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SUMMARY

In high-throughput functional genomic screens, each gene product is commonly assumed to 

exhibit a singular biological function within a defined protein complex or pathway. In practice, a 

single gene perturbation may induce multiple cascading functional outcomes, a genetic principle 

known as pleiotropy. Here, we model pleiotropy in fitness screen collections by representing each 

gene perturbation as the sum of multiple perturbations of biological functions, each harboring 

independent fitness effects inferred empirically from the data. Our approach (Webster) recovered 

pleiotropic functions for DNA damage proteins from genotoxic fitness screens, untangled distinct 

signaling pathways upstream of shared effector proteins from cancer cell fitness screens, and 

predicted the stoichiometry of an unknown protein complex subunit from fitness data alone. 
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Modeling compound sensitivity profiles in terms of genetic functions recovered compound 

mechanisms of action. Our approach establishes a sparse approximation mechanism for unraveling 

complex genetic architectures underlying high-dimensional gene perturbation readouts.

In brief

Pan et al. infer gene multifunctionality from high-dimensional gene perturbation data by applying 

sparse representation learning to large CRISPR-Cas9 fitness screens.

Graphical Abstract

INTRODUCTION

Genome-scale genomic and proteomic profiling has dramatically increased the scale of 

biological data acquisition. These technological advances have created a concomitant need 

for robust pattern recognition approaches that distill biological insights from the information 

and structure of large datasets. In particular, CRISPR-Cas9 technology has made gene 

perturbation a routine practice, and genome-scale screens can be readily performed across 

diverse cell contexts to measure physiological outcomes such as cell fitness. After collecting 

such datasets, a key challenge is to infer the genetic architecture underlying the observed 

fitness effects, such that individual genes become mapped to putative biological functions 

essential in specific cell contexts for cell fitness.
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A foundational aspect of genetic architecture is pleiotropy, which states that gene products 

can participate in multiple independent biological functions. Pleiotropy helps explain how 

biological complexity arises from a finite collection of genetic elements (Wagner and 

Zhang, 2011). Pleiotropy has been observed across model organisms and at many scales 

of biological organization (Kinsler et al., 2020; Tyler et al., 2016; Wang et al., 2010), 

including in genetic variants that cause multiple human diseases (Gratten and Visscher, 

2016; Solovieff et al., 2013; Watanabe et al., 2019).

Although pleiotropy is pervasive, our ability to account for pleiotropy within collections of 

cell fitness screens is limited. Because each gene perturbation is measured across many cell 

contexts with varied rate-limiting functional requirements (Henkel et al., 2019), to capture 

pleiotropy, one must first describe a set of biological functions that vary independently 

across cell contexts and then define a one-to-many mapping of genes to these functions. 

Both of these steps are challenging to perform in high-dimensional data, and the lack of 

a unified conceptual framework results in different calculations of pleiotropy that cannot 

be directly compared (Costanzo et al., 2016; Dudley et al., 2005; Koch et al., 2017). More 

commonly, analyses side-step pleiotropy by assuming a one-to-one mapping of genes to 

functions via gene clustering. A principled account of pleiotropy could reveal the cascading 

effects of gene perturbation through distinct aspects of cell fitness, thereby charting the 

flow of biological information between cellular functions that is currently absent from most 

functional genomics analyses (Fraser and Marcotte, 2004).

Here, we propose a framework that exploits pleiotropy to structure latent representations 

of biological function learned from fitness data. Our approach (Webster) takes a large gene 

perturbation matrix as input and infers a set of biological functions, which we refer to as 

a dictionary, such that each gene perturbation can be approximated as a combination of 

a small number of these dictionary elements. Regularizing the dictionary using the gene 

co-fitness graph results in individual dictionary elements mapping to interpretable biological 

modules. By applying Webster to CRISPR-Cas9 fitness screen collections performed in 

human cells under a variety of conditions, we explored the layers of functional impact 

resulting from single gene perturbation; jointly embedded gene and functional dependencies 

to chart fitness landscapes; prioritized genes and contexts for exploration of a learned 

function; and projected new perturbations into the learned reference space.

RESULTS

Theoretical overview of learning gene function representations with Webster

We define a biological function as a molecular process arising from interacting gene 

products (Keeling et al., 2019). We assume that physiological properties of a cell, such 

as its fitness, are controlled by a core set of functions, and that these functions can be 

distinguished by their independently varying activity levels across diverse cell contexts. 

Gene perturbations induce changes in one or more of these functions, thereby altering cell 

fitness.

Given a set of gene perturbation measurements, we wish to infer a dictionary of latent 

variable elements, such that the effects of each gene perturbation can be approximated 
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as a mixture of dictionary elements. Furthermore, dictionary elements should correspond 

to interpretable biological functions learned empirically from the data with no outside 

knowledge. To perform this inference, we employed dictionary learning via Webster (Figure 

1). Webster receives as input an n × m matrix of fitness effects, where n is the number of 

cell contexts, and m is the number of genes. Each fitness effect captures the change in cell 

number upon gene perturbation.

Webster models the fitness effect matrix in terms of k latent biological functions learned 

from the data, with k < m and n. The output of Webster is two low-rank matrices: (1) an n 
× k dictionary matrix capturing the fitness effect of losing one of k inferred functions across 

n cell contexts and (2) a k × m loadings matrix encoding the sparse approximation of each 

of m gene effects in terms of t dictionary elements, with t ≪ k. This “sparse dictionary 

learning” approach (Rubinstein et al., 2010) has connections to sparse matrix factorization 

and dimensionality reduction (Cleary et al., 2017; Kim and Park, 2007; Stein-O’Brien et al., 

2018).

In practice, Webster encompasses three steps: (1) preprocessing raw fitness data, (2) 

dictionary initialization with k-medoids, and (3) graph-regularized dictionary learning. 

Preprocessing removes low-variance gene effects and corrects batch effects between cell 

contexts prior to dictionary learning. Then, k-medoids defines an initial k × n dictionary 

that clusters the data. From this starting point, dictionary learning is performed using 

an objective function balancing (1) approximation error, (2) smoothness over a nearest-

neighbor graph of genes, and (3) smoothness over a nearest-neighbor graph of cell contexts. 

This is performed via dual-graph-regularized k-SVD (Yankelevsky and Elad, 2016, 2020), 

which optimizes k overlapping subspaces of genes and takes the first eigenvector of 

the subspace as its representative dictionary element. Each gene effect is then linearly 

approximated using t dictionary elements via orthogonal matching pursuit (Pati et al., 

1993), thereby capturing statistically independent components of variance. Further details 

are captured in STAR Methods under “Method details.”

A generative model of fitness data

As a primer, we established a simple generative model for fitness data and illustrate the 

use of Webster on generated data. We suppose two independent biological functions with 

measurable fitness effects upon loss across cell contexts (Figure 1B). We also suppose two 

classes of genes regulating either Function 1 or 2 and a third class of pleiotropic genes that 

weakly regulate both functions. We represented these gene-to-function relationships with 

loadings, which are high for genes that strongly activate a function or zero when the gene 

is unrelated (Figure 1C). To synthesize fitness effects of individual gene perturbation, we 

scaled the fitness effect of each function by the respective loading of that gene and added 

measurement noise (Figure 1D).

The resulting synthetic fitness data consisted of noisy gene perturbation effects across 

cell contexts, with fitness effects of both functions now latent in the structure of the data 

(Figure 1E). Using this data as the sole input, we parameterized Webster to infer two 

dictionary elements and approximate each gene perturbation as a mixture of both elements. 

The dictionary elements properly recovered the fitness effects of both functions across cell 

Pan et al. Page 4

Cell Syst. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



contexts. Furthermore, each gene effect was properly loaded onto the correct dictionary 

element (Figure 1F). In particular, pleiotropic genes were successfully decomposed as 

equal mixtures of both dictionary elements (Figure 1G). In comparison, clustering genes 

into functional groups failed to capture these pleiotropic relationships (Figure S1B), while 

standard latent variable models failed to resolve interpretable components (Figure S1C).

Learning representations of DNA damage functions from genotoxic fitness screens

Next, we applied Webster to published CRISPR-Cas9 fitness screens in a human cell 

line exposed to a diverse set of genotoxic stressors (Figure 2A) (Olivieri et al., 2020). 

Preprocessing the 31 genome-scale screens yielded 304 high-variance fitness genes (Figure 

S2A). After a hyperparameter sweep (Figure S2B), Webster successfully reconstructed the 

original gene perturbation data using an inferred dictionary composed of 10 elements, using 

two dictionary elements to represent each gene perturbation (Figure 2B; Table S1).

We matched each dictionary element to a biological function by annotating its most sensitive 

genotoxic stressors and its top-loaded genes, using literature resources that were hidden 

during model training. For example, DNA adducts are harmful to cell growth unless excised 

by nucleotide excision repair (NER). Using only numerical fitness data as input, Webster’s 

first dictionary element captured the negative fitness effects of DNA adduct-inducing agents 

(UV light, illudin S, and BPDE) (Figure 2C). The top four genes loaded on this dictionary 

element were classical NER pathway members (ERCC8, GTF2H5, UVSSA, and ERCC5), 

and the fifth (STK19) was a recently discovered pathway member (Boeing et al., 2016; 

Olivieri et al., 2020). Indeed, the strength of a gene’s loading on this element was a sensitive 

and specific predictor of NER pathway membership (Figure S2C, AUROC = 0.9). In the 

absence of prior knowledge, Webster inferred the existence of NER by discovering a fitness 

effect specific to DNA adduct-inducing agents, storing that effect as an element in the 

dictionary, and using it to model gene effects of NER pathway members.

We identified other dictionary elements that captured the effects of biological pathways, 

such as the sensitivity of cells to DNA-alkylating agents upon loss of Fanconi 

anemia/interstrand crosslink repair; topoisomerase I poisons upon loss of homologous 

recombination; topoisomerase II poisons upon loss of end joining; and polymerase alpha 

inhibitors upon loss of fork quality control (Figure 2C). Classical pathway members 

were specifically loaded onto the appropriate dictionary elements (Figure 2D). In contrast, 

commonly used latent variable models failed to separate these independent pathways into 

individual components (Figure S2C).

Webster’s dictionary also captured the effects of specific stressors that defined unique fitness 

outcomes in the data (Figure 2C). One dictionary element captured ATRi resistance, and top-

loaded genes on this element overlapped with hits from previous ATRi resistance screens 

(Hustedt et al., 2019). Another element captured neddylation resistance, whose top-loaded 

gene (BEND3) was recently verified in an orthogonal study (Barghout et al., 2021). The 

top-loaded gene upon the PhenDC3 sensitivity element was SLC18B1, reflecting control of 

polyamine production by metastable RNA G-quadruplexes (Lightfoot et al., 2018). Finally, 

two dictionary elements captured the high intrinsic fitness effect of essential genes (Hart et 

al., 2015) and proliferation suppressor genes (Colic et al., 2019), which are technical factors 
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commonly identified in screens of this design. From the fitness data alone, Webster learned 

a set of maximally informative dictionary elements capturing the functional effects of losing 

biological pathways that respond genotoxic stress.

Pleiotropy underlies the DNA damage response

We next examined how learned mixtures of functional effects approximated pleiotropic 

gene effects. The H2AFX histone protein is phosphorylated in response to DNA double-

stranded breaks. Webster approximated the effect of perturbing H2AFX as a mixture of two 

functional effects scaled by their loadings (Pearson correlation [cor] = 0.76, Figure 2E):

H2AFX ≈ 1.4 × Homologous Recombination +
0.8 × End Joining

Each loading quantifies the influence a gene exerts on a biological function and is expressed 

in units of standard deviation (SD) in the original fitness data. As such, homologous 

recombination contributes 1.4 SD to the H2AFX gene effect, and end joining contributes 0.8 

SD. Because each gene is reconstructed from normalized, orthogonal dictionary elements, 

loadings are proportionally representative; that is, two-third of the H2AFX fitness effect is 

explained by its influence on homologous recombination and one-third by its influence on 

end joining.

MCPH1 is an obligate H2AFX interactor at double-stranded break sites. Webster 

approximated the effect of depleting MCPH1 using identical functional effects and similar 

loadings (Figure 2F). Homologous recombination and end joining both repair double-

stranded breaks but are preferentially activated under different conditions (Figures 2E and 

2F). By constraining Webster to approximate a large number of gene perturbations with 

a small number of dictionary elements, it parsimoniously modeled perturbations of double-

stranded break sensors as mixtures of the underlying double-stranded break repair pathways.

To globally visualize these relationships, we used Uniform Manifold Approximation and 

Projection (UMAP) to plot genes and functions according to the similarity in fitness effects 

across cell contexts (Table S2). In general, genes are co-segregated by function on the map 

(Figures 2G and 2H), with pleiotropic genes such as H2AFX and MCPH1 occupying regions 

between functions. As another example, RAD51B was approximated as

RAD51B ≈ 2.1 × Homologous Recombination +
0.84 × Fanconi Anemia

in the original data and embedded between both functions by UMAP, reflecting its role as a 

homologous recombination gene and risk allele for Fanconi anemia (Ameziane et al., 2015) 

(Figure S2D).

The pleiotropy of human DNA damage genes mirrors observations in Drosophila, in which 

“even the best understood DNA repair pathways have unforeseen levels of complexities” 

(Sekelsky et al., 1998). We account for this complexity by modeling gene effects as 

combinations of functional fitness effects, thereby charting the flow of information between 
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pathways activated by distinct genotoxic stressors (Figure 2I). Because our model is linear, 

these archetypes form the basis for an interpretable latent space of DNA damage functions, 

in which linear algebra operations reflect the underlying structure of pleiotropic gene 

relationships. For instance, H2AFX − End Joining + Fanconi Anemia ≈ RAD51B in our 

model (Pearson cor = 0.69, Figure S2E). This is analogous to linear semantics underlying 

word embeddings in which king − man + woman ≈ queen (Mikolov et al., 2013).

Learning representations of biological functions from cancer cell line fitness screens

Next, we scaled Webster to a ~20 times larger dataset of 675 cancer cell line fitness screens, 

the Cancer Dependency Map (Meyers et al., 2017) (Figure 3A). We preprocessed the data to 

include 2,921 gene effects exhibiting high variance across cell lines. After a hyperparameter 

sweep (Figures S3A and S3B), we recovered 220 dictionary elements and approximated 

each gene effect using up to four dictionary elements (Figure 3B; Table S3).

We further validated that Webster was robust to noise (Figure S3C), reproducible across 

random runs over identical parameters (Figure S3D), and that dictionaries trained on 

one cancer fitness dataset could successfully model perturbations from another dataset 

performed with a different CRISPR-Cas9 guide library and cell culture conditions (Behan 

et al., 2019) (Figure S3E). Dictionary elements learned at our chosen hyperparameters (k = 

220, t = 4) were robustly learned across other hyperparameter settings; in particular, learning 

dictionaries at lower values of k resulted in subsets of our 220-element dictionary (Figure 

S3F; Table S3).

We matched each dictionary element to a biological function by annotating the strongest 

loaded genes, supported by consensus cell line features that explain the fitness effect 

captured by the element. Ninety percent of dictionary elements captured the fitness effect 

of losing literature-supported functions, whereas the remaining elements captured technical 

factors such as common essential effects (Table S3).

Webster modeled gene effects as mixtures of functional effects learned empirically from 

the data. For instance, SHOC2 is part of the oncogenic RAS signaling pathway. Webster 

approximated the effect of SHOC2 depletion in 675 cell lines in terms of four functional 

effects (Pearson cor = 0.85, Figure 3C):

SHOC2 ≈ 0.9 × Activated KRAS +
0.8 × Activated NRAS +
0.2 × EGFR Signaling +
0.2 × FGFR Signaling

Cell lines with the strongest fitness effects per function exhibited matched molecular 

alterations: KRAS hotspot mutations, NRAS hotspot mutations, activated EGFR, and high 

FGF expression, respectively (Figures 3C and S3G). These genomics features were unused 

during model training. By looking globally across fitness data alone, Webster discovered cell 

contexts with distinct activated signaling pathways that influence SHOC2 function.

We charted a landscape of cancer cell fitness by jointly embedding 2,921 genes and 

220 functions according to their fitness effects using UMAP (Figure 3D; Table S4). For 
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biological processes such as oxidative phosphorylation, mitotic chromosome separation, 

cytoskeleton, and epigenetic regulation, Webster resolved distinct protein complexes or 

functional units within that process (Figure 3D).

Within cancer signaling, RAF1 is another obligate RAS effector whose gene effect was a 

mixture of activated NRAS and activated KRAS, as reflected by the UMAP embedding 

(Figure 3E) and loadings (Figure 3F). GRB2 and PTPN11 are effectors of growth factor 

signaling whose gene effects were mixtures of EGFR signaling and FGFR signaling, as 

reflected in their embeddings (Figure 3E). Other genes such as BRAF, MAPK1, DOCK5, 

and CRKL spanned-related pathways such as BRAF signaling and focal adhesion, forming 

an interaction network between genes and inferred functional effects (Figure 3G).

Half of the gene effects that were well approximated by Webster (Pearson cor ≥ 0.4) 

exhibited evidence of multifunctionality (loadings ≥ 0.25 SD on at least two functions), 

suggesting that cancer cell fitness obeys more complex genetic architectures than previously 

appreciated and places cancer cells in line with other model organisms where a majority of 

genes exhibit pleiotropy (Wang et al., 2010).

Modeling genes as compositions of functions extends pairwise gene similarity 
approaches

An important distinction exists between our sparse approximation models and pairwise 

guilt-by-association correlations commonly applied to this type of data (Amici et al., 2021; 

Bayraktar et al., 2020; Boyle et al., 2018; Kim et al., 2019; Pan et al., 2018; Wainberg et 

al., 2021). The measured fitness effect of SHOC2 correlates strongly with that of RAF1 

(Pearson = 0.64) but weakly with RAS proteins themselves (NRAS, Pearson cor = 0.29, 

KRAS, cor = 0.26). Despite being highly related genes, NRAS and KRAS fitness effects 

are in fact anti-correlated (Pearson cor = −0.17) because their activating mutations occur in 

mutually exclusive cell lines. This presents a paradox that guilt-by-association approaches 

alone fail to solve, instead requiring supervised learning approaches with cell line mutation 

data as input (Kim et al., 2021).

Webster’s approach returned unsupervised representations of biological functions from 

fitness data alone, which included activated NRAS and activated KRAS. Composing 

these functions together allows the model to represent complementary paths to SHOC2 

dependency. Indeed, the simplified expression

0.9 × Activated KRAS + 0.8 × Activated NRAS

achieves a higher pairwise correlation with SHOC2 fitness effect than any single gene in the 

original data (Pearson cor = 0.81).

A second limitation of pairwise similarity metrics is that negative correlations are typically 

elided from the data before clustering or visualization. In our model, a negative regulator of 

a function can be modeled with a negative loading, indicating its knockout has the opposite 

effect from a positive regulator. As an example, KRAS is inhibited by NF1 and degraded by 
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LZTR1; both genes have negative loadings on the Activated KRAS function (−0.5 for NF1 

and −0.4 for LZTR1).

Modular pleiotropy underlies the fitness effect of protein complexes

Pleiotropy has a modular structure, such that groups of collaborating genes share pleiotropic 

functions (Wagner and Zhang, 2011). A biochemical basis for modular pleiotropy arises 

when protein complexes share common subunits yet perform distinct functions. The 

enzymatic module consisting of SGF29, KAT2A, and TADA3 is shared by the STAGA and 

ATAC complexes (Figure 4A) (Spedale et al., 2012). From the fitness data alone, Webster 

learned independent functions for STAGA and ATAC complexes and parsimoniously 

represented the effect of perturbing shared subunits as

KAT2A ≈ 1 × STAGA complex +
0.2 × ATAC complex + …

SGF29 ≈ 1.8 × STAGA complex +
0.2 × ATAC complex + …

TADA3 ≈ 1.3 × STAGA complex +
0.2 × ATAC complex + …

In contrast, two protein paralogs ADA2A and ADA2B have similar sequences (45% positive 

alignment in BLAST) but exclusively bind ATAC and STAGA, respectively. Their effects are 

approximated as

ADA2A ≈ 0 × STAGA complex +
0.26 × ATAC complex + …

ADA2B ≈ 2.2 × STAGA complex +
0 × ATAC complex + …

The remaining STAGA and ATAC subunits also follow this pattern (Figure S4A).

SWI/SNF is a family of three chromatin remodeling complexes:: ncBAF, cBAF, and pBAF. 

Each complex shares the enzymatic subunit SMARCA4 (Mashtalir et al., 2018) (Figures 4B 

and S4B). Webster decomposed the effect of SMARCA4 knockout as follows:

SMARCA4 ≈ 0.9 × ncBAF complex +
0.8 × cBAF complex +
0.4 × pBAF complex…

ARID1A exclusively binds cBAF, while BRD9 and BRD7 are paralogous proteins that 

exclusively bind ncBAF and PBAF, respectively. Their fitness effects were encoded as 

follows:
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ARID1A ≈ 0 × ncBAF complex +
1.2 × cBAF complex +
0 × pBAF complex…

BRD9 ≈ 1 × ncBAF complex +
0 × cBAF complex +
0 × pBAF complex…

BRD7 ≈ 0 × ncBAF complex +
0 × cBAF complex +
0.8 × pBAF complex…

The ancestral BRD7/9 protein in Drosophila binds both pBAF and ncBAF (Barish et al., 

2020), but gene duplication evolved two specialized mammalian paralogs that exclusively 

function in one or the other complex (Michel et al., 2018). Our ability to infer different 

functions for paralogs (ADA2A/B and BRD7/9) based on differing fitness contexts evokes 

the “semantic change” of words inferred from differing sentence contexts over time (Boleda, 

2020).

As a final example, Webster recovered two distinct functions involving the Mediator 

complex, with head module subunits mapping to one and Tail/CKM module subunits 

mapping to the other, consistent with patterns previously observed in cancer fitness data 

(Boyle et al., 2018; Pan et al., 2018) (Figure S3C).

Modular pleiotropy in the Integrator complex

The Integrator protein complex localizes to the nucleus and exhibits RNA endonuclease 

activity (Baillat and Wagner, 2015) but is incompletely characterized. From the fitness 

data alone, Webster resolved three distinct functions corresponding to recently discovered 

biochemical modules (Figures 4C and S3D). One fitness effect is specific to the backbone 

and shoulder modules (Zheng et al., 2020), with the top-loaded genes being INTS6, 

INTS12, INTS5, INTS7, and INTS8. Components of the RNA Pol II transcriptional 

pausing machinery were also loaded onto this function (HEXIM, LEO1, and WDR61), 

suggesting this fitness effect is partially explained by the signal-dependent role of Integrator 

in transcriptional pause/release (Elrod et al., 2019; Gardini et al., 2014; Hou et al., 2019; 

Stadelmayer et al., 2014; Tatomer et al., 2019). A second function mapped to the recently 

characterized interaction between WDR73 and the endonuclease module (Tilley et al., 

2021). WDR73 was the strongest loaded gene (1.8), followed by BRAT1 (1.5) and INTS9 

(0.7).

Finally, Webster inferred the fitness effect of perturbing the INTS10–13-14 heterotrimer, a 

physical and functional module of the Integrator complex (Barbieri et al., 2018; Mascibroda 

et al., 2020; Pfleiderer and Galej, 2021; Sabath et al., 2020). INTS10, INTS14, and INTS13 

were the strongest loadings on this function (1.1, 0.9, 0.8, respectively), along with a fourth 

gene, C7orf26 (1.0).
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C7orf26 stabilizes INTS10 as a member of the Integrator complex INTS10–13-14 module

The conserved C7orf26 protein consists of a single domain of the unknown function 

(DUF4507) and has been nominated as a putative Integrator interactor in proteomic datasets 

(Baillat et al., 2016; Boeing et al., 2016; Drew et al., 2020; Malovannaya et al., 2010) 

although the nature of its relationship to Integrator is not understood. Webster modeled the 

fitness effect of C7orf26 perturbation as a mixture of all three Integrator functions defined 

above:

C7orf26 ≈ 1.0 × INTS10 − 13 − 14 module +
0.5 × W DR73 − Endonuclease module +
0.1 Backbone/Sℎoulder module

with two-thirds of its overall fitness effect explained by the INTS10–13-14 module. To 

investigate this observation further, we exogenously expressed HA-tagged versions of 

two C7orf26 isoforms in human 293T cells (Figure 4D). Using immunoprecipitation, we 

observed a robust interaction between the full-length C7orf26 protein and INTS10, 13, and 

14 (Figures 4E and S4E). These interactions were not observed for the shorter C7orf26 

isoform (Figure 4E), suggesting the two missing DUF4507 microdomains (Figure 4D) were 

necessary for the interaction. Upscaling our biochemical purifications and subjecting eluted 

material to mass spectrometry, we identified stoichiometric amounts of INTS10, 13, and 14 

with full-length C7orf26 pull-down (Figure 4F; Table S5). The INTS9–4-11 endonuclease 

module subunits were also present but at lower levels, followed by the remaining Integrator 

subunits. As before, the shorter isoform failed to pull down INTS10, INTS13, or INTS14 

(Figure 4F).

To interrogate the biochemical mechanism of C7orf26’s role in the INTS10–13-14 module, 

we generated C7orf26 knockout 293T cells and assessed the protein abundance of other 

Integrator subunits. Compared to control cells, loss of C7orf26 abrogated INTS10 protein 

levels (Figures 4G and S4F) while sparing other Integrator subunits, including INTS13 and 

14 (Figure 4G). In the reciprocal INTS10 knockout, we observed that C7orf26 protein levels 

remained constant, but endogenous C7orf26 failed to bind INTS13 in the absence of INTS10 

(Figure 4H).

These observations indicate C7orf26 nucleates the assembly of INTS10 with the INTS13–14 

heterodimer (Sabath et al., 2020), resulting in a INTS10–13-14-C7orf26 heterotetrameric 

module of the Integrator complex (Figure 4I). This assembly chain was supported by co-

sedimentation patterns of native nuclear extracts, in which C7orf26 existed as a monomer at 

low molecular weights but co-eluted with INTS10 at higher molecular weights characteristic 

of the full complex (Figure S4G). In previous in vitro purification efforts from insect 

cells, INTS10 was unstable when expressed in isolation (Sabath et al., 2020); adding 

C7orf26 to these preparations may stabilize INTS10. Previous guilt-by-association studies 

assigned C7orf26 to a large gene cluster containing the union of all three Integrator modules 

(Wainberg et al., 2021), thereby eliding the underlying pleiotropic interactions reflecting its 

specific stoichiometry within the complex.

Pan et al. Page 11

Cell Syst. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Learned functions reflected a cellular hierarchy

Next, we explored the properties of the latent space defined by Webster’s functions. 

Gene products are spatially regulated within a cellular hierarchy (Figure 3D), but because 

Webster is trained on fitness data alone, it has no prior knowledge of this hierarchy (Figure 

5A). We leveraged recently published proximity labeling measurements (Go et al., 2021) 

represented as probability distributions for each gene product over 20 subcellular locations. 

By multiplying gene location probabilities with our gene-to-function loadings, we computed 

scores indicating the level of physical compartmentalization for each fitness function (Figure 

S5A; Table S6).

Grouping the 20 fine-grained locations by physical or functional similarity resulted in seven 

coarse-grained compartments: nucleus, endoplasmic reticulum (ER), recycling, cytosol, 

mitochondria, membrane, and miscellaneous (ribosomes and other large protein complexes) 

(Figure S5B). Functions enriched for specific compartments incurred similar fitness effects 

and occupied nearby regions of the embedding space (Figures 5B, S5C, and S5D). 

Individual functions reflected subcellular locations such as the ER lumen, the outer nuclear 

membrane, and peroxisome within the coarse-grained ER compartment; additional examples 

included lysosome and retrograde transport functions within the recycling compartment and 

focal adhesions and cell junction functions within the membrane compartment (Figure 5C).

Certain gene effects were modeled as mixtures of functions spanning distinct (but 

related) subcellular locations. In Webster, the effect of perturbing the C12orf49 gene was 

approximated as

C12orf49 ≈ 1.0 × Sterol Biosyntℎesis +
0.4 × Peroxisome Biogenesis

reflecting its recently characterized role in sterol biosynthesis at the ER membrane (Aregger 

et al., 2020; Bayraktar et al., 2020; Loregger et al., 2020; Xiao et al., 2021), the metabolites 

for which are delivered to the ER by peroxisomes (Costello et al., 2017; Hua et al., 2017). 

Additional pleiotropic genes spanned these differentially localized functions (Figure 5E).

As another example, the effect of perturbing VPS39 was approximated in Webster as

VPS39 ≈ 0.8 × HOPS /CORV ET +
0.5 × Amino Acid Activation of mTOR

VPS39 is a HOPS complex member that endosomally recycles proteins with CORVET. 

The HOPS complex was recently implicated in mTOR activation via lysosomally recycled 

amino acids (Hesketh et al., 2020). The strongest loaded genes on the amino acid activation 

of mTOR function are Ragulator, Rag, Folliculin, and GATOR2 complex members (all 

localized to the lysosome), HOPS complex members (localized to endosomes), as well as 

mTOR itself. Additional pleiotropic genes spanned these differentially localized functions 

(Figure 5E).

These results echo other biological hierarchies observed in fitness data from organisms 

such as yeast (Costanzo et al., 2016; Kramer et al., 2014). Most gene functions were 
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either indirectly or unrelated to cancer biology at large, suggesting that drivers of cancer 

pathology exert second-order effects on normal physiological pathways across cell lines. 

Finally, these hierarchical relationships are largely absent when mapping the 220 functional 

effects alone (Figure S5E) because dictionary elements themselves are decorrelated by 

design. To facilitate exploration of the Webster’s analysis of cell fitness data, we provide an 

interactive portal for exploring pleiotropic gene relationships (http://depmap.org/webster/).

Projecting compounds into a latent space defined by gene functions

The PRISM Drug Repurposing dataset contains compound sensitivity measurements 

across hundreds of cancer cell lines (Corsello et al., 2020). These compound sensitivity 

measurements were unseen during dictionary learning on gene perturbation data (Figure 

3B). We assessed whether this dictionary optimized on gene perturbation data captured 

patterns present in compound sensitivity data (Figure 6A). To do this, we isolated ~200 

compounds with diverse and well-annotated mechanisms of action from the PRISM 

dataset and modeled each compound sensitivity profile as a mixture of four elements of 

the dictionary trained exclusively on gene perturbation data (Figure 6B; Table S7). The 

better the approximations, the greater the generalizability of our approach, indicating that 

Webster’s latent functions captured true biology (as opposed to dataset-specific effects).

Approximation quality of compound sensitivity using gene functions varied by compound 

class (Figure S6A), with clinical anticancer compounds such as MDM and EGFR inhibitors 

exhibiting the best approximations, and broadly cytotoxic compounds such as aurora kinase 

inhibitors exhibiting the least robust approximations (Figure S6B). Well-approximated 

profiles projected onto genetically defined pathways that reflected compound mechanism of 

action (Figure 6C). As examples, RAF and MEK inhibitors treatment profiles projected onto 

the BRAF signaling function, whose fitness effect is strongest in BRAF mutant melanomas 

(Figure S6C). The strongest loaded genes on this function are BRAF, SOX10, SOX9, 

MAPK1, and DUSP4; the strongest loaded compounds included selumetinib and AZ-628 

(Figure 6D). Similarly, bromodomain inhibitors projected onto the H2A.Z maintenance 

function, while HMGCR inhibitors projected onto the mevalonate synthesis function 

(Figure 6D). These observations suggested that Webster learned representations of on-target 

pathways for certain compound classes from gene perturbation data alone, in concordance 

with previous results on pairwise gene-drug correlations (Gonçalves et al., 2020).

Moreover, some profiles were modeled as interpretable mixtures of multiple independent 

biological pathways. For example, ATK inhibitor sensitivity profiles were modeled as 

mixtures of RICTOR/AKT signaling, PIK3CA signaling, and PTEN signaling functions 

(Figure S6D). Furthermore, we found that projection onto on-target pathways was sensitive 

to compound dose. From a secondary PRISM dataset in which compound sensitivity was 

measured at an eight-point dose curve, we observed selective dose ranges for specific 

compounds. Compound doses within these ranges resulted in sensitivity profiles with strong 

loading scores on their on-target functions, while high doses that caused broad cytotoxicity 

or low doses with no fitness effect failed to project at all (Figures 6F and S6E).
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DISCUSSION

Wagner and Zhang nominated pleiotropic inference as an outstanding problem in functional 

genomics a decade ago (Wagner and Zhang, 2011), envisioning two major challenges: 

deriving “biologically nonarbitrary” latent phenotypes from high-dimensional data and 

accounting for the sparse nature of genotype-phenotype relationships (Wang et al., 2010). 

By framing pleiotropy as an instance of the sparse representation problem (Elad, 2010) 

solved by graph-regularized dictionary learning, we recovered interpretable latent dictionary 

elements that sparsely combine to model gene effects, thereby satisfying the two challenges 

outlined above. Webster meets the analytical challenge posed by growing CRISPR-Cas9 

fitness screens by enabling unsupervised learning of biological functions using only 

numerical fitness data as input. It is generally applicable to fitness screen collections of 

various designs and may be especially useful in organisms in which fitness screens are 

experimentally tractable but gene functions are poorly annotated, such as bacteria (Price 

et al., 2018). Future work could address limitations of our current method, for instance, 

by regularizing on hierarchical graph structures rather than simple neighbor graphs or by 

learning the degree of pleiotropy as a per-gene parameter rather than setting it globally.

We anticipate that the future application of Webster to growing fitness screen collections, 

enabled by our open-sourced implementation (STAR Methods), will resolve context-specific 

functions that are difficult to perceive when studying individual experimental models. 

Proteins that exhibit different functions in specific contexts are often difficult to resolve 

using single experimental models, and current practice is to reproduce experiments in 

multiple cell lines or models. This approach is experimentally sound but may obscure 

essential biochemical interactions that more accurately inform biological insights.

Furthermore, the dictionary framework created by Webster allows one to infer function by 

projection. We demonstrated that analyzing cell fitness data from a large panel of small 

molecules with at least one known target allowed us to infer the biological pathways 

perturbed by specific molecules and identify compounds with generalized fitness effects. 

The use of Webster to analyze biologically active small molecules may provide a method to 

rapidly identify the targets of novel small molecules and accelerate drug discovery.

Representing gene effects as vectors distributed over a space of latent functions runs counter 

to traditional symbolic representations (e.g., gene A performs function B if condition C is 

satisfied) (Fraser and Marcotte, 2004; Norman et al., 2019). However, in natural language 

processing, word symbols are represented as vectors distributed over a space of latent 

semantics (Mikolov et al., 2013; Pennington et al., 2014). Dictionary learning applied to 

word vectors (word2Vec and GloVe) resolves polysemic words as sparse linear combinations 

of latent meanings, such as “apple” ≈ 0.16 × fruit + 0.22 × mobile phone + … (Zhang et al., 

2019)

The fact that polysemic words and pleiotropic genes are modeled by dictionary learning 

suggests that word co-occurrence and gene co-fitness share statistical regularities. Perhaps 

the distributional hypothesis of semantics (you shall know a word by the company it keeps) 

(Boleda, 2020) also applies to gene function (you shall know a gene by shared causal effects 
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with other genes). If so, it may be advantageous to transition from genotype-phenotype 

“maps” to “geometries,” where statistically independent phenotypes form an empirically 

derived latent space in which gene effects are vectors (Figure 7) (Fischer et al., 2015).

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, William Hahn 

(William_Hahn@dfci.harvard.edu).

Materials availability—Plasmids generated in this study have been deposited to Addgene.

Data and code availability—This paper analyzes existing, publicly available data. These 

accession numbers for the datasets are listed in the key resources table. All other data 

reported in this paper will be shared by the lead contact upon request.

All original code has been deposited and is publicly available as of the date of publication. 

The main repository contains R code for reproducing figures and analyses presented in the 

paper and can be found at https://github.com/joshbiology/gene_fn (Zenodo archive: https://

doi.org/10.5281/zenodo.5773076). We created a Figshare archive that is the starting point 

for these analyses (https://doi.org/10.6084/m9.figshare.14960006.v2). We provide a second 

repository of MATLAB code implementing the factorization methods that are the basis of 

Webster, which can be found at https://github.com/joshbiology/graph_dictionary_learning 

(Zenodo archive: https://doi.org/10.5281/zenodo.5773078). Finally, we provide a data 

repository containing Webster’s preprocessed numerical input data and subsequent analysis 

output, a subset of which form the Supplemental Tables cited throughout this paper (https://

doi.org/10.6084/m9.figshare.14963561.v2).

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The female-derived 293T cell line was obtained from Thermo Fisher Scientific (R70007, 

under the product name 293FT) and grown in DMEM (Thermo Fisher Scientific, 12430054) 

supplemented with 2 mM glutamine, 50 U/mL penicillin, 50 U/mL of streptomycin (Gibco), 

and 10% fetal bovine serum (Sigma).

METHOD DETAILS

Overview of the sparse approximation problem—The field of sparse approximation 

encompasses a diverse range of applications and implementation strategies. One specific 

formulation of the sparse approximation problem is centered around the following task 

(from (Elad, 2010), “Chapter 9.2 The Sparse-Land Model”, see also (Yankelevsky and Elad, 

2016), “I. Introduction” and (Mairal et al., 2014), “Chapter 1.4 Dictionary Learning”):
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Suppose a set of m training signals Y = [y1, y2, …, ym] in Rn (indicating that each yi is an 

n-dimensional vector of real numbered values). From this set of training signals alone, we 

seek to approximate them by recovering:

1. A dictionary matrix D in Rn×k (indicating that D is a matrix of real numbered 

values with n rows and k columns)

2. Sparse representations of each training signal in terms of dictionary elements. 

These representations form a matrix X = [x1, x2, …, xm] with each xi being a 

t-sparse vector in Rk (indicating that xi is a k-dimensional vector with all but t 
entries set to 0).

The approximation of each training signal is yi ≈ D* xi. The term on the left is the measured 

signal, which is a vector in Rn. The term on the right is a matrix operation resulting in a 

vector in Rn, composed from the weighted sum of t columns of D (each of which are vectors 

in Rn), with the weights being the t non-zero coefficients held in xi.

We can also express this in matrix form:

Y ≈ D * X

To solve the sparse approximation problem, we find an optimal solution to both D and X that 

minimizes the approximation error, given the sparsity constraints imposed by the parameter 

t, and the number of dictionary elements dictated by k. Formally, the objective is

arg min
D, X

‖Y − DX‖F
2 s . t . ‖xi‖0 ≤ t ∀i .

Sparse approximation of pleiotropic gene functions from fitness data—We 

adapt the framework of sparse approximation to model fitness data. Fitness data consists 

of measured changes in cell growth rate upon biological perturbations applied across cell 

contexts. Here, we focus on gene perturbation, which can be induced in a variety of ways, 

including with programmable CRISPR-Cas9 nucleases. For additional descriptions of fitness 

experiments and their designs, see (Rancati et al., 2018) (focused on human cells) and 

(Costanzo et al., 2019) (focused primarily on yeast).

We are specifically interested in modeling the genetic architecture underlying fitness 

measurements. In particular, we seek to model pleiotropy, in which gene products have 

multiple functions depending on the cell context. Solving pleiotropy within fitness data 

reduces to (1) learning a set of fitness effects of perturbed biological functions, and (2) 

modeling gene effects as a combination of these functional effects.

There is a clear connection between these two tasks and the basic sparse approximation 

problem described above, although augmentations are required to encourage latent 

dictionary elements to model biological functions rather than numerically valid – but 

biologically meaningless – patterns in the data. To achieve this, we exploit several properties 

of fitness data. First, genes with correlated fitness effects tend to have similar biological 
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functions, a concept referred to as co-essentiality (Amici et al., 2021; Bayraktar et al., 

2020; Boyle et al., 2018; Kim et al., 2019; Pan et al., 2018; Wainberg et al., 2021; Wang 

et al., 2017). Second, similar cell contexts will share similar rate-limiting functions for 

cell growth. This concept has been most extensively explored in the cancer field, in which 

related cell lines have been shown to harbor similar “selective dependencies” (McDonald et 

al., 2017; Tsherniak et al., 2017). Constraining learned representations to capture coherent 

gene modules essential in specific cell contexts is consistent with past use of bi-clustering to 

model pleiotropy (Dudley et al., 2005; Koch et al., 2017).

In summary, to recover latent representations in our model that capture biological functions, 

we augmented the basic sparse approximation objective (error minimization) with two 

additional objectives: learned representations should preserve the local structure between 

gene effects as well as preserve the local structure between cell contexts. To operationalize 

this, we adopted the framework of dual-graph regularized dictionary learning.

Webster: Dual graph regularized dictionary learning applied to preprocessed 
fitness data—Our overall approach (Webster) for modeling pleiotropic gene functions in 

fitness data consists of two steps. First, we preprocess the fitness data. This is done by 

centering and scaling individual screens, then centering the fitness effects of each gene 

perturbation (‘gene effects’), and finally filtering out low variance gene effects. Batch 

correction and other quality control steps are applied at this stage as well, described in 

detail in later sections. Second, from this matrix of preprocessed gene effects, Webster uses 

dual graph regularized dictionary learning (DGRDL) (Yankelevsky and Elad, 2016, 2020) to 

sparsely approximate the gene effect matrix in terms of latent biological functions.

Mathematically, this can be described as follows. Let the set of gene effects Y = [y1, y2, 

…, ym] in Rn consist of fitness effects upon individually perturbing m genes across n cell 

contexts. Pairwise similarities between the m gene effects define a matrix W in Rm×m, while 

the pairwise similarities between the n cell contexts define a matrix V in Rn×n.

From Y, W and V, we recover a dictionary matrix D in Rn×k and a sparse representation 

matrix X in Rk×m (with each column of X containing only t non-zero entries). D and X are 

optimized to satisfy the following objectives:

1. Minimize the total approximation error ‖ Y − D * X ‖F (indicating the 

Frobenius norm of the difference between the original gene effect matrix and 

the approximated gene effect matrix);

2. Minimize the sum of squared differences between the columns of X, 

weighted by the similarities of the corresponding columns of Y, expressed as 

(1/2)∑Wi, j * (X[, i] − X[, j])2, for all i and j between 1 and m;

3. Minimize the sum of squared differences between the rows of D, 

weighted by the similarities of the corresponding rows of Y, expressed as 

(1/2)∑Vi, j * (D[i, ] − D[j, ])2, for all i and j between 1 and n.

The intuition behind objective (2) is that the more similar two gene effects are in the 

original data, the more similar their sparse representations should be; i.e. they should be 
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approximated using similar biological functions. The intuition behind objective (3) is that 

the more similar two cell contexts are in their growth requirements, the more similar their 

representations in the dictionary matrix should be, i.e they should depend on the same 

functions for growth. Formally, objectives (2) and (3) can be compactly expressed as a 

quadratic form of a graph Laplacian derived from the gene effect similarity graph and the 

cell context similarity graph, respectively.

The final DGRDL objective function is:

min
D, X

‖Y − DX‖F
2 + αTr DTLD + βTr XLcXT

s . t . xi 0 ≤ t ∀i,

where L in Rm×m is the Laplacian matrix derived from the cell context similarity graph, Lc 

in Rn×n is the Laplacian of the gene effect similarity graph, and α and β are importance 

weights for each term in the final objective. In practice, we choose k < m, as we assume that 

gene effects can be described by a small set of latent elements. We also tend to choose k < n, 

resulting in an undercomplete dictionary basis. Finally, we choose t to be small (t ≪ k) but 

greater than 1.

This is a high-level summary of DGRDL specifically through the lens of fitness data. For 

a fuller exploration of DGRDL applied to other data modalities, as well as theoretical 

guarantees of DGRDL for signal recovery, see the original papers: (Yankelevsky and Elad, 

2016, 2020).

Implementation details—In order to implement DGRDL, we obtained MATLAB 

code for k-SVD, orthogonal matching pursuit, and DGRDL from the respective lab 

websites (https://elad.cs.technion.ac.il/software/ and http://www.cs.technion.ac.il/~ronrubin/

software.html), which we detailed in the documentation for our code repository (https://

github.com/joshbiology/graph_dictionary_learning).

Our Webster approach customizes the base DGRDL method in several ways. First, we 

use nearest-neighbor graphs in our graph regularization terms, with the goal of preserving 

local structure present in the data. Empirically, nearest neighbor graphs capture the overall 

topological relationships present in gene effect similarity networks (Amici et al., 2021; 

Pan et al., 2018), and provide the highest enrichment for previously annotated gene-gene 

relationships (Boyle et al., 2018; Kim et al., 2019). As a side note, nearest neighbor graphs 

are also the input to popular manifold learning algorithms t-SNE and UMAP, which tend to 

capture local structure in biological data. We use nearest neighbor gene similarity and cell 

context similarity graphs as the basis for the graph regularization objectives described above, 

using cosine similarity and five nearest neighbors for both graphs (unless otherwise specified 

below).
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Our second customization involves the dictionary learning initialization step. As DGRDL 

is an iterative optimization algorithm, it requires a pre-initialized dictionary in order to 

perform its first iteration. In the absence of a pre-initialized dictionary, DGRDL chooses k 
random elements among the input training signals to serve as the initial dictionary. We found 

empirically that this random selection introduced variability in the optimization outcomes. 

As a result, we pass a pre-initialized dictionary to DGRDL in the form of k representative 

training signals chosen via k-medoids from among the input training signals, using the 

MATLAB kmedoids function. As k-medoids is a clustering algorithm, the initial dictionary 

can be thought of as optimal for clustering the data into k mutually exclusive groups. From 

this starting point, an new dictionary is learned that best approximates all m training signals 

in terms of t dictionary elements while preserving local structure of the data. As t >1, this 

process can be thought of as relaxing the one-hot clustering assumptions present in the 

initial dictionary. Compared to random initialization, we found that this reduced the root 

mean squared error of our factorizations by 9% on the DepMap dataset.

Finally, we multiply the sparse representation matrix X with a scalar correction factor 1/

sqrt(n) to convert coefficients into units of standard deviation from their original unit of 

Euclidean distance. As these coefficients are analogous to the loading coefficients used in 

PCA, we refer to this matrix of coefficients as the loadings matrix in the manuscript.

This concludes the descriptions of the core algorithmic steps performed with Webster in the 

manuscript. The following sections describe experimental methods. The “Quantification and 

statistical analysis” section describes the application of Webster to various datasets, as well 

as the annotation and visualization steps performed on the resulting Webster output.

C7orf26 cloning—Two C7orf26 transcript isoforms were used in this study. The full 

length isoform (C7orf26_v1), corresponds to the Ensembl transcript ENST00000344417 

(Origene, RC219786L4). The second isoform (C7orf26_v2), corresponds to the Ensembl 

transcript ENST00000359073 and was acquired through Broad Genetic Perturbation 

Platform (TRCN0000477172). Both coding sequences were subcloned from their respective 

sources into the pDONR221 vector using PCR amplification and Gateway BP cloning, and 

subsequently shuttled into pLX307 and pLX_HA expression vectors using Gateway LR 

reactions. The pLX307 expresses the protein under an EF1alpha promoter with a C-terminal 

V5 tag. The pLX_HA vector, which we created for this study, is a modified version of 

pLX307 carrying the HA tag instead of the V5 tag.

C7orf26_V1 sequence (no stop codon)—
ATGAGCGACATCCGCCACTCGCTGCTGCGCCGCGATGCGCTGAGCGCCGCCAAG

GAGGTGTTGTACCACCTGGACATCTACTT 

CAGCAGCCAGCTGCAGAGCGCGCCGCTGCCCATCGTGGACAAGGGCCCCGTGGA

GCTGCTGGAGGAGTTCGTGTTCCAGGTG 

CCCAAGGAGCGCAGCGCGCAGCCCAAGAGACTGAATTCCCTTCAGGAGCTTCAA

CTTCTTGAAATCATGTGCAATTATTTCCAGG 

AGCAAACCAAGGACTCTGTTCGGCAGATTATTTTTTCATCCCTTTTCAGCCCTCAA

GGGAACAAAGCCGATGACAGCCGGATGAG 

CTTGTTGGGAAAACTGGTCTCCATGGCGGTGGCTGTGTGTCGAATCCCGGTGTTG
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GAGTGTGCTGCCTCCTGGCTTCAGCGGAC 

GCCCGTGGTTTACTGTGTGAGGTTAGCCAAGGCCCTTGTAGATGACTACTGCTGTT

TGGTGCCGGGATCCATTCAGACGCTGAAG 

CAGATATTCAGTGCCAGCCCGAGATTCTGCTGCCAGTTCATCACCTCCGTTACCGC

GCTCTATGACCTGTCATCAGATGACCTCA 

TTCCACCTATGGACTTGCTTGAAATGATTGTCACCTGGATTTTTGAGGACCCAAGG

TTGATTCTCATCACTTTTTTAAATACTCCGAT 

TGCGGCCAATCTGCCAATAGGATTCTTAGAGCTCACCCCGCTCGTTGGATTGATCC

GCTGGTGCGTGAAGGCACCCCTGGCTTAT 

AAAAGGAAAAAGAAGCCCCCCTTATCCAATGGCCATGTCAGCAACAAGGTCACA

AAGGACCCGGGCGTGGGGATGGACAGAGA 

CTCCCACCTCTTGTACTCAAAACTCCACCTCAGCGTCCTGCAAGTGCTCATGACG

CTGCAGCTGCACCTGACCGAGAAGAATCTG 

TATGGGCGCCTGGGGCTGATCCTCTTCGACCACATGGTCCCGCTGGTAGAGGAGA

TCAACAGGTTGGCGGATGAACTGAACCCC 

CTCAACGCCTCCCAGGAGATTGAGCTCTCGCTGGACCGGCTGGCGCAGGCTCTGC

AGGTGGCCATGGCCTCAGGAGCTCTGCT 

GTGCACGAGAGATGACCTGAGAACCTTGTGCTCCAGGCTGCCCCATAATAACCTC

CTCCAGCTGGTGATCTCGGGTCCCGTGCA 

GCAGTCGCCTCACGCCGCGCTCCCCCCGGGGTTCTACCCCCACATCCACACGCCC

CCGCTGGGCTACGGGGCTGTCCCGGCC 

CACCCCGCCGCCCACCCCGCCCTGCCCACGCACCCCGGCCACACCTTCATCTCCG

GCGTGACCTTTCCCTTCAGGC

C7orf26_V2 sequence (no stop codon)—
ATGAGCGACATCCGCCACTCGCTGCTGCGCCGCGATGCGCTGAGCGCCGCCAAG

GAGGTGTTGTACCACCTGGACATCTACTT 

CAGCAGCCAGCTGCAGAGCGCGCCGCTGCCCATCGTGGACAAGGGCCCCGTGGA

GCTGCTGGAGGAGTTCGTGTTCCAGGTG 

CCCAAGGAGCGCAGCGCGCAGCCCAAGGAGCAAACCAAGGACTCTGTTCGGCAG

ATTATTTTTTCATCCCTTTTCAGCCCTCAAG 

GGAACAAAGCCGATGACAGCCGGATGAGCTTGTTGGGAAAACTGGTCTCCATGG

CGGTGGCTGTGTGTCGAATCCCGGTGTTGG 

AGTGTGCTGCCTCCTGGCTTCAGCGGACGCCCGTGGTTTACTGTGTGAGGTTAGC

CAAGGCCCTTGTAGATGACTACTGCTGTTT 

GGTGCCGGGATCCATTCAGACGCTGAAGCAGATATTCAGTGCCAGCCCGAGATTC

TGCTGCCAGTTCATCACCTCCGTTACCGC 

GCTCTATGACCTGTCATCAGATGACCTCATTCCACCTATGGACTTGCTTGAAATGAT

TGTCACCTGGATTTTTGAGGACCCAAGCG 

TCCTGCAAGTGCTCATGACGCTGCAGCTGCACCTGACCGAGAAGAATCTGTATGG

GCGCCTGGGGCTGATCCTCTTCGACCACA 

TGGTCCCGCTGGTAGAGGAGATCAACAGGTTGGCGGATGAACTGAACCCCCTCA

ACGCCTCCCAGGAGATTGAGCTCTCGCTGG 

ACCGGCTGGCGCAGGCTCTGCAGGTGGCCATGGCCTCAGGAGCTCTGCTGTGCA

CGAGAGATGACCTGAGAACCTTGTGCTCC 
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AGGCTGCCCCATAATAACCTCCTCCAGCTGGTGATCTCGGGTCCCGTGCAGCAGT

CGCCTCACGCCGCGCTCCCCCCGGGGTT 

CTACCCCCACATCCACACGCCCCCGCTGGGCTACGGGGCTGTCCCGGCCCACCCC

GCCGCCCACCCCGCCCTGCCCACGCA 

CCCCGGCCACACCTTCATCTCCGGCGTGACCTTTCCCTTCAGGCCCATCCGC

CRISPR guide cloning—Each guide RNA (gRNA) for CRISPR-Cas9 mediated gene 

knockout was selected from the Avana CRISPR-Cas9 guide library (Sanson et al., 

2018). Guides were ranked by their guide efficacy score inferred by CERES during its 

processing of Cancer Dependency Map data (Meyers et al., 2017), available through the 

Dependency Map Portal (Achilles_guide_efficacy.csv, https://depmap.org/portal/download/). 

Oligonucleotides containing the gRNA sequence were cloned via Golden Gate Assembly 

into the lentiCRISPR_v2_Blast plasmid backbone, which is identical to the lentiCRISPR_v2 

(https://www.addgene.org/52961/) but with the puromycin selection cassette swapped out 

for a blasticidin selection cassette. The gRNA sequences are described in the key resources 

table.

Lentivirus production and infection—To produce lentivirus, expression vectors (of 

proteins or guides) were co-transfected with psPAX2 and pMD2.G second generation virus 

packaging vectors into 293T cells using Mirus LT-1 Transfection Reagent (Mirus) according 

to the manufacturer’s recommendations. Cells were spin infected with viral supernatant 

mixed with final concentration of 4 ug/mL polybrene (Sigma Aldrich) and centrifuged at 

2200 RPM for 1 hour. After 24 hours of viral infection, media was exchanged with fresh 

media containing either 10 ug / mL of puromycin (for the pLX series of vectors) or 20 ug / 

mL of blasticidin S HCl (for the pLenti_V2_Blast series of vectors). Selection media was 

maintained for the duration of use of the infected cells.

Whole cell lysates—For harvesting total protein lysate, cells were washed twice with 

ice cold PBS buffer and lysed using RIPA buffer (R0278; Sigma-Aldrich) containing 

Halt Protease Inhibitor Cocktail (Thermo Fisher) and 1:100 of 1mM Phenylmethylsulfonyl 

fluoride (PMSF) (Gold-bio, P-470–25), rotated for 30 minutes in the cold room, spun 

down at max speed on a tabletop ultracentrifuge for 10 minutes, and the pellet (containing 

genomic DNA) removed. The resulting lysate was quantified using BCA Protein Assay Kit 

(Thermo Fisher; 23227).

Nuclear lysates—For harvesting nuclear protein lysate, we performed our protocol from 

(Mashtalir et al., 2018). Cells were washed twice with ice cold PBS buffer and resuspended 

in EB0 hypotonic buffer (50mM Tris pH 7.5, 0.1% NP-40, 1mM EDTA, 1mM MgCl2) 

containing 1:100 of Halt Protease Inhibitor Cocktail and 1:100 of 1mM PMSF. Lysate was 

spun down at 5,000rpm for 5min at 4C, and the supernatant containing cytoplasmic extract 

was discarded. Pelleted nuclei were resuspended in EB300 high salt buffer (50mM Tris 

pH 7.5, 300mM NaCl, 1% NP-40, 1mM EDTA, 1mM MgCl2) containing 1:100 of Halt 

Protease Inhibitor Cocktail and 10 μM PMSF. Lysates were incubated on ice for 10 min 

with occasional vortexing. Lysate was spun down at 21000 g for 10 min at 4C. The pellet 
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containing genomic DNA was discarded. Supernatants consisting of nuclear lysate were 

quantified using BCA.

Immunoprecipitation and mass spectrometry of exogenously expressed 
protein—293T cells overexpressing either C7orf26_V1 or C7orf26_V2 were prepared 

using lentivirus and selected using puromycin as described above. Parental cell lines with no 

overexpression construct were passaged in parallel for the ‘Mock’ control. For large scale 

purifications, 5 plates of confluent 15 cm plates were harvested and subjected to the nuclear 

lysate protocol described above. The resulting lysates for each condition were diluted to 1 

mg / mL in EB300.

For HA purifications, 5 mL of nuclear lysate from each condition was incubated with 

250 uL of Pierce HA Magnetic Beads (Thermo Fisher, 88836) and rotated overnight 

at 4C. Afterwards, beads were collected using a magnetic rack and washed 6× with 

EB300 and 2× with PBS buffer all at 4C. We eluted precipitated protein from the beads 

using low pH elution in glycine buffer as described (https://www.abcam.com/protocols/

immunoprecipitation-protocol-1#elution). For V5 purifications, the same protocol was 

performed but with Anti-V5 Agarose Affinity Gel (Sigma-Aldrich, A7345–1ML). A 

portion of samples were saved for immunoblot analysis, and the remainder was to mass 

spectrometry with the Taplin Mass Spectrometry Facility, the full details of which are 

previously described under “Sample Preparation” (Mashtalir et al., 2018). The resulting total 

peptide counts for each protein were reported.

CRISPR-Cas9 mediated gene knockout of INTS6, INTS10, and C7orf26—Cells 

harboring knockout of INTS6, INTS10 and C7orf26 were generated using the above 

lentiviral infection protocol. After one week of selection under blasticidin, cells were 

harvested using the whole cell lysate protocol described above. For the INTS10 clonal 

knockout lines used for the endogenous immunoprecipitation experiment, cells were plated 

at single cell dilution and grown for 3 weeks with media changes. Single cell colonies 

were picked and whole cell lysate protocol was repeated to identify clonal lines harboring 

complete INTS10 knockout. Successful clones were subjected to nuclear lysis in preparation 

for endogenous immunoprecipitation.

Endogenous protein immunoprecipitation—From quantified nuclear lysates, we 

diluted all lysates with EB300 buffer to a concentration of 1 mg/mL. We used 100 ug 

of nuclear lysate for each immunoprecipitation condition. We added 1.25 μg of antibody to 

each condition. An antibody raised against C7orf26 (Novus, NBP2–14764) was used, and a 

mouse IgG antibody (Santa Cruz, No. sc-2025) was used as a negative control. After rotation 

overnight at 4C, Protein G Dynabeads (Thermo Fisher, 10004D) were added and rotated for 

2 hours. Using a magnetic rack, beads were isolated from the lysate, washed 6× in EB300 

buffer and 2× in PBS buffer. The resulting immunoprecipitated protein was eluted from the 

beads using LDS buffer.

Density sedimentation gradientgradient—Density gradient sedimentation was 

performed as previously described (Mashtalir et al., 2018). 750 ug of nuclear extract from 

293T cells was overlaid on onto an 11 ml 10–30% glycerol gradient, prepared in a 14 × 89 
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mm polyallomer centrifuge tube. Tubes were centrifuged in an SW40 rotor at 4 °C for 16 

h at 40,000 r.p.m. 550 ml fractions were collected by hand. Fractions were concentrated by 

adding a 1:10 volume/volume ratio of Strataclean beads to the collected fractions, incubated 

under rotation in the cold room, and eluted using LDS buffer. A total of 23 fractions were 

collected. Fractions 1–15, representing the lower molecular weights, were loaded and used 

in immunoblot analyses.

Immunoblot analysis—All samples were loaded and run on a pre-poured 4%–12% Bis-

Tris gel (Thermo Fisher, NP0323) in MES buffer (Thermo Fisher, NP0002), and transferred 

onto nitrocellulose membrane (Thermo Fisher, IB23001) utilizing iBlot 2 Dry Blotting 

System (Thermo Fisher, IB21001). After 1 hr blocking incubation in 5% milk solution and 

subsequent washes, all immunoblots were incubated with indicated primary antibodies for 

overnight at 4C or at room temperature for 3 hours. Blots were then incubated with indicated 

secondary antibody for 1 hour at room temperature, and immunoblots were imaged using 

Odyssey CLx infrared imager (LICOR).

For input samples, 20 ug of protein was loaded. For immunoprecipitated samples, a 

fractional volume of the total eluate was run for immunoblotting. For density sedimentation 

gradient fractions, a fractional volume of the total eluate from Strataclean beads was loaded 

for each fraction. For the ladder, 5 uL of Pageruler Plus (Thermo Fisher, 26619) was added. 

The antibodies used for blotting are described in the key resources table.

QUANTIFICATION AND STATISTICAL ANALYSIS

Fitness data origins and preprocessing—The genotoxic screening collection was 

downloaded from the publisher’s website (see their Table S2. CRISPR Screens NormZ 

results) (Olivieri et al., 2020). The dataset consisted of 17,382 measured gene effects over 31 

fitness screens performed in the presence of low doses of genotoxins. Each of the 31 screens 

was already processed through normZ which centers and scales the data (Colic et al., 2019).

To select high-variance genes, we assumed that a large portion of gene effects in genome-

scale screens have no phenotype in any cell contexts (also known as non-essential genes). 

Any variance present in these gene effects will be due to experimental noise rather 

than biological signal. The distribution of these across-cell-line variances will follow a 

chi-squared distribution, which converges to a normal distribution with large n. Biologically 

driven gene effects will exhibit greater variation across cell lines and will form positive 

outliers in this normal distribution. To detect such outliers, we used a quantile-quantile plot 

to visualize the observed distribution of gene effect variances compared to a theoretical 

normal distribution. We drew a cutoff that separated high variance genes from the remaining 

(variance > 3), resulting in 304 gene effects over 31 screens that formed the input to graph 

regularized dictionary learning.

The 19Q4 Broad Cancer Dependency Map screening collection was downloaded from the 

Cancer Dependency Map FigShare archive (under the file Achilles_gene_effect.csv, https://

doi.org/10.6084/m9.figshare.11384241.v3). The raw dataset consisted of 18,333 gene effect 

measurements over 689 cancer cell lines. We filtered out a group of cell lines that suffered 

a batch effect due to PCR contamination. We filtered out a group of X-chromosomal 
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genes whose copy number across cell lines could not be properly controlled for. We 

also filtered out two HUGO gene groups, olfactory genes (https://www.genenames.org/data/

genegroup/#!/group/141) and KRTAP genes (https://www.genenames.org/data/genegroup/#!/

group/619), whose high sequence similarity resulted in large-scale off target guide cutting 

activity as previously described (Boyle et al., 2018). This intermediate dataset consisted of 

17,167 gene effect measurements over 675 cell lines.

We applied several correction measures before gene effect selection. The first was 

a generalized correction for cutting effects specific to chromosome arms, as reported 

previously (Amici et al., 2021). We then centered each cell line screen and applied a 

batch correction for screen quality. This was done by linearly regressing out the NNMD 

profile over cell lines from each gene effect profile. NNMD stands for null-normalized mean 

difference and was previously described (Dempster et al., 2019). The NNMD score for each 

cell line was obtained from the “NNMD” column the sample_info.csv file from Figshare 

archive (https://doi.org/10.6084/m9.figshare.11384241.v3). After screen quality correction, 

we scaled each cell line screen. This dataset was used as input for gene effect selection.

For gene effect selection, we used three criteria:

1. Variance

2. Perturbation confidence

3. Maximum pairwise correlation with other gene effects

The cutoff for variance was chosen using a quantile-quantile plot, as with the genotoxic 

screening data above. A variance cutoff of 1 was used. The perturbation confidence score 

was calculated as described previously (http://archive.today/2021.03.22–122633/https://

cancerdatascience.org/blog/posts/gene_confidence_blog/). In brief, an XGBoost model was 

trained to discriminate between known low confidence gene perturbations and high 

confidence gene perturbations using various features derived from the individual guide 

RNA effects. The recommended cutoff of 0.5 was applied. From these gene effects, we 

kept those that exhibited a maximum pairwise correlation with other gene effects above a 

certain threshold, as done in yeast fitness screen analyses (Costanzo et al., 2010, 2016). 

The threshold we used was 0.275. This resulted in a preprocessed matrix of 2,921 gene 

effect measurements over 675 cell lines that formed the input to graph regularized dictionary 

learning.

Sanger Institute screens processed through the CERES algorithm were downloaded from 

the Cancer Dependency Map FigShare archive (under the filename sample_info.csv, https://

doi.org/10.6084/m9.figshare.9116732.v2). The raw data consisted of 17,716 gene effect 

measurements over 318 cell lines. Arm correction, centering, NNMD regression and scaling 

were applied.

Hyperparameter tuning and model selection—For the genotoxic fitness screens, 

we empirically chose the primary dictionary learning hyperparameter k (dictionary size) 

by sweeping between values of 1 and 31 while fixing t = 2. We evaluated each of the 

model objectives and looked for diminishing returns for the approximation error and gene 
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Laplacian model objectives (the cell context Laplacian had a linear relationship with k, so it 

was less informative for model selection). Diminishing returns were reached at k = 10. For 

a comparison, we also swept across k while fixing t = 1 (representing hard clustering). We 

also repeated these experiments without graph regularization (by setting α and β to 0).

For the cancer cell fitness screens, we performed a grid search over k = 25 to 675 in steps 

of 25, and t = 1:8, resulting in 216 model instances. From this search, we selected t = 4, 

as this was the sparsest model parameter whose objectives remained well behaved for all 

values of k. Subsequently, we performed a second sweep over k = 25 to 675 in steps of 5, 

with t fixed at 4, resulting in 131 model instances. Diminishing returns in the approximation 

error and gene Laplacian model objectives were observed at k = 220, which we chose for 

the final factorization. We confirmed that model objectives for these hyperparameter choices 

were stable to random seed initialization.

Various other model hyperparameters were set to the default values recommended in the 

original paper (Yankelevsky and Elad, 2016), and were as follows: α = 0.2; β = 0.6; number 

of iterations = 20. Finally, we set the graph regularization terms according to the settings 

explained above: neighbor graph degree = 5; neighbor graph metric/edgeweight = cosine 

similarity.

Dictionary learning experiments: Robustness, denoising, and transferability—
To assess robustness, we performed DGRDL with different random seed initializations, 

using the same k-medoids initialized dictionary. Element-wide consistency between the 

resulting dictionaries was assessed using Pearson correlation.

To assess the denoising properties of dictionary learning on fitness data, we created four 

noisy versions of the cancer cell fitness screening dataset by adding Gaussian random noise. 

The Gaussian random noise matrices were created using the R function rnorm with standard 

deviations set to a variety of values (SD = 0.25, 0.5, 1, 1.5). We also randomly split the 

2,921 gene effects in cancer cells into 2,191 training genes and 730 test genes.

For each of the five datasets (original data and four noise levels), we trained DGRDL 

on the training gene effects only (using k = 220, t = 4) and subsequently modeled the 

corresponding unseen test genes in terms of dictionary elements (with the same noise level 

present in the test and training genes). Each reconstructed test gene was subsequently 

compared to the corresponding gene effect in the raw data (which did not have additional 

synthetic noise added) using Pearson correlation as a metric. We repeated this entire process 

five times, and kept the mean Pearson correlation for each test gene at each noise level. For 

each noise level, the distribution of these resulting scores were plotted as a distribution.

For the transferability experiments, we used a dictionary trained on data measured by one 

institute (Broad) to model the corresponding gene effects measured by another institute 

(Sanger), which used different experimental conditions and CRISR-Cas9 guide RNA 

sequences for each gene. We took a dictionary trained on the full Broad 2,191 gene effects 

over 675 cell lines (k = 220, t = 4) and subsetted it to the 161 cell lines that were screened 

by both institutes. For the Broad and Sanger datasets, we modeled the corresponding 2,901 

overlapping gene effects across the 161 common cell lines in terms of the same Broad-
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trained dictionary. The resulting approximations were assessed using Pearson correlation 

and were plotted as a distribution for each dataset. As a comparison, a dictionary with 

shuffled cell line annotations was used to model the 2,901 Sanger-measured gene effects.

Neighbor graph embedding to visualize gene function landscapes—For 

visualizing genotoxic and cancer cell fitness screen collections, we utilized the UMAP 

approach (McInnes et al., 2018) as implemented by the R umap package. In each case, two 

matrices were concatenated and used as input: the preprocessed gene effects that served as 

inputs to Webster, and the dictionary matrix that is outputted by Webster. For the genotoxic 

screens, the 304 gene effects and 10 functional effects were plotted using the following 

UMAP parameters: metric = “pearson”, num_neighbors = 15. For the cancer cell fitness 

screens, the 2,921 gene effects and 220 functional effects were plotted using the following 

UMAP parameters: metric = “pearson”, num_neighbors = 10. All other parameters were set 

to default.

Annotation of learned functions—Dictionary elements learned by Webster from each 

screen collection were annotated as follows. For each of the ten dictionary elements learned 

from genotoxic fitness screens, we considered, in order of priority, (1) strongly loaded genes 

and (2) which treatments induced a strong fitness effect. For the first of the five dictionary 

elements, the strongly loaded genes on each mapped to one of five classical DNA damage 

response pathways. These relationships were corroborated by the set of treatments that 

induce fitness effects in these genes. For three of the dictionary elements, only a single 

treatment induced a strong fitness effect on its loaded genes. These were representative 

of the resistance / sensitivity profiles of these specific treatments, which we corroborated 

by matching its strongly loaded genes against similar screens from the literature. Finally, 

two dictionary elements exhibited strong enrichment for common essential genes and 

proliferation suppressor genes in their highly loaded genes, annotations for which were 

taken from the literature (Colic et al., 2019; Hart et al., 2015).

For each of the 220 dictionary elements learned from the cancer cell fitness screens, we 

again considered, in order of importance, (1) strongly loaded genes and (2) top genomic 

features from models trained to predict the function’s fitness profile over cell lines (see 

below). For annotations of the strongly loaded genes, we used a gene annotation web 

service, gProfiler, that takes a ranked list of genes as input and outputs a ranked list 

of enriched genesets (Raudvere et al., 2019). We supplemented these annotations with 

corresponding ones from STRING (Szklarczyk et al., 2015). We searched the literature for 

additional insights and recently published corroborating papers when applicable. Finally, we 

performed biomarker association analysis using cell line features, described below.

Using a combination of geneset enrichments, specific literature annotations for the top 

loaded genes and cell line features, we were able to manually annotate each dictionary 

element. Of the 220 dictionary elements, 199 elements were mapped to a biological function 

using manual curation by the authors. Of these, 195 were annotated according to geneset 

enrichments among top loaded genes, and 4 were named based on a clear biomarker. 

Nineteen of the dictionary elements were highly loaded for essential genes, which incur 

fitness effects at the lower detection limit of our assay and group together in our analysis 
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for that reason. These functions were labeled as “Common Essential (Gene)”, where the 

Gene was chosen to be the top loaded gene, or “Common Essential (Chr#)”, when the 

common essential genes shared synteny on chromosome regions (Amici et al., 2021). 

Finally, two dictionary elements could not be mapped to a biological process. On deeper 

examination, the top loaded genes for both of these functions were perturbed using Avana 

CRISPR-Cas9 guides that targeted non-unique genomic sequences, suggesting that these 

elements represented technical factors that were separated from the remainder of the data. 

We labeled these as “[Gene] (unclear)”.

Associating fitness effects with baseline genomic features of cell lines—
Baseline genomic features were associated to each function using predictive modeling. 

Using the function’s inferred fitness effect across cell lines as the target, we performed 

random forest regression using the following features from the DepMap 21Q2 release 

(https://doi.org/10.6084/m9.figshare.14541774.v2):

• RNAseq expression

• copy number

• boolean mutation matrices

• Methylation

• Proteomics

• Lineage

• metabolomics data

The numerical features were normalized and the categorical features were one-hot encoded 

and then combined into a feature matrix. These features were then used to predict the target 

fitness profile using 5-fold cross validation, using Pearson correlation as the metric for 

model performance. We selected the top 1000 features in each fold using the f-regression 

metric to fit the model to the target. A final model was trained on all the data and the 

feature importances were extracted from that model to help determine the likely features that 

were most important in these predictions. In certain cases, cell lines strongly dependent on 

a certain function harbored interpretable predictive features; those are reported in the paper 

when applicable, and were used to corroborate the function name chosen as described above.

Plotting pleiotropic networks—For the Cancer Dependency Map dataset, we estimated 

the fraction of fitness genes that were pleiotropic. For the denominator, we used the number 

of genes whose approximation by Webster had a Pearson score of 0.4 or higher compared to 

its original measured gene effect (2498 genes). We then reported the fraction of these genes 

whose loadings onto two or more functions meets or exceeds 0.25 SD (1320 genes).

For network visualizations of pleiotropy, we start with a set of functions. Each pair of 

functions is connected by an edge if they share at least one pleiotropic gene (defined by the 

criteria above) which is loaded onto both functions. The width of this edge is proportional 

to the number of pleiotropic genes they share. Networks were visualized using the R graph 

package.
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Protein complex annotations—Curated annotations for modular protein complexes 

were taken from the literature. Sources were used that identified modules using either 

structural or other biochemical means (biochemical purification of intact complexes 

compared to knockout of key subunits). The sources were as follows:

• STAGA/ATAC complexes (Spedale et al., 2012)

• SWI/SNF complexes (Mashtalir et al., 2018).

• Mediator complex (Tsai et al., 2014).

• Integrator complex (Pfleiderer and Galej, 2021; Sabath et al., 2020; Tilley et al., 

2021; Zheng et al., 2020)

Subcellular localization analyses—The Human Cell Map project profiled bait-prey 

interactions in human cells using proximity ligation. We downloaded their subcellular 

localization inferences for 4,424 proteins across 20 subcellular locations (Go et al., 2021). 

Of these proteins, 1,463 had corresponding gene effects as part of the Webster analysis 

in cancer cell fitness screen, so their data was filtered to a dense matrix of 1,463 protein 

localization profiles, and the Webster loadings matrix was filtered to the same set of 1,463 

genes assigned loaded across 220 inferred biological functions.

To ask whether highly loaded genes in specific functions shared subcellular localization 

annotations, we took the matrix product, which resulted in a new matrix of 220 functions 

scored across 20 localizations. Each of the 220 rows of this matrix is the sum of the 

individual protein-level localization distributions weighted by their loading score on that 

function. This was used for the basis of subcellular localization analysis of our Webster 

inferred functions.

We noted during clustering of the 20 subcellular localizations (both in the original NMF 

matrix as well as this new matrix product) that each could be grouped into one of seven 

interpretable compartments. These compartment level annotations were used throughout the 

paper.

Finally, we report the localization specificity of individual functions. For each of the 220 

functions, the entropy of its distribution over 20 localizations was calculated using the 

R entropy package, and the resulting 220 entropy scores were rescaled such that lowest 

entropy distributions were assigned a new “Specificity” score of 1, while the highest entropy 

distributions were assigned a score of 0.

Compound sensitivity data—PRISM Primary Screen compound sensitivity data was 

obtained from the Drug Repurposing Hub Figshare archive (primary-screen-replicate-

collapsed-logfold-change.csv, https://doi.org/10.6084/m9.figshare.9393293.v4). The raw 

data matrix consisted of 5,274 compound sensitivity profiles measured over 578 cell lines 

using a 2.5 uM dose treatment. To eliminate cell line quality effects, we subtracted a 

trimmed mean of each cell line profile from each compound sensitivity profile.

To prepare the data for modeling in terms of Webster’s latent functions, we selected 

compound classes representing known mechanisms of action, for which there were at least 
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5 compound sensitivity profiles in the primary screen. This matrix contained missing values, 

which were imputed using the R package FastImputation. Finally, we kept those cell lines 

that were also screened in the CRISPR-Cas9 fitness dataset.

The final compound sensitivity profiles with known MOA’s consisted of 191 compound 

sensitivity profiles over 367 cell lines. Each compound was modeled in terms of the 

dictionary matrix learned from CRISPR-Cas9 gene perturbation, filtered to the same 367 

cell lines. The modeling was performed with orthogonal matching pursuit with t = 4, 

such that each compound sensitivity profile was modeled as a sparse combination of four 

dictionary elements.

The 191 compound sensitivity profiles were added as data points to the UMAP gene 

function plot by reconstructing each compound sensitivity profile using full-sized dictionary 

elements (675 cell lines), and using the R predict function to add the imputed profile to the 

previously learned R umap object.

These steps were repeated for the PRISM Secondary Screen compound sensitivity data, in 

which the same compounds as above were treated at multiple dose points.

Synthetic data example—The synthetic dictionary in R25×2 was generated as follows. 

Selectively essential biological functions exhibit skewed distributions in their fitness effects 

across cell contexts. Accordingly, we simulated the fitness effects of two biological 

functions over 25 cell contexts by generating two random vectors with skew normal 

distributions, using the dsn function in R (parameters: xi = 0.1, omega = 0.3, alpha = 

5). Empirically, such fitness effects are rarely perfectly orthogonal, as cancer cell lines can 

exhibit more than one rate limiting dependency for growth. Therefore we generated the 

above vectors to have a slight correlation to one another (cosine similarity = 0.2).

The loadings matrix in R2×100 was constructed by concatenating the following repeated 

columns: [2,0] 40 times, [0,2] 40 times, [1,1] 20 times. This corresponds to 40 genes 

mapping to Function 1, 40 genes mapping to Function 2, and 20 genes mapping equally to 

both.

The synthetic fitness measurements were generated by taking the matrix product of the 

synthetic dictionary in R25×2 and the loadings matrix in R2×100 resulting in a noiseless gene 

effect matrix in R25×100, to which normally distributed random noise was added (generated 

by the rnorm function in R using 0.3 standard deviation).

From this input, various factorizations were performed. PCA was run with the prcomp 

function in R and the first two components were kept. ICA was run using the 

clusterFastICARuns function in the MineICA R package, which is based off the MATLAB 

icasso function (http://research.ics.aalto.fi/ica/icasso/), which aggregates repeated runs of 

FastICA (https://research.ics.aalto.fi/ica/fastica/) to report more stable components. ICA was 

set to find two components. K-means was run using the kmeans function in R, with k = 2. 

Webster was run with k = 2, t = 2, with neighbor graph degree = 1.
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Additional factorization of genotoxic screening data—For PCA applied to 

the genotoxic screening dataset, we set the number of components to 8, which was 

automatically chosen according to an “elbow plot” of the eigenvalues corresponding to each 

component in the model, using the quickelbow function in the R package bigpca. For ICA, 

we set the number of components to 13, according to the MSTD score from (Kairov et al., 

2017), which calculates an optimal number of stable ICA components.

To compare the Webster, PCA and ICA factorizations, we computed an individual AUROC 

for each geneset defined by (Olivieri et al., 2020) for each inferred component, using the 

roc_auc function in the R package yardstick. This computes the enrichment specificity of 

each geneset across components, according to the rank order of genes by their loading scores 

on that component.
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Highlights

• Webster infers gene multifunctionality from high-dimensional gene 

perturbation data

• A matrix of gene effects is compressed into a low-rank dictionary of 

functional effects

• Each gene effect is sparsely modeled as a pleiotropic mixture of functional 

effects

• Projecting compound sensitivity profiles into this latent space recovers drug 

MOA
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Figure 1. Pleiotropy underlying the fitness effects of gene perturbation can be approximated 
using dictionary learning
(A) Fitness screen collections measure changes in cell growth rate following gene 

perturbation across diverse cell contexts. Webster applies graph-regularized dictionary 

learning to these data to discover latent variables corresponding to biological functions. 

Webster returns (1) a dictionary matrix containing the fitness effect of perturbing 

each inferred biological function and (2) sparse gene-to-function loadings. Using this 

information, each measured gene effect can be approximated as a sparse linear combination 

of these latent functional effects, scaled by the appropriate loadings. Given the number of 

latent functions (k) and a sparsity parameter (t), Webster minimizes the total approximation 

error while preserving the local structure of genes and cell contexts in its reduced-

dimensional representations (see also Figure S1A).
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(B) A generative example. Fitness effects corresponding to two distinct biological functions 

are generated over 25 cell contexts, shown in a heatmap, with a negative score indicating a 

slowed growth rate.

(C) Top: diagram of gene-to-function relationships. Gene C influences both functions, 

representing pleiotropy. Bottom: A gene’s contribution to each function is captured in a 

loading score, shown in a heatmap.

(D) To simulate the fitness effect of knocking out each gene, we scaled the appropriate 

functional effects with the loading scores defined in C, adding random noise to represent 

measurement error.

(E) This results in a synthetic screening dataset of 100 gene perturbations across 25 cell 

contexts, with the original biological functions implicit in the structure of the data. This 

matrix is the sole input to Webster.

(F) From this dataset, Webster was parameterized to infer two functional effects and model 

each gene effect as a mixture of both functional effects. Webster recovered a dictionary 

matrix that matched the ground truth defined in (B), and a gene-to-function loadings matrix 

that matched the ground truth defined in (C).

(G) Webster reconstructed each noisy gene effect measurement as a sparse linear 

combination of learned functional effects, thereby accommodating pleiotropy. For example, 

Webster accurately modeled knockout of Gene C as a near-equal mixture of knocking out 

Function 1 and Function 2 while isolating measurement noise in the model residuals.
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Figure 2. Pleiotropy underlies the DNA damage response to genotoxins in a human cell line
(A) The immortalized human cell line RPE1-hTERT harboring a genome-scale CRISPR-

Cas9 knockout library was subjected to 31 genotoxic stressors at a sublethal dose, resulting 

in a genotoxic fitness screen collection (Olivieri et al., 2020). From this data matrix, Webster 

was parameterized to infer 10 biological functions and approximate each gene effect as a 

sparse mixture of two functional effects.

(B) Top: the original fitness data, preprocessed to a set of 304 high-variance fitness gene 

effects from 31 treatment conditions, shown as a hierarchically clustered heatmap. Bottom: 

Webster’s approximation of the data, with each gene effect approximated as a sparse mixture 

of two inferred functions. The order of genes and treatments is preserved between panels.

(C) The dictionary matrix. Each column of the dictionary captures the inferred fitness effect 

of depleting an biological function learned from the data.
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(D) The loadings matrix. Top: Sparse gene-to-function loadings for the 304 fitness genes. 

Each gene (column) has two nonzero loadings, encoding the model’s sparse representation 

of its gene effect. Bottom: Literature curated gene annotations, defined by Olivieri et al. 

(2020). Gene order is preserved between panels. TSG, tumor suppressor gene.

(E) Gene effect decomposition. Webster decomposes H2AFX knockout as a mixture of two 

functional effects related to DNA double-stranded breaks. The first function, homologous 

recombination, has a fitness effect induced by olaparib and camptothecin, etc. The second, 

end joining, has a fitness effect induced by doxorubicin and etoposide, etc. Webster 

faithfully modeled the H2AFX gene effect as the sum of these two functional effects, scaled 

by their respective loadings (Pearson = 0.76).

(F) Top: relationships learned from fitness data for H2AFX and MCPH1, an obligate 

H2AFX interactor. Each arrow corresponds to an inferred gene-to-function loading. Bottom: 

Illustration of H2AFX/MCPH1’s shared roles as DNA double-stranded break sensors 

upstream of homologous recombination and end joining.

(G) Additional gene loadings. Left: The top 15 genes ranked by their loadings on 

homologous recombination alongside literature annotations, as previously described in D. 

Right: Joint UMAP embedding of gene and functional effects, with genes colored by loading 

scores. Gene effect data from Olivieri et al. (2020). Functional effects inferred with Webster 

(this study) (see also Figure S2D).

(H) Same as (G), but for end joining gene loadings. In the UMAP, H2AFX and MCPH1 

are embedded between homologous recombination and end joining. Gene effect data from 

Olivieri et al. (2020). Functional effects inferred with Webster (this study).

(I) A network of DNA damage functions, with the number of pleiotropic genes connecting 

functions represented by line thickness.
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Figure 3. Pleiotropy underlies the fitness effect of gene knockout across human cancer cell lines
(A) The Cancer Dependency Map (DepMap) fitness screen collection. Individual human 

cancer cell lines were screened for genetic dependencies for cell growth by comparing cell 

counts before and after infection with a genome-scale CRISPR-Cas9 gene knockout library.

(B) The DepMap data were preprocessed to a set of 2,921 high-variance fitness genes 

screened across 675 cell lines. From this data alone, Webster learned a dictionary matrix of 

220 fitness effects reflecting inferred biological functions and approximated each gene effect 

in terms of four functional effects.

(C) Webster approximated the fitness effect of SHOC2 knockout as a mixture of four 

functional effects (activated KRAS, activated NRAS, EGFR signaling, and FGFR signaling), 

each of which were strongest in cell lines harboring corresponding genomic alterations 

(KRAS mutation, NRAS mutation, activated EGFR, and FGFR expression, respectively). 
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This decomposition reflects the pleiotropic interactions underlying SHOC2’s overall 

function downstream of these signaling pathways.

(D) Joint UMAP embedding of fitness effects for genes and functions inferred from 

DepMap data. Each of the 220 functions (triangles) and 2,921 genes (circles) are 

co-embedded in a 2D layout. Selected functions of interest are labeled on the map. 

Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/

m9.figshare.11384241.v3). Functional effects inferred with Webster (this study).

(E) For each function from (C), genes in the joint embeddings are colored according to their 

loadings on each function, including an inset focusing in on the immediate neighborhood 

of the function of interest. To the right, the top 10 ranked genes are shown with a heatmap 

of their respective gene loadings. Gene effect data from Cancer Dependency Map 19Q4v3 

release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with 

Webster (this study).

(F) Top: relationships learned from fitness data for SHOC2 and RAF1, which also acts 

downstream of activated RAS proteins. Each arrow corresponds to an inferred gene-to-

function loading. Bottom: Illustration of SHOC2/RAF1’s shared biological role in activated 

RAS signaling.

(G) A network of SHOC2-related functions. Each node is a function inferred by Webster 

from fitness data. Pleiotropic genes with loadings on two functions are plotted as edges 

in the network, with the number of pleiotropic genes connecting functions represented by 

the line thickness. The four bolded functions are those used in the SHOC2 gene effect 

approximation, while the three additional functions shared at least two pleiotropic genes 

with one of these four functions.

Pan et al. Page 42

Cell Syst. Author manuscript; available in PMC 2022 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Modular pleiotropy within protein complexes resolves C7orf26 as a member of the 
Integrator complex INTS10–13-14 module
(A) STAGA and ATAC protein complexes share a histone acetyltransferase module. From 

cancer cell fitness data alone, Webster inferred separate functional effects of STAGA and 

ATAC depletion while decomposing the effect of knocking out shared subunits as a mixture 

of STAGA and ATAC depletion.

(B) The SWI/SNF family protein complexes consist of specialized subunits bound to the 

common enzymatic subunit SMARCA4. From cancer cell fitness data alone, Webster 

inferred separate functional effects of depleting each subcomplex while decomposing the 

effect of SMARCA4 knockout as affecting all three subcomplexes.

(C) The Integrator complex is a modular RNA endonuclease complex. From cancer cell 

fitness data alone, Webster learned three distinct functional effects involving Integrator 

complex componentry. Each of the three functions captured the specific effect of knocking 

out recently discovered structural modules of the complex. An unknown interactor, C7orf26, 
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was approximated as a mixture of all three Integrator functions, with the strongest loaded 

function mapping to the INTS10–13-14 functional module.

(D) Schematic of two C7orf26 gene splice variants curated by the genotype-tissue 

expression (GTEx) portal.

(E) Immunoprecipitation (IP) of C7orf26-HA variants from 293T nuclear extracts, 

immunoblotted for INTS10–13-14 module subunits.

(F) Mass spectrometry of C7orf26-HA and C7orf26-V5 immunoprecipitations from 293T 

cells shows stoichiometric pull down of INTS10, 13, and 14 with the full-length C7orf26.

(G) 293T cells with CRISPR-Cas9 perturbation of C7orf26 display loss of INTS10 at the 

protein level.

(H) IP of endogenous C7orf26 from 293T cells with and without INTS10 knockout.

(I) Model figure—C7orf26 stabilizes INTS10, which assembles together with the INTS13–

14 heterodimer to form the INTS10–13-14-C7orf26 module.
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Figure 5. Gene function embeddings reflect pleiotropy between hierarchically 
compartmentalized functions
(A) Conceptual overview of cellular organization. After learning gene functions with 

Webster from cancer fitness data alone, experimentally derived subcellular localization data 

(Go et al., 2021) were used to annotate Webster’s functions across 20 subcellular locations 

within a total of 7 cellular compartments.

(B) Joint embedding of fitness effects for genes and functions inferred from DepMap 

data, with functions colored by their specificity for one of seven cellular compartments

—mitochondria, endoplasmic reticulum (ER), recycling, membrane, nucleus, cytosol, and 

miscellaneous. Subcellular location data were not used during the training of the Webster 

model. Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/

10.6084/m9.figshare.11384241.v3). Functional effects inferred with Webster (this study). 

Subcellular location data from Human Cell Map (Go et al., 2021).
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(C) Insets from (B). detailing functions within the ER, recycling and membrane 

compartments, capturing specific subcellular locations or protein complexes within these 

broad compartments. Gene effect data from Cancer Dependency Map 19Q4v3 release 

(https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects inferred with Webster 

(this study). Subcellular location data from Human Cell Map (Go et al., 2021).

(D) Insets from (C). detailing genes embedded nearby their pleiotropic gene functions. 

Bolded genes are mentioned in the main text. Gene effect data from Cancer Dependency 

Map 19Q4v3 release (https://doi.org/10.6084/m9.figshare.11384241.v3). Functional effects 

inferred with Webster (this study). Subcellular location data from Human Cell Map (Go et 

al., 2021).

(E) Pleiotropic genes bridge biological functions that are physically distinct. Left: 

Pleiotropic genes for peroxisome biogenesis and cholesterol biosynthesis functions, which 

are enriched at the peroxisome and the ER, respectively. Middle: Pleiotropic genes for the 

Commander/WASH, HOPS/CORVET, and amino acid activation of mTOR functions, which 

are enriched at the early endosome, endosomal vesicles, and lysosomes, respectively. Right: 

Pleiotropic genes for the SCAR/WAVE (cytosol), integrins, and focal adhesion functions.
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Figure 6. Projecting compound perturbations into a reference space of gene functions
(A) Conceptual overview of reference-query projection for fitness data. If Webster learned 

true biological functions from gene perturbation data, those functions should generalize 

to unseen perturbations measured over the same cell lines, such as compound sensitivity 

measurements.

(B) Overview of query dataset. Compounds from the Drug Repurposing Hub were screened 

at a uniform dose (2.5 μM) over a set of barcoded cell lines to generate compound sensitivity 

profiles (Corsello et al., 2020). We modeled 191 high-variance compound treatments by 

approximating each compound sensitivity profile as a mixture of up to four gene functions 

learned from CRISPR data using Webster. Compound data were not used during the training 

of the gene function dictionary.

(C) Joint UMAP embedding of genes, functions, and compound sensitivity profiles. 

Compounds embedded near gene functions reflecting their mechanism of action. 
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Gene effect data from Cancer Dependency Map 19Q4v3 release (https://doi.org/10.6084/

m9.figshare.11384241.v3). Functional effects inferred with Webster (this study). Compound 

sensitivity data from PRISM Drug Repurposing 19Q4v4 Dataset (https://doi.org/10.6084/

m9.figshare.9393293.v4).

(D) Focus on three gene functions: BRAF signaling, H2A.Z maintenance, and mevalonate 

synthesis. Top: The five genes most strongly loaded onto each function are shown next to 

a heatmap of their loading scores. Middle: The compounds most strongly loaded onto each 

gene function are shown next to a heatmap of their loading scores. Bottom: Insets of the 

embedding shown in (C) centered on each of the three gene functions.

(E) Query compound projection onto reference gene functions varies by dose. In a secondary 

screen, various HMGCR inhibitors were screened at an 8-point dose curve ranging from 10 

μM to 8 nM. Compound sensitivity profiles at each dose point were modeled independently 

in terms of Webster’s gene functions. The resulting loadings on the mevalonate synthesis 

function are plotted against the dose (see also Figure S6E).
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Figure 7. A distributional hypothesis of gene function
Distributional semantics powers modern advances in machine learning applied to natural 

language. These models rely on latent spaces derived from word co-occurrence statistics. 

Representing a word as a vector in this space enables numerical reasoning about word 

meanings. In particular, applying sparse dictionary learning to word vectors recovers 

interpretable semantics, capturing polysemy. Similarly, gene effects may be thought 

of as vectors as well, defined by essentiality measures across cell contexts. Webster 

discovers latent functions that “point” in the direction of strongly co-essential fitness genes. 

Pleiotropic genes can then be modeled as mixtures of these latent functions.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HA Cell Signaling Technology 2367S

INTS10 Abcam ab180934

C7orf26 Novus NBP2-14764

INTS13 Bethyl A303-575A

INTS14 Bethyl A303-576A

INTS9 Cell Signaling Technology 13945S

INTS6 Santa Cruz sc-376524

TBP Abcam ab51841

Deposited data

Genotoxic fitness screens http://durocherlab.org/datasets/ https://doi.org/10.1016/j.cell.2020.05.040, 
Supplementary Table 2

Cancer Dependency Map, 19Q4 release (fitness data 
for Webster input)

https://depmap.org/portal/ https://doi.org/10.6084/
m9.figshare.11384241.v3

Cancer Dependency Map, 21Q2 release (omics data 
for biomarker pipeline)

https://depmap.org/portal/ https://doi.org/10.6084/
m9.figshare.14541774.v2

PRISM Drug Repurposing data https://doi.org/10.1038/
s43018-019-0018-6

https://doi.org/10.6084/
m9.figshare.9393293.v4

Human Cell Map (proximity ligation data) 10.1038/s41586-021-03592-2 10.1038/s41586-021-03592-2

Experimental models: Cell lines

293FT Thermo Fisher Scientific R70007

Oligonucleotides

INTS6 Avana gRNA (chr13_51452485_+): 
ATGGCTGCGCTGGTTCATAG

This paper N/A

INTS10 Avana gRNA (chr8_19823975_−) : 
TCTTAAACAACCTCTCCCAA

This paper N/A

C7orf26 Avana gRNA (chr7_6594465_+) : 
TTACTGTGTGAGGTTAGCCA

This paper N/A

Recombinant DNA

lentiCRISPR v2-Blast Addgene 83480

pLEX_307 Addgene 41392

pLX_HA This study 178534

pLX_HA-C7orf26v1 This study 178535

pLX_HA-C7orf26v2 This study 178536

pLX_317-C7orf26v1 This study 178537

pLX_317-C7orf26v2 This study 178538

Software and algorithms

R R Foundation https://www.r-project.org/

MATLAB Mathworks https://www.mathworks.com/products/
matlab.html

gProfiler doi:10.1093/nar/gkz369 https://biit.cs.ut.ee/gprofiler/
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REAGENT or RESOURCE SOURCE IDENTIFIER

DGRDL 10.1109/TSIPN.2016.2605763 https://elad.cs.technion.ac.il/software/

gene_fn This study 10.5281/zenodo.5773076

graph_dictionary_learning Various open source codebases 10.5281/zenodo.5773078
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