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Despite the need for alternative sources of human hematopoietic stem cells (HSCs), the
functional capacity of hematopoietic cells generated from human embryonic stem cells
(hESCs) has yet to be evaluated and compared with adult sources. Here, we report that
somatic and hESC-derived hematopoietic cells have similar phenotype and in vitro
clonogenic progenitor activity. However, in contrast with somatic cells, hESC-derived
hematopoietic cells failed to reconstitute intravenously transplanted recipient mice because
of cellular aggregation causing fatal emboli formation. Direct femoral injection allowed
recipient survival and resulted in multilineage hematopoietic repopulation, providing direct
evidence of HSC function. However, hESC-derived HSCs had limited proliferative and
migratory capacity compared with somatic HSCs that correlated with a distinct gene
expression pattern of hESC-derived hematopoietic cells that included homeobox (HOX) A
and B gene clusters. Ectopic expression of HOXB4 had no effect on repopulating capacity of
hESC-derived cells. We suggest that limitations in the ability of hESC-derived HSCs to
activate a molecular program similar to somatic HSCs may contribute to their atypical in
vivo behavior. Our study demonstrates that HSCs can be derived from hESCs and provides an
in vivo system and molecular foundation to evaluate strategies for the generation of

clinically transplantable HSC from hESC lines.

Somatic hematopoietic stem cell (HSC) trans-
plantation is the most common stem cell-based
therapy in use today. Currently, somatic stem
cells from human bone marrow (BM) and um-
bilical cord blood (UCB) are the only sources
of transplantable cells used clinically for he-
matopoietic recovery, but they have limited
availability, and only one third of patients have
a matched related donor. Evaluation of human
hematopoietic cells before transplantation into
patients is based on both phenotypic properties,
such as the number of blood cells (CD457") ex-
pressing putative HSC markers that include
CD34, and functional properties using in vitro
clonogenic assays detecting CFUs as a mea-
sure of multilineage hematopoietic capacity
arising from progenitors. Although not used in
preclinical assessment, the nonobese diabetic

L. Wang and P. Menendez contributed equally to this work.

The online version of this article contains supplemental material.

JEM © The Rockefeller University Press  $8.00
Vol. 201, No. 10, May 16,2005 1603-1614 www.jem.org/cgi/doi/10.1084/jem.20041888

(NOD)/SCID repopulation assay serves as a
surrogate in vivo assay to measure repopulation
capacity. In the absence of human experimen-
tation, these in vitro and in vivo assays serve as
surrogate indices of human HSC (1, 2). Plu-
ripotent human embryonic stem cells (hESCs)
can differentiate into primitive hematopoietic
cells, but it is unknown whether transplantable
HSCs can be generated.

Because somatic HSC transplantation is in
wide clinical use and represents the reference
standard for HSC, we used surrogate in vitro
and in vivo assays both to assess the HSC po-
tential of hESCs and to compare this potential
to somatic HSCs. Here, we directly compare
the functional hematopoietic potential of the
hESC-derived hematopoietic cells (3) with
cord blood (CB)—derived somatic CD45"
cells. Direct femoral injection of hESC-derived
hematopoietic cells resulted in multilineage
human hematopoietic repopulation, providing
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direct evidence of HSC function. However, hESC-derived
HSCs possessed unique in vivo behavioral properties differ-
ing from somatic HSCs that could be associated with a dis-
tinct molecular signature of hESC-derived hematopoietic
cells. Our study underscores the importance of functional
and molecular comparison of hESC-derived progeny with
their somatic counterparts for clinical regenerative therapies.

RESULTS

hESC-derived hematopoietic cells have in vitro clonogenic
progenitor activity similar to that of somatic cells,

but fail to engraft after intravenous delivery

and reduce survival of NOD/SCID recipients

Our group has recently shown that CD45%¢ PFV cells iso-
lated from human embroid bodies (hEBs) are responsible

for the hemogenic potential of hESCs (3), giving rise to
>98%—pure populations of CD45" hematopoietic cells
(Fig. 1 A) and to a substantial proportion of primitive he-
matopoietic cells that express the stem cell marker, CD34+
(8.5 £ 2.4%; Fig. 1 A). Compared with highly purified
(CD457/CD34%/CD38 /Lin~) somatic UCB-derived he-
matopoietic cells cultured in identical conditions, hESC-
derived hematopoietic cells had equivalent progenitor
frequency (Fig. 1 B) and myeloid and erythroid lineage
representation (Fig. 1 C). Thus, although surrogate in vitro
assays demonstrated intrinsic differences in progenitor dif-
ferentiation, with hESC-derived cells favoring granulocytic
potential (Fig. 1 C), these results indicate that primitive so-
matic and hESC-derived hematopoietic cells possessed sim-
ilar progenitor content.
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Figure 1. Generation of hESC-derived hematopoietic cells from
hemogenic precursors and comparison with somatic hematopoietic
cells using in vitro and in vivo assays. (A) Derivation of a cell population
isolated from d 10 hEBs that lacks CD45 but expresses PECAM-1, Flk1,
and VE-cadherin (termed CD45"9PFV) (3). After 7 d of culture in serum-
free medium containing hematopoietic cytokines (SCF, FLT3L, IL-3, IL-6,
and G-CSF), these hemogenic precursors give rise to hematopoietic cells
(CD45%) and a substantial proportion of primitive hematopoietic cells
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(CD45*/CD34%). (B) Purified CD45%/CD34*/CD38~/Lin~ hematopoietic
cells sorted from somatic CB (n = 8) and hESC-derived hematopoietic
cells (n = 6) demonstrate similar CFU capacity and (C) CFU type. (D) 8-wk
survival of NOD/SCID mice receiving i.v. injection of 5 X 10%-1.6 X 107
somatic hematopoietic cells over. (E) Level of human chimerism in the BM
of recipient NOD/SCID mice surviving to 8 wk transplanted with somatic
or hESC-derived hematopoietic cells.
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Bona fide HSCs can be defined functionally only by sus-
tained multilineage in vivo reconstitution upon transplanta-
tion. Experimentally, the NOD/SCID xenotransplant assay
has provided a powerful surrogate to define candidate hu-
man hematopoietic stem cells functionally, defined as human
SCID-repopulating cells (SRCs) (4). To evaluate in vivo re-
populating capacity of hESC-derived hematopoietic cells,
5 X 10°-1.6 X 107 hESC-derived hematopoietic cells were
transplanted by i.v. tail-vein injection into sublethally irradi-
ated NOD/SCID mice. In contrast with 100% survival of
recipient mice receiving a similar dose of cultured primitive
somatic hematopoietic cells, <40% of the mice transplanted
with hESC-derived hematopoietic cells survived 8 wk after
i.v. transplantation (Fig. 1 D). Unlike cultured somatic he-
matopoietic cells that successfully repopulated the BM of re-
cipient mice 8 wk after i.v. transplantation, no chimerism
was detected in surviving recipients of hESC-derived he-
matopoietic cells (Fig. 1 E). Therefore, despite equivalent
frequency of CD34% cells and progenitor (CFU) capacity,
the in vivo behavior of i.v.-transplanted hESC-derived he-
matopoietic cells is distinct from that of their somatic coun-
terparts. We surmised that either HSCs were not generated
under these conditions or that HSCs were generated but
lacked appropriate intrinsic properties to enable their detec-
tion in a traditional human HSC in vivo assay system.

hESC-derived hematopoietic cells form pulmonary emboli

in vivo via aggregation in response to rodent serum

Because of poor survival of recipients transplanted by 1.v. in-
jection with hESC-derived hematopoietic cells, we exam-
ined lungs, heart, brain, spleen, kidneys, liver, pancreas, in-
testines, and muscle of transplanted mice by serial sectioning
and staining 24 h after i.v. transplantation of somatic or
hESC-derived hematopoietic cells. In contrast with normal
lung structures in mice receiving similar doses of somatic he-
matopoietic cells (Fig. 2 A), lung tissue from mice receiving
hESC-derived hematopoietic cells revealed numerous em-
boli lodged in small pulmonary capillaries that obstructed the
vessel lumens (Fig. 2, B and C). The human origin of these
emboli was confirmed by 1.v. transplantation of GFP-tagged
hESC-derived hematopoietic cells (Fig. 2 C, inset). Because
human emboli were detected in the lungs of mice trans-
planted with untransduced and GFP-transduced hESC-
derived hematopoietic cells, transduction is probably not
contributing to pulmonary obstruction. To exclude potential
physical differences, the cellular size of CD45% hESC-
derived hematopoietic cells was compared with somatic he-
matopoietic cells after 7 d of liquid culture using forward and
side light-scatter properties detected by flow cytometry.
hESC and somatic hematopoietic cells were indistinguish-
able in both size and complexity (Fig. 2 D). In addition, the
mean cellular diameter was evaluated and quantitated by mi-
croscopy, revealing an average of 11.8 £ 2.0 wm (n = 200)
for somatic hematopoietic cells and 12.3 = 2.2 pm (n =
200) for hESC-derived hematopoietic cells. These analyses
suggest that difference in the physical size of hESC versus so-
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matic cells 1s not significant and therefore is unlikely to ex-
plain emboli formation in vivo.

With the use of established quantitative assays (5), hESC-
derived hematopoietic cells were directly cocultured with
isolated mouse blood cells, which were unable to induce a
rosette reaction or significant human cell aggregation (un-
published data). However, addition of mouse serum to cul-
tured hESC-derived hematopoietic cells caused immediate
aggregation in vitro. Quantitative analysis indicated that, af-
ter 2 h of exposure, up to 80% of hESC-derived hematopoi-
etic cells aggregated in response to adult mouse and rat se-
rum, 32% aggregated in response to adult human serum,
21% aggregated in response to human CB and human fetal
blood serum, and only 12% aggregated in response to fetal
bovine serum (Fig. 2, E and F). In contrast, adult mouse se-
rum did not cause aggregation of somatic hematopoietic cells
(Fig. 2, E and F). Based on these observations, the inability
to detect human engraftment in NOD/SCID mice from
hESC-derived hematopoietic cells may be a result of cellular
aggregation and pulmonary emboli formation after systemic
delivery by i.v. transplantation that prohibits host survival
and seeding of hESC-derived hematopoietic cells to the BM
of NOD/SCID recipients.

Detection of hESC-derived human hematopoietic
repopulating stem cells via intrafemoral injection

into NOD/SCID recipients

To bypass the circulatory system and complications associ-
ated with systemic delivery, we transplanted hESC-derived
hematopoietic cells by means of intra—bone marrow trans-
plantation (IBMT; references 6—8) directly to the femur. Ap-
proximately 4-15 X 10* hESC-derived hematopoietic cells
differentiated from hemogenic precursors were injected into
the femur of sublethally irradiated NOD/SCID mice by
IBMT. In contrast with i.v. transplanted mice (Fig. 1 D),
>90% of the mice survived IBMT >8 wk (Fig. 3 A), and
most surviving mice demonstrated human reconstitution, in-
dicative of human SRC function. Detection of human en-
graftment in the BM of the injected femur by Southern blot
analysis for human-specific a-satellite sequences is shown for
representative independent experiments (Fig. 3 B). Human
hematopoietic graft composition from hESC-derived SRCs
was similar to that previously shown for somatic SRCs de-
rived from UCB and included lymphoid (CD45%/CD19%),
myeloid (CD457/CD337) and erythroid (glycophorin Na*
CD45~ /human MHC-1%) hematopoietic lineages as shown
in a representative example in Fig. 3 C.

Because dissemination of the hematopoietic graft beyond
the injected site of delivery serves as an established in vivo
functional property of somatic HSCs (9—11), BM cells ob-
tained from noninjected contralateral femurs and remaining
long bones were examined for human chimerism. Using hu-
man-specific a-satellite sequences, human engraftment from
hESC-derived hematopoietic cells was detected in contralat-
eral femurs and other bones but at lower levels than in with
the injected femur (Fig. 3 D). Using detection of human
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Figure 2. In vivo pulmonary emboli and aggregation of hESC-derived
hematopoietic cells in response to mouse serum. Hematoxylin and eosin-
stained lung cross-sections of NOD/SCID recipient mice receiving (A) somatic
hematopoietic cells and (B) hESC-derived hematopoietic cells, 24 h after iv.
transplantation. Normal lung structures and pulmonary capillary (dashed
lines) were observed in mice receiving somatic hematopoietic cells, but mice
receiving a similar dose of hESC-derived hematopoietic cells had numerous
emboli in the serial lung cross sections. Bar, 10 wm. A representative embolus
(B, inset) lodged in the pulmonary capillary (dashed line) causes blood vessel
obstruction (B and C). The human origin of pulmonary emboli was confirmed
by i.v. transplantation of GFP-expressing hESC-derived hematopoietic cells

(C, inset; bar, 10 m; green, GFP-expressing hESC-derived hematopoietic cells;
blue, nucleus stained by DAPI [arrows]). (D) Size and complexity of somatic and
hESC-derived hematopoietic cells were evaluated by flow cytometric mea-
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surement and by direct comparison of physical size by microscopy. No differ-
ences in these properties were detected between somatic and hESC-derived
hematopoietic cells. Bar, 50 wm. (E) Microscopic examination for cellular
aggregation of hESC-derived hematopoietic cells and somatic hematopoietic
cells after 1-2 h in vitro treatment with or without serum from different
mouse and human sources. Addition of adult mouse serum did not trigger
aggregation of somatic hematopoietic cells but did cause rapid aggregation of
hESC-derived hematopoietic cells. Bar, 50 wm. (F) Quantitative analysis of cel-
lular aggregation indicated that up to 80% of hESC-derived hematopoietic
cells aggregated in response to addition of adult mouse and rat serum (n = 7);
32% aggregated in response to human adult serum (n = 3); 21% aggregated
in response to human neonatal CB serum (n = 3); 129% aggregated in re-
sponse to human fetal blood serum (n = 3); and 10% aggregated in response
to FBS (n = 3). All sera tested were used at 20% by volume.

HUMAN HEMATOPOIETIC REPOPULATING CELLS FROM HESCs | Wang et al.



A 100
9 hESC-Derived
g Hematopoietic
g 50 (n=19)
5 — Somatic Hematopoietic
%) (n=30)
T T 1
0 3 6 9
Survival time post femoral IBMT
(Weeks)
B Human/Mouse
DNA Controls
1
Exptl Expt2 Expt3 Expt4 109 19%0.1% 0% MW
1 1 1 1
2.7kb—| -« - k.l i

88C

Human Chimerism

0 FSC 250 100 CD45 104

Lymphoid Myeloid Erythroid

4

=)
=

Glycophorin A

Human/mouse DNA

> >
@
()
10 1 01 001 O IV GFQF o &G

- o6 -

=4
IR

NOD/SCID Mice
©
=}
=
m

Level of Human Chimerism
in the Bone Marrow of Recipient

1 atte
0 )
Somatic hESC-derived
Hematogmenc Hematopoietic
(6/6) (11/19)

Cell Dose

x10%) 9.515 4-15
Somatic hESC-derived
ieti Hematopoietic
150 Hematopoietic 150 P
2
5
8
T 100 100
8
E
s
® 50 50
= |
o o
> N ) > &
5@ & Nt RO @ &
\of'g,@"‘ & O® & O
QO

JEM VOL. 201, May 16, 2005

3kb

2kb

ARTICLE

chimerism in the injected femur and the other long bones as
the criterion for engraftment, 11 out of 19 mice transplanted
with hESC-derived hematopoietic cells by femoral IBMT
demonstrated hESC-derived SRC activity, compared with
six of six mice injected with purified somatic cells derived
from UCB (Fig. 3 E). Although IBMT delivery of hESC-
derived hematopoietic cells provides direct evidence for
hESC-derived SRCs, levels of human reconstitution and
frequency of detection were limited compared with UCB-
derived somatic SRC (Fig. 3 D). To compare in vivo behav-
ior of hESC-derived SRC with somatic SRC further, the
level of human chimerism established in the injected femur
from IBMT SRCs was compared with that in contralateral
femur and other bones (Fig. 3 F). In contrast with somatic
SR Cs, the majority of hESC-derived SRC engraftment was
detected in the injected femur, with only low levels ob-
served beyond the delivery site (Fig. 3 F). The low level of
sustained human reconstitution and localized detection sug-
gests that SRCs generated from hESCs are distinct from so-
matic SRCs and possess limited proliferation and migratory
ability in vivo.

hESC-derived hematopoietic cells possess a distinct
molecular signature from somatic counterparts
Although our results provide direct evidence that hematopoi-
etic cells derived from hESCs possess the developmental po-
tential to generate transplantable HSCs, in contrast with in
vitro progenitors, in vivo behavior of hESC-derived HSC:s is
limited. To explore the molecular basis that may account for
these functional differences, purified CD34%/CD38~ cells
enriched for primitive hematopoietic cells were isolated from
hESC and somatic UCB. With the use of microarray, global
gene expression analysis revealed that broad families of genes
associated with cell—cell contact and migration, cell replica-
tion, and transcriptional regulation (including HOX clusters
A and B) were differentially expressed in purified hESC-
derived and somatic cells (Fig. 4 and Table S1, available at
http://www jem.org/cgi/content/full/jem.20041888/DC1.
hESC-derived cells express higher levels of negative he-
matopoietic regulator CD164 (12) as well as the migratory

Figure 3. Femoral IBMT of hESC-derived hematopoietic cells in
NOD/SCID mice. (A) 8-week survival of NOD/SCID recipients receiving
somatic or hESC-derived hematopoietic cells by IBMT. (B) Southern blot
analysis of recipient mouse BM DNA using the human-specific a-satellite
sequences to demonstrate human chimerism from independent experi-
ments as indicated. (C) Representative example of multilineage human
hematopoietic (CD45%) reconstitution of BM cells from the injected femur
of NOD/SCID recipients receiving hESC-derived hematopoietic cells that
include lymphoid, myeloid, and erythroid lineages. (D) PCR analysis of
recipient mouse DNA extracted from BM cells using the human-specific
a-satellite sequence to demonstrate human chimerism in the injected
femur, contralateral femur, and other long bones. (E) Summary of level of
human chimerism in individual mice transplanted with somatic or hESC-
derived hematopoietic cells from hemogenic CD45"9PFV precursors.

(F) Comparative analysis of average level of human chimerism in injected
femur, contralateral femur, and other long bones.
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and/or adhesion proteins CKLF-1 (13), integrin-B3 (14),
matrix metalloproteinase 9, macrophage-inhibiting factor,
and monocyte chemoattractant protein—1 (15), which may
reduce the ability of hESC-derived hematopoietic cells to
migrate beyond the injected site and enter the circulation. In
addition, higher levels of CD47 (16), CD24 (17), MMRN
(18), PF4 (19), PF4V1 (18), GPIIIA (20), and NINJ2 (21,
22) expression in hESC-derived cells provides a mechanistic
basis for the observed aggregate formation resulting in pul-
monary emboli. Reduction of CD44 by HAS1 expression
may negatively regulate normal in vivo migratory properties
of HSCs (23). In contrast with hESC-derived cells, somatic
cells expressed substantially higher levels of CXCR4, CD44,
and l-selectin, which are involved in appropriate homing
and engraftment behavior of candidate human HSCs (24,
25), as well as matrix metalloproteinases, ADAMS (26) and
ADAM17 (27) that are involved in establishing HSC resi-
dence within the BM niche.

In addition to inappropriate homing, migration, and ag-
gregation behavior of hESC-derived hematopoietic cells,
hESC-derived HSC possessed limited proliferative capacity
in vivo based on low levels of human chimerism (Fig. 3 E).
Opverall, hESC-derived cells differentially expressed genes
involved in accelerated cell-cycle progression and loss of
stem cell self-renewal ability, whereas somatic cells expressed
genes required for maintenance and control of the quiescent
cell-cycle status, essential for function of transplantable HSCs
(Fig. 4 B). For example, up-regulated genes in somatic cells
included cyclin G2 (28), p53 binding protein (29), p21 (30),
and p57 (31), all involved in regulating quiescence, pool size,
and differentiation of mammalian HSCs (30).
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Aside from genes directly associated with the cellular be-
havior and physiology of HSCs in vivo, specific transcription
factors involved in the intrinsic developmental program of can-
didate HSCs were differentially expressed in hESC-derived
and somatic hematopoietic cells (Fig. 4 C). hESC-derived cells
overexpress Myc-binding protein that acts downstream of ho-
meobox B4 (HOXB4) (Fig. 4 C) to up-regulate cyclin D3
(Fig. 4 B and reference 32). Also up-regulated are Meis2e,
FOG-2, and E2F6, that play crucial roles in the onset of em-
bryonic hematopoiesis, as well as CBF-1 that participates in an
essential hematopoietic transcription complex containing
RUNXT1 and CBF (33). In contrast, somatic cells express genes
implicated in the self-renewal and repopulating function of
HSCs, such as MLL that regulates HOX genes (34), HLF,
which was recently shown to regulate LMO?2 that is critical to
HSC self-renewal (35), Wnt-targeted TCF4 (36, 37), and Myb
that is involved in stem cell commitment (20, 38). Most strik-
ingly, HOX A and B gene clusters demonstrate opposing ex-
pression in hESC-derived and somatic hematopoietic cells (Fig.
4 D), suggesting that developmental cues are uniquely specified
for HOX genes during hESC differentiation. We propose that
limitations in the ability of hESC-derived HSCs to activate a
genetic program similar to the spectrum of genes expressed by
somatic HSCs accounts for their limited proliferative and mi-
gratory capacity in vivo.

Ectopic expression of HOXB4 augments somatic HSCs, but is
unable to confer HSC function to hESC-derived
hematopoietic cells

Our molecular analysis of primitive hematopoietic cells de-
rived from hESC versus somatic sources indicates that multi-
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Figure 4. Comparative analysis of the molecular profile of candi-
date hESC-derived versus somatic hematopoietic stem cells. Hemato-
poietic cells derived from both hESC-hemogenic precursors and human
UCB were isolated based on the expression of CD34 and absence of CD38
(CD34+/CD38-/CD45*). Total RNA from both hESC-derived and somatic
stem cell populations was extracted, and amplified RNA was generated to
hybridize human HG-U133AB Affymetrix chips. Expression levels of hESC
and somatic CD34+/CD38~/CD45* cells were calculated relative to undif-

1608

HOXB Cluster

Cyclins
PaAIRP-DS3Y O}
SAejel UOISSaIdXT pPlo4

1239
L |
6569
[ |
3

ferentiated hESC cells. Differentially requlated genes were defined as
those being up-regulated more than twofold and being statistically signif-
icant (P < 0.01). Genes differentially expressed in primitive hematopoietic
cells derived from hESC and UCB were categorized as those involved in
(A) cell-cell contact and migration, (B) cell replication, (C) transcriptional
regulators, and (D) HOX genes. A complete dataset of the differential
microarray profile is provided in Table S1.
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ple gene profiles—specifically the HOX A and B clusters—
are inappropriately programmed, suggesting that is unlikely
that a single gene will promote a molecular signature to re-
program hESC-derived hematopoietic appropriately. Despite
the inability to generate HSC from mouse embryonic stem
cell (ESC) lines, similar molecular profiling has not been re-
ported for interspecies comparisons. Recently however, Kyba
and colleagues demonstrated that hematopoietic progenitors
derived from mouse ESC could be endowed the ability for in
vivo reconstitution by ectopic expression of HOXB4 (39).
Based on this seminal finding and the limited reconstitution
levels detected by intrafemoral delivery of hESC-derived he-
matopoietic cells (Fig. 3), we tested the potential role ectopic
expression of HOXB4 into the hESC-derived hematopoietic
cells. Using methodology recently created by our group (40),
hESC-derived hemogenic precursors were retrovirally trans-
duced using bicistronic retroviral constructs (40) to express
HOXB4 ecotopically (Fig. 5, A and B).

Ectopic expression of HOXB#4 has been shown previ-
ously to confer a profound in vivo growth advantage on hu-
man adult somatic CD347 cells while impairing myeloid dif-
ferentiation (41, 42). To ensure that our HOXB4-expressing
retroviruses transduce and produce biologically functional
HOXBH4 proteins, we transduced somatic Lin~/CD34™" cells
from CB with vector alone compared with HOXB4-express-
ing constructs shown in Fig. 5 A. Average transduction effi-
ciencies of 35 and 34% were achieved for vector and
HOXB4, respectively. Quantitative PCR confirmed that
HOXB4-transduced cells overexpressed HOXB#4 (Fig. 5 C).
Functionally, cultures seeded with CB Lin~/CD34% cells
expressing HOXB#4 showed a threefold increase in cell ex-
pansion as compared with vector-transduced CB Lin™/
CD34%" cells (Fig. 5 D). Transplantation of HOXB4-trans-
duced CB Lin=/CD34" cells into NOD/SCID mice dem-
onstrated an eightfold increase in reconstitution capacity
compared with vector-transduced human HSCs and a marked
enhancement in the generation of primitive CD34" cells
(24.7 vs. 16.6% on average; Fig. 5 F). As predicted, HOXB4
overexpression reduced myeloid differentiation from trans-
duced human HSCs, reflected in both myeloid CFU capac-
ity in vitro (Fig. 5 E) and myeloid lineage composition in
vivo (Fig. 5 F). These results indicate that our retroviral sys-
tem for inducing HOXB4 ectopic expression in human stem
cells is functional and consistent with the reported eftects of
HOXB4. Previous findings support the functionality of the
HOXB#4 protein produced by our retroviral system in hu-
man somatic stem cells (41, 42).

hESC-derived hemogenic precursors were transduced with
vector or with HOXB4-expressing retrovirus using recently
reported approaches (40). Like techniques used to evaluate
HOXB4 expression in transduced somatic cells (Fig. 5 C),
quantitative PCR demonstrated that HOXB4 expression in
hESC-derived hematopoietic cells transduced with HOXB4
was 60-fold greater than HOXB4 expression in vector-trans-
duced cells (n = 3). Analogous to HOXB4-transduced somatic
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cells, ectopic expression of HOXB4 increased the total cell ex-
pansion of cultured hESC-derived hematopoietic cells (>2.5-
fold) as compared with vector-transduced cells (Fig. 5 G),
whereas the survival of HOXB4- and vector-transduced he-
matopoietic cells, measured by percentage excluding 7-AAD,
was equivalent (79.4 £ 16.1 vs. 78.2 = 15.1, respectively; n =
4; Fig. 5 G). These observations suggest that ectopic expression
of HOXB4 enhances the proliferative capacity of hESC-
derived hematopoietic cells that results in overall cell expan-
sion. However, HOXB4 did not aftect the developmental ca-
pacity of hematopoietic cells. Progenitor frequency and linage
development by CFU (Fig. 5 H) and phenotype (Fig. 5 I) of
HOXB4-transduced hESC-derived hematopoietic cells were
similar to vector-transduced cells. We were unable to achieve a
more robust reconstituting ability by IBMT of HOXB4-trans-
duced hESC-derived hematopoietic progeny into NOD/
SCID recipients (Fig. 5, J and K). Our data suggest HOXB4 is
unable to induce hematopoietic repopulating capacity from
hESCs, underscoring the notion that single genes, such as
HOXB4, are unlikely to represent a master gene capable of
conferring engraftment potential to hESC-derived hematopoi-
etic cells. Collectively, these results support our original predi-
cation from combined functional assays and comparative mo-
lecular profiling analysis (Figs. 1-4) that single genes are
unlikely to alter in vivo functionality of hESC-derived cells.

DISCUSSION
This study establishes that candidate HSC can be derived
from hESC and can be functionally examined with a variety
of in vitro and in vivo surrogate measures of stem cell and
progenitor function. Given the difficulty of obtaining trans-
plantable murine HSCs from mouse ESCs, it is interesting
that, with the exception of ectopic HOXB4 expression (39),
the repopulating function of hESC-derived hematopoietic
cells could be detected here. The IBMT delivery method
used seems essential for detecting hematopoietic potential
from hESC-derived progeny, similar to that recently shown
using mouse ESC-derived hematopoietic cells (43). Although
hematopoietic repopulating cells derived from hESC were
observed in our study, the proliferative and migratory prop-
erties of these cells was significantly different from those of
somatic HSC:s. Insights into the molecular basis of these func-
tional differences could be correlated to changes in gene ex-
pression of broad families of genes that are involved specific
cellular processes (e.g., homing, adhesion, cell cycle). Because
these differences between hESC-derived progeny and so-
matic cells may not be restricted to the hematopoietic lineage
alone, our results have a number of important implications
for future application of hESC for therapeutic purposes that
extend beyond development of HSC from hESC lines. This
notion is supported by years of studies in the murine model,
in which mouse ESC progeny behave difterently than would
be expected from adult cells of the same lineage (44, 45).
Our study provides additional insights into hESC biol-
ogy and strategies. First, comparisons must be made between
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Figure 5. Ectopic expression of HOXB4 induces proliferation but
does not confer engraftment potential on hESC-derived hematopoietic
cells. (A) Control vector (GFP) and HOXB4 bicistronic retroviral construct.
HOXB4 cDNA was subcloned into the control vector backbone upstream of
an IRES. Enhanced GFP (eGFP) cDNA downstream of IRES sequence acts as
a reporter for selection of stable cell lines and tracking of transduced cells.
(B) Western blot analysis of PG13 packaging cell line transduced with vec-
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tor or HOXB4 retrovirus showing specific HOXB4 expression from HOXB4-
containing retrovirus. (C) Quantitative RT-PCR confirmed that HOXB4-
transduced cells had up to 300-fold increase in HOXB4 expression as com-
pared with controls shown. (D) HOXB4-overexpressing CB Lin=/CD34*
cells show a threefold in vitro proliferative advantage after 4 d culture as
compared with their GFP-expressing counterparts (n = 4). (E) Vector and
HOXB4-transduced CB Lin—/CD34* were seeded in methylcellulose assays,
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hESC-derived stem cells and somatic stem cells. Importantly,
the most appropriate surrogate stem cell assay must be used
to gain an accurate picture. The in vitro progenitor assays
did not predict the significant functional differences between
the two sources of HSC. Indeed, even the reference standard
repopulation assay based on i.v. transplantation was ineffec-
tive because of the unique cellular aggregation properties of
the hESC-derived cells that resulted in lethality. Our study
demonstrates that IBMT 1s an absolute requirement for
functional in vivo assessment of candidate HSCs derived
from hESC and demonstrates the power of this method to
assess HSC activity of novel populations (8).

Second, although HSCs were generated from hESC,
the current methodology was not sufficient to induce a cel-
lular and molecular program reflective of a somatic HSC.
This result parallels the inability to reprogram accurately all
types of nuclei by nuclear transfer (46). The fact that several
genes classes are differentially expressed among hESC-
derived and somatic primitive hematopoietic cells reinforces
the notions that single gene products do not define the mo-
lecular nature of HSCs and that a mosaic of combinatory
factors are required to confer HSC function. This finding
suggests that single-gene reconstitution strategies are un-
likely to restore HSC function of hESC-derived hemato-
poietic cells. Recent evidence for the role of HOX gene
products (47) and cell cycle regulators (48) in mammalian
HSC behavior indicates that modulation of these classes of
genes is liable to affect in vivo behavior of hESC-derived
HSCs by affecting a broad range of target genes necessary
to establish functional HSCs. Our study evaluates this issue
directly by expressing HOXB4, the best-known candidate
for conferring HSC function on mammalian hematopoietic
cells derived from ESC lines. We demonstrate that ectopic
expression of HOXB#4 induced proliferation but had no af-
fect on HSC function of hESCs, thereby supporting our
original supposition.

Third, this report provides the foundation for optimizing
and improving differentiation methodology using extrinsic
factors that mimic better the in utero orchestration of genetic
programs required for generation of HSCs. These factors may
include signaling pathways shown to be involved in embry-

ARTICLE

onic specification of the hematopoietic lineage and also in-
volved in somatic HSC self renewal, such as the Notch, Wnt,
and hedgehog pathways. A strategy using both in vivo and
molecular comparisons of hESC-derived cell types with their
somatic counterparts will be instrumental in elucidating the
fundamental principles required to generate tissue-specific
stem cells from hESCs and to guide future applications of
hESC-based regenerative therapies independent of lineage and
disease target. We propose that similar preclinical modeling
approaches will be required to develop responsibly appropriate
and successtul methods for using hESC in cell replacement.

MATERIALS AND METHODS

Culture of hESCs, formation of embryoid bodies, and isolation of
hemogenic CD45"¢PFV precursors. Maintenance of undifferentiated
hESC lines H9 and H1 originally derived by Thomson et al. (49) were cul-
tured in feeder-free conditions (50), and formation and dissociation of hEBs
were performed as previously described by our group (51). The hemogenic
precursor population from d 10 hEBs was purified according to their ex-
pression of PECAM-1, coexpression of Flk1+ and VE-cadherin, and lack
of CD45 (3). Single cells dissociated from d 10 hEBs were stained with hu-
man PECAM-1 or Flk-1-FITC (BD Biosciences) and CD45-APC (Becton
Dickinson), followed by 7-AAD (Immunotech) staining to exclude dead
cells (3). The hemogenic precursors were separated by FACSVantage SE
(Becton Dickinson). Isolation gates, including histogram markers and dot
plot quadrants, were set based on respective IgG isotype controls. Purity
was determined immediately after sorting and was consistently >95%.

Differentiation of hESC-derived hematopoietic cells. The hemogenic
precursor population was seeded on fibronectin-coated plates (103 cells/
cm?) and cultured for 7 d in serum-free liquid medium (3) previously
shown to sustain human hematopoietic stem cells (52). Serum-free medium
consisted of 9500 BIT media (StemCell Technologies, Inc.), 2 mM I-gluta-
mine (GIBCO BRL), 107* M B-mercaptoethanol, 300 ng/ml rhu—stem
cell factor (SCF; Amgen), 50 ng/ml rhu-granulocyte colony-stimulating
factor (G-CSF; Amgen), 300 ng/ml rhu-Flt-3L, 10 ng/ml rhu-IL-3, and
10 ng/ml rhu-IL-6 (all obtained from R&D Systems). The serum-free me-
dium and growth factors were replaced every 2 d.

Histopathological examination. Mouse tissues were embedded in Tis-
sue-Tek OCT (Sakura Finetechnical Co., Ltd.) and snap-frozen in liquid
nitrogen. Serial cryosections (5 pm) were cut and stained with hematoxylin
and eosin. To track cell locations after i.v. injection, hESC-derived hemato-
poietic cells differentiated from GFP-expressing H7 hESCs were used. Se-
rial cryosections from the lungs were directly visualized with an Olympus

confocal laser-scanning microscope.

and CFU potential was evaluated 14 d after plating. (F) A representative
example of human engraftment in NOD/SCID mice repopulated with either
vector or HOXB4-transduced SRC from CB (n = 6). CD45" human cells
were gated, and the extent to which vector and HOXB4-transduced SRC
contributed to the engraftment was analyzed. Vector (top) and HOXB4-
transduced human cells (GFP*CD45") (bottom) were gated and further
analyzed for immature (CD34+), myeloid (CD33*+/CD137) and B-lymphoid
(CD19*) composition. (G) hESC-derived hematopoietic cells were trans-
duced with vector versus HOXB4-expressing retrovirus, and in vitro prolif-
eration was assessed 4 d after viral exposure. Similar to CB cells, HOXB4-
overexpressing hESC-derived hematopoietic cells displayed a 2.5-fold
higher expansion than vector-expressing cells but retained equivalent
survival measured by the percentage that was 7-AAD-negative (n = 4).
(H) Vector or HOXB4-transduced hESC-derived hematopoietic cells were
plated in methylcellulose assays to test CFU potential. (I) Hematopoietic

JEM VOL. 201, May 16, 2005

progeny differentiated from HOXB4-transduced CD45"9PFV precursors
maintain their hematopoietic phenotype. Gene transfer efficiency into
hESC-derived hematopoietic cells was 22% on average and was 10.5% for
GFP and HOXB4, respectively. A representative experiment of the pheno-
typic analysis of vector- (top) and HOXB4-transduced (bottom) hemato-
poietic progeny differentiated from hESCs is shown for cell surface CD45
and CD34 expression. H and | show that HOXB4 overexpression does not
alter the in vitro developmental capacity of CD45"9PFV precursors. (J) Human
chimerism in the marrow flushed from the different mice bones was not
detectable. DNA from one mouse transplanted with equivalent number of
CB Lin=/CD34 cells was used as a positive control as shown. (K) Summary
of the number of cells transplanted and the frequency of human chimerism
detected in the BM of recipient mice from vector- or HOXB4-transduced
hematopoietic cells.
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Aggregation assay of hESC-derived hematopoietic cells. hESC-
derived hematopoietic cells were resuspended in serum-free medium and
seeded in a 96-well plate (2 X 10* cells/well) for 2 h at 37°C in the absence
or presence of 20% individual adult mouse serum (n = 7), adult human se-
rum (n = 3), human CB serum (n = 3), human fetal blood serum (n = 3), or
fetal bovine serum (n = 3). Three microphotographs per well were taken on
contiguous fields at 10-fold magnification. Singlets, doublets, and triplets
were counted as nonaggregated cells (5). Results were expressed relative to
the number of nonaggregated cells obtained in serum-free medium (N;). The
percentage of aggregated cells was calculated as [(N, — N)/Ng|] X 100%,
where N represents the number of nonaggregated cells in medium containing
20% serum. Specimens were coded during analysis for blinded assessment.

CFU assays. Cells indicated in the text were plated into methylcellulose
HA4230 (StemCell Technologies, Inc.) supplemented with human growth fac-
tors, including 50 ng/ml SCF, 3 U/ml erythropoietin (Epo; Amgen), 10 ng/ml
GM-CSF (Novartis), and 10 ng/ml IL-3 (53). Localized clusters of >50 cells
showing morphological hematopoietic characteristics were counted as colonies
after incubation for 10-14 d at 37°C and 5% CO, in a humidified atmosphere.

Intravenous and IBMT of NOD/SCID mice. hESC-derived hemato-
poietic cells were transplanted into sublethally irradiated 8-10-wk-old
NOD/SCID (3.5 Gy) or NOD/SCIDB2m ™/~ mice (3.25 Gy) using either
an i.v. (54) or IBMT technique (6-8). For IBMT, the leg of the anesthe-
tized mouse was flexed; a 27-gauge needle was inserted into the femur at
the knee joint and then replaced with a 28-gauge insulin syringe containing
25 pl of cell suspension. Cell doses ranged from 5 X 10°-1.6 X 107 for i.v.
and 4-15 X 10* for IBMT. All experiments using mice received approval
from our local authority, the Animal Care and Veterinary Services of the
University of Western Ontario.

Retroviral vectors, packaging cell lines, and transduction of CB
Lin~/CD34" cells and hESC-derived hematopoietic cells. A 1.15-
kb EcoRI-Xhol fragment encoding for the full length human HOXB4
gene (41, 42, 55-57) from pBluescript II KS-HOXB4 (a gift from G. Sau-
vageau, Institute of Research in Immunology and Cancer, Montreal, Que-
bec, Canada) was subcloned into EcoRI-Sall sites of the MIEV retroviral
vector (58) (a gift from R. Hawley, Holland Laboratory, American Red
Cross, Rockville, MD), upstream of an internal ribosomal entry site (IRES)
and an enhanced GFP reporter gene, as previously described (59).

Construction of GaLV-pseudotyped PG13 stable packaging cell line re-
leasing control vector (GFP) or HOXB4 retroviral particles as well as pro-
duction and collection of the retroviral particles was done as previously de-
scribed in detail (59). Purification and retroviral transduction of both CB
Lin~/CD347 cells and hESC-derived CD45"¢PFV precursors was done as
recently reported (40, 59). The PG13 packaging cell line was transduced
with control vector (GFP) or HOXB4 retrovirus, sorted for GFP* expres-
sion and analyzed by Western blotting for detection of HOXB4 protein.
Cell lysates were prepared from 10° cells by using lysis buffer containing
10% Triton X-100, 1M Tris-HCI, 0.5 EDTA, and protease inhibitors leu-
peptin and aprotinin at 10 mg/ml. Proteins were separated using 10% SDS-
PAGE and transferred to polyvinyl difluoride membrane. Equal amounts of
proteins were loaded per lane as determined by Ponceau staining (0.1% wt/
vol in 5% acetic acid). Membranes were blocked with 5% skim milk and
blotted with rat anti-HOXB4 antibody 112 at 1 pg/ml (purchased from
Developmental Studies Hybridoma Bank at the University of Iowa). Mem-
branes were washed and stained with rabbit anti—rat horseradish peroxidase
antibody at 200 ng/ml (Santa Cruz Biotechnology, Inc.). Signal was detected
by means of enhanced chemiluminescence system (ECL; Amersham Bio-
sciences) and quantified using an imaging detection and analysis station (Al-
pha Innotech Corporation).

Quantitative RT-PCR. mRNA was extracted from FACS-isolated pop-

ulations and reverse transcribed into ¢cDNA using mRINA extraction and
first-strand ¢cDNA synthesis kits (Amersham Biosciences) according to the
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manufacturer’s instructions. Expression of HOXB4 (forward primer: 5'-
AGCACGGTAAACCCCAATTAC-3" and reverse primer: 5'-CGTGT-
CAGGTAGCGGTTGTAG-3") was quantified by quantitative RT-PCR
(Mx4000, Stratagene) using SYBR green (Invitrogen) DNA-binding dye.
The PCR conditions were 2 mM MgCl, 0.4 mM dNTP, 8% glycerol, 3%
DMSO, 150 nM of each primer, 0.75 wl of 1/1,000 dilution of reference
dye, and 2.5 pl of 1/2,000 dilution of SYBR Green. Quantitative PCR re-
action conditions were primary denaturation at 95°C for 1 min and 40 cy-
cles of PCR consisting of 95°C for 10 s, 60°C for 1 min, and 72°C for 30 s,
followed by analyzing the amplified products using the dissociation curve.
The signal intensities were normalized against GAPDH (forward primer:
5'-TGCACCACCAACTGCTTAGC-3' and reverse primer: 5'-GGCATG-
GACTGTGGTCATGAC-3'), and the 2-22¢t equation (60) was used to cal-
culate the relative expression of HOXB4.

Analysis of NOD/SCID mouse engraftment. To prepare mouse BM
cells for flow cytometric analysis, red cells were lysed with 0.8% ammonium
chloride solution, and the remaining cells were washed in PBS containing 5%
FBS. The presence of human cells in the transplanted NOD/SCID and
NOD/SCIDB2m™/~ mice was determined by flow cytometry using FITC-
conjugated antibody against either human CD45 or glycophorin-A and phy-
coerythrin-conjugated antibody against human CD19, CD33, or CD36 (all
conjugated antibodies from Becton Dickinson). In parallel, Southern blot and
PCR analyses were performed to detect human DNA in mouse bone mar-
row. High-molecular-weight DNA was isolated using phenol/chloroform ex-
traction or DNAzol reagent (GIBCO BRL) according to the manufacturer’s
instructions. 1 g DNA was digested with EcoR1 restriction enzyme at 37°C
overnight, separated on an agarose gel, transferred to Hybond-N* nylon
membrane (Amersham Biosciences) and hybridized with a ¥?P-labeled human
chromosome 17-specific a-satellite probe as previously described (54). The
level of human cell engraftment was quantified using a phosphorimager and
ImageQuant software (Amersham Biosciences) by comparing the characteris-
tic 2.7-kb band with human—mouse DNA mixture controls (limit of detec-
tion, ~20.1% human DNA). In cases where the level of human DNA was
<0.1%, PCR for the human chromosome 17-specific a-satellite was per-
formed as previously described (7). Forward primer 5'-ACACTCTTTTTG-
CAGGATCTA-3" and backward primer 5'-AGCAATGTGAAACTCT-
GGGA-3" were used to amplify a 1171-bp sequence (40 cycles, 94°C for 30's,
60°C for 30's, 72°C for 15 s, followed by a final extension of 10 min at 72°C).
The criterion for mouse engraftment was the presence of human DNA in
both the injected femur and nontransplanted bone marrow.

Molecular profiling. Total RNA was extracted using the QIAGEN
RNAeasy kit and was amplified using Message Amp aRNA kit (Ambion).
15 wg of fragmented antisense RNA was used for hybridizing human HG-
U133AB arrays (Affymetrix, Inc.) at the London Regional Genomic Cen-
ter, Ontario, Canada. GeneSpring 6.0 was used for data analysis. Genes that
were flag-passed in at least one of the populations and significantly (P <
0.01, different by twofold) difterentially expressed between hESC- and
UCB-derived CD34*/CD387/CD45™" cells were identified.

Online supplemental materials. Table S1, available at http://www.
jem.org/cgi/content/full/jem.20041888/DC1, provides a complete list of
differentially expressed genes.
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