as a harbinger of public health crises, including
those related to infectious disease (5). Cyclones, tsunamis, flooding, and tornadoes can each
place humans into direct contact with microbes with which they would not have otherwise
come into contact. In instances where the event causes wounding, there is the added risk of
infected wounds and bloodstream infections. For example, tornadoes in Joplin, Missouri
resulted in widely reported cases of mucormycosis as victims were traumatically inoculated
with the fungus Apophysomyces trapeziformis after being wounded by debris (6–8).

Anthropogenic climate change is causing rapid environmental changes. Climate change
increases the frequency of tropical cyclones, extreme heat, tornadoes, droughts, and wild-
fires. In addition to increased disaster-mediated exposure of hosts to pathogenic microbes
caused by climate change, climate change could accelerate the disaster-driven evolution of
microbes in response to stressors such as heat waves, droughts, chemical or toxic waste,
and wildfire. Microbial stress-response factors that allow microbes to survive environmental
change can also affect their interactions with the mammalian immune system. Additionally,
with increasing frequency and duration of heatwaves, microbes will come under increasing
selection for their ability to persist and survive at higher temperatures (9).

Flooding disasters. Flooding can follow from several types of natural disasters includ-
ing rainstorms, tropical cyclones, and tsunamis. These all result in the inundation of nor-
mally dry land with water from rivers, streams, marshland, ocean, or rainwater runoff, which
can subsequently cause damage as it enters homes, businesses, and roadways. In 2020,
flooding events affected nearly 35 million people worldwide (10). Flooding increases expo-
sure to microbes by disrupting soil and bringing soil microbes into direct contact with
flooding victims. Tropical cyclones are associated with increased risk of respiratory infec-
tions, gastrointestinal infections, and other communicable diseases (11–13). Flooding and
water damage to homes can promote the growth of toxin-producing molds such as those
that occurred in many New Orleans homes following Hurricane Katrina, resulting in respira-
tory symptoms (14, 15). Filamentous fungi, including Aspergillus spp. also proliferated
within water-damaged homes in Puerto Rico following Hurricane María (16). Molds grow-
ing within damp or water-damaged homes is sometimes associated with increased risk of
asthma in children and adults (17). Such molds can also take residence in other buildings
and is associated with “sick building syndrome,” in which individuals fall ill from several
causes, including chronic exposure to fungal-derived toxins (18, 19). Tsunamis have been
associated with other fungal infections, namely, Fusarium spp.,Mucor spp., Aspergillus fumi-
gatus, and Scedosporium apiospermum during the 2004 Indian Ocean tsunami and 2011
Japanese tsunami (20, 21). The 2011 earthquake and tsunami in Japan was associated with
increased cases of legionellosis due to inhalation of droplets of soil-contaminated water
that contained Legionella spp. bacterium and Aspergillus fumigatus (22). In addition, flood-
ing events can lead to wastewater treatment plants being overrun, causing spillage of
human waste and thus more waste-contaminated floodwater (23). While a common fear
following natural disaster, decomposing bodies of victims do not typically cause the spread
of disease or contamination of water supplies (24–26). Floodwaters could introduce
microbes to an environment where they can establish a niche to cause disease in the
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decades after the disaster is over. It has been theorized that in 1964, the tsunami caused
by the Great Alaskan Earthquake spread the fungus Cryptococcus gattii from its aquatic
niche in the Pacific Ocean onto land in the Pacific Northwest and Vancouver Island, where
it later emerged to cause outbreaks starting in 1999 (27).

In tropical regions, flooding can allow increased proliferation of disease vectors such as
malaria-carrying Anopheles spp. mosquitoes or yellow fever-, dengue-, and Zika-causing Aedes
spp. mosquitoes, and thus transmission of more vector-borne disease (28, 29). Mosquito-borne
diseases already account for more than 700,000 deaths per year, despite extensive mitigation
efforts; the added burden of natural disasters and possible increased breeding ground can
increase these deaths and increase the number of people at risk globally (30).

Dust-related disasters. Other natural disasters relevant to disaster microbiology are
those that involve the spread of dust into the air, which can often contain pathogenic
microbes, such as tornadoes, earthquakes, dust storms, and droughts. Incidence of bacte-
rial and fungal pneumonias increased in areas that had more frequent tornadoes (31) A
windstorm causing soil dispersion in California triggered a widespread outbreak of the
soil-dwelling fungus Coccidioides immitus, which resulted in over 115 cases and 8 deaths
(20, 32). Similarly, there were 203 reported cases of coccidioidomycosis following the 1994
Northridge Earthquake in California, associated with dust clouds and high incidence of
landslides (33). Like earthquakes and dust storms, coccidioidomycosis was associated with
drought conditions, when the soil is dry and prone to forming dust (34). As global temper-
atures and drought frequency increase in subsequent decades, the geographic range of
coccidioidomycosis is projected to expand (35). Drought often leads to water conservation
and altered habits that can lead to diseases caused by organisms such as Giardia parasites
and Escherichia coli (36, 37).

Wildfires.Wildfires can also be agents for dispersal of microbes, particularly those that
are found in the soil, and proximity to wildfires is associated with increased risk of upper
and lower respiratory infections (38–40). Importantly, wildfires change the bacterial and
fungal composition of the soil, which, over time, selects for microbes that have stress-resist-
ant spores and a relative heat tolerance (41). These stress-resistant adaptations can cause
issues for humans, where spore walls and adaptation to heat stress facilitate microbial
infection at human body temperature. The smoke from fires can aerosolize and transport
viable fungi and bacteria, with a microbial concentration in the smoke far greater than the
ambient air (42). The smoke from fires can transport plant pathogens and beneficial soil
and plant microbes over long distances. The study of how microbes interact with fire and
smoke was termed “pyroaerobiology” by the authors (42).

Heat extremes. Heat waves and extreme heat events are high-stress events for typical
organisms. Extreme heat is associated with other natural disasters such as drought, wildfire,
dust storms, and even tropical cyclones. Urban areas are particularly vulnerable to heat,
due to the “heat island” effect caused by lack of green space, airflow, and building materi-
als (43–45). For microbes, heat can drive adaptation for thermotolerance, permitting sur-
vival at human body temperature for microbes that do not already have that capability
(46). The increasing thermotolerance of microbes is particularly an issue in the emergence
of fungal pathogens since many environmental fungi grow best below 37°C, or human
body temperature; in fact, this thermal exclusion zone may be one reason that fungal dis-
eases are historically uncommon, especially for those without compromised immune sys-
tems (47). While the 20th century saw a burgeoning of fungal pathogens as one fungal
barrier—the immune system—was weakened due to the human immunodeficiency virus
(HIV) pandemic and the advent of immunosuppressive medical treatments, the 21st cen-
tury may see a rise of fungal diseases as fungal species with pathogenic potential adapt to
higher temperatures and breach mammalian thermal barriers (48). Global warming has al-
ready been proposed as a mechanism for how Candida auris gained temperature tolerance
and jumped from a strictly environmental niche to one that can cause human disease (9).

HUMAN-CREATED DISASTERS

While the definition of disaster microbiology used by the American Society for Micro-
biology report focused on natural disasters (3), human-made disasters can also alter and
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change microbes in a way that would fall under “disaster microbiology.” War, terrorism,
mass shootings, and other violent disasters have the potential to increase infectious dis-
ease through exposed wounds, bioweapons, forced migration, and the conglomeration of
peoples from across the globe (49–53). Additionally, human activities such as fracking—
fracturing of bedrock for oil production—can increase the incidence of natural disasters
such as earthquakes, which may in turn increase incidence of earthquake-mediated infec-
tion (54). Other human-created disasters such as wastewater treatment mismanagement
could have significant effects on microbes and their interactions with humans. Outbreaks
of the gastrointestinal parasite Cryptosporidium have been associated with failures of
wastewater treatment plants, which contaminated the water supply (55).

Other human-made disasters, particularly those that result from chronic and persis-
tent human-made hazards, possess unusual and unnatural conditions that result in a
unique microbiology in which microbes gain the ability to grow in extreme conditions.
Examples include the colonization of the damaged reactor at Chernobyl with mela-
notic and radiophilic fungi (56–58). Microbiologists have studied some of these sites,
and analysis of the microbial flora in these sites has provided unique insights. The asso-
ciation of melanotic fungi with the damaged reactor at Chernobyl led to experiments
showing that melanized fungi grew faster during exposure to high radiation in a pro-
cess that was postulated to be radiation capture by melanin and conversion into bio-
logically useful energy (59). Similar adaptation has occurred in highly acidic and heavy
metal-contaminated mining wastewater, where microbes can adapt to become acido-
philic and heavy-metal resistant (60, 61). Bioremediating microbes isolated from
Superfund sites—areas recognized as heavily polluted and in need of remediation—
within the United States are adapted to degrade toxic bisphenols and dioxins, and
those found in areas of high arsenic can recycle arsenic and prevent it from causing
environmental damage (62, 63). The presence of benzene, toluene, ethylbenzene,
and xylene (BTEX) in the environment, such as what occurs following a gasoline or
oil spill, is associated with enrichment of BTEX-degrading and dechlorinating micro-
bial activity at polluted sites (64). Like the changes in environmental microbiome fol-
lowing wildfires, environmental contamination at the urban Newtown Creek
Superfund site was associated with unique aerosolized microbial composition, dif-
ferent from nonpolluted control sites (65). Such examples provide new insights into
microbial physiology that can in turn inform research into exobiology, the study of
life on other planets, by expanding the types of extreme environments that can sus-
tain microbial life.

Stress adaptations to human-caused conditions can potentially facilitate infections
of human hosts. For example, the antioxidant response to ionizing radiation could
allow a microbe to resist immune-mediated oxidative bursts. Additionally, the ability to
survive acidic conditions could allow survival within the host phagolysosome and eva-
sion of degradation. Lastly, development of a spore coat or thickened cell wall can in
theory allow resistance to immune stresses such as antimicrobial peptides, antimicro-
bial drugs, and oxidative damage.

SOCIAL VULNERABILITIES AND ENVIRONMENTAL ANDMICROBIAL INJUSTICE

As disasters are on the rise due to climate change and anthropogenic factors, we
must consider those populations at greatest risk of experiencing climate crises and the
downstream microbial effects. Their vulnerability makes them major stakeholders in
the field of disaster microbiology and suggests that they warrant special attention in
research and remediation strategies.

Low-income countries and the Global South (66) are expected to experience the
most severe effects of climate change in the near future, including extreme heat disas-
ters and flooding of rapidly-growing coastal cities (67–72). In the United States, com-
munities of color and those with low socioeconomic status are disproportionately
exposed to high levels of pollution and environmental contamination, and coastal
cities are at high risk for climate disasters (43, 72, 73). Socially and economically
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vulnerable populations are disproportionally exposed to climate change and pollution,
and thus environmental disasters, leading to environmental injustice. Environmental
injustice is defined as “the disproportionate exposure of communities of color and the
poor to pollution, and its concomitant effects on health and environment” (73). In the
context of disaster microbiology, environmental injustice is inextricably linked to mi-
crobial injustice, which is defined as “inequitable microbial exposure and risk experi-
enced by disadvantaged communities” (3, 74, 75), particularly used in reference to
harmful, destructive, or pathogenic microbes. The same disadvantaged communities
that are at enhanced risk of climate catastrophe are those most likely to be negatively
impacted by microbes following disaster. This inequity is exacerbated by health
inequalities in minority and low-income communities, potentially compounded by an
inadequate access to health care, high rates of comorbidities, and immunocompro-
mised states (76, 77). Faced with microbial exposure during a disaster, having a com-
promised immune system increases the risk of microbial infection—including with
fungi and viruses that predominantly target immunocompromised individuals.
Consideration of the priorities and issues of communities facing environmental and mi-
crobial injustice is a necessary tenet in the foundation of disaster microbiology and in
framing the subsequent research aims and goals.

Disasters can cause social vulnerabilities through displacement. For example, unhoused
people may be forced to reside in local shelters. This ties in directly to the principle of dis-
aster microbiology, as displacement can expose people to crowded and unsanitary emer-
gency conditions, which renders them vulnerable to communicable respiratory diseases
that could spread readily (11, 12, 78). Drought conditions in Mexico were associated with
migration to towns, where refugees lived in crowded shelters, leading to outbreaks of
typhoid fever (79). Disasters also have the potential to cause large-scale migration of peo-
ple and animals seeking safety and assistance, which can result in the spread of microbes
from one region to another or cause illness in migrants being exposed to new disease-
causing microbes where they settle. Current theories regarding the spread of the bubonic
plague in Europe in the 14th century suggest that drought disasters caused plague-
infected rodents to flee Asia and travel toward Europe, where the plague-causing bacte-
rium was introduced (80). Foreign response to disaster with humanitarian aid and foreign
assistance can also carry risk associated with disease outbreak. Following the 2010 earth-
quake in Haiti, epidemiological and molecular evidence suggest that United Nations peace-
keeping personnel from Nepal may have inadvertently spread cholera to the nation of
Haiti (81–83).

PRINCIPLES, ORGANIZATION, AND EMERGENCE OF A NEW DISCIPLINE

As is evident from the above discussion, disaster microbiology is an enormously
diverse topic with the potential to emerge as a new field of study where natural and
anthropogenic activities intersect to alter microbial communities in unanticipated
ways with unanticipated consequences. The breadth of the field of disaster microbiol-
ogy is summarized in Fig. 1. Given the human and natural antecedents for the disturb-
ance leading to the disaster, disaster microbiology must be an interdisciplinary field
that includes input from such disciplines as sociology, engineering, physics, chemistry,
geology, climatology, and not least, microbiology. Further complexity follows the fact
that each event is unique, but there are common themes that coalesce. We identify
four contributing principles or criteria that we group together under the acronym
DISEAASE to guide defining characteristics that serve as criteria for what falls under dis-
aster microbiology.

DISaster—a human or natural event must cause a disturbance or disaster or, “a sud-
den event. . . that causes great damage or loss of life” (1).

Environmental change—the disturbance alters the physical environment around it.
Adaptation/Alteration—the changes in the environment promote adaptation and

alterations for the microbial community (i.e., location/niche, stress, morphology).
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Secondary Effects—there is a consequence, or ramification, for the changes that occur
in the microbial community. The microbe can gain virulence in a new host, permanently
change its niche, colonize a structure or object, cause damage to infrastructure, provide
insight into a new biological process, etc. Secondary effects include gaining new insights
into microbial physiology.

Some examples of the DISEAASE guidelines for disaster microbiology for different
disasters can be found in Table 1.

CONCLUSIONS AND FUTURE DIRECTIONS

Disasters have long been studied as inciting incidents for outbreaks of infec-
tions and noncommunicable diseases. The disaster literature comes from many
fields including epidemiology, medicine, microbiology, environmental health, and
ecology. As other sectors of our society develop fields related to studying and miti-
gating disaster, the establishment of the disaster microbiology field could help fill
a gap in research. Coalescing the work done in these separate fields into disaster
microbiology is timely and will strengthen the organized efforts to study the disas-
ter-mediated spread of microbes and infectious disease. Developing disaster micro-
biology symposia or tracks in scientific meetings could promote the emergence of
this field.

One major component of disaster microbiology is how disasters physically
change the location of microbes and the nature of their interactions with people.
Disaster microbiology also delves into the evolution of microbes in response to
environmental and disaster stress, and how that could have implications on health.
Further work is needed to study the evolution of environmental microbes under
natural and human-made disaster stress, particularly in vulnerable communities
and regions. It will be vital to characterize how they have adapted to extreme heat
and other urban conditions, such as through heat-stress mechanisms, melanin pro-
duction, heavy metal detoxification, or radiation shielding. This can inform our
understanding of (i) how disasters change the distribution and proliferation of
microbes and their interaction with humans, (ii) how microbes are adapting to the
stress and natural disasters as they occur, and (iii) how stress adaptation can drive

FIG 1 Overview of disaster microbiology. Disaster microbiology encompasses a diverse array of disasters, environmental changes, microbial adaptations,
and secondary effects. Disaster microbiology includes microbial ramifications resulting from flooding disasters (tsunami, tropical cyclones, extreme rain),
earthquakes, tornadoes, dust storms, wildfire, and droughts. Disaster microbiology also includes human-made disasters, which include chronic industrial
pollution, nuclear disaster, sewage leaks, and humanitarian and refugee crises. These disasters are shown on the top row of the figure These disasters
impact microbes and can disrupt microbial ecology and drive adaptations or alteration of the microbial population, as indicated in the graphics in the
middle row. The alteration of microbial communities can then lead to disruption of human health, new ecological niches of microbes, and newly
evolved biological processes that can be used in the future for bioremediation. The secondary effects are seen in the bottom row. Created with
BioRender.com.
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a microbe’s ability to survive within human hosts and emerge as possible human
pathogens.
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