@)
B Mc B iOIOgy BioM\ed Central

Research article

P13 kinase is important for Ras, MEK and Erk activation of
Epo-stimulated human erythroid progenitors
Enrico K Schmidt!2, Serge Fichelson3 and Stephan M Feller*!

Address: Cancer Research UK Cell Signalling Group, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, UK, 2Centre d'Immunologie
de Marseille-Luminy, Parc Scientifique de Technology de Luminy, Case 906, 13009, Marseille, France and 3Institut Cochin, Département
d'Hématologie, Inserm U567, Maternité de Port-Royal, Bd de Port-Royal, 75014 Paris, France

Email: Enrico K Schmidt - schmidt@ciml.univ-mrs.fr; Serge Fichelson - fichelso@cochin.inserm.fr;
Stephan M Feller* - stephan.feller@cancer.org.uk

* Corresponding author

Published: 18 May 2004 Received: 29 January 2004
BMC Biology 2004, 2:7 Accepted: 18 May 2004

This article is available from: http://www.biomedcentral.com/1741-7007/2/7

© 2004 Schmidt et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all
media for any purpose, provided this notice is preserved along with the article's original URL.

Abstract

Background: Erythropoietin is a multifunctional cytokine which regulates the number of
erythrocytes circulating in mammalian blood. This is crucial in order to maintain an appropriate
oxygen supply throughout the body. Stimulation of primary human erythroid progenitors (PEPs)
with erythropoietin (Epo) leads to the activation of the mitogenic kinases (MEKs and Erks). How
this is accomplished mechanistically remained unclear.

Results: Biochemical studies with human cord blood-derived PEPs now show that Ras and the
class Ib enzyme of the phosphatidylinositol-3 kinase (PI3K) family, PI3K gamma, are activated in
response to minimal Epo concentrations. Surprisingly, three structurally different PI3K inhibitors
block Ras, MEK and Erk activation in PEPs by Epo. Furthermore, Erk activation in PEPs is insensitive
to the inhibition of Raf kinases but suppressed upon PKC inhibition. In contrast, Erk activation
induced by stem cell factor, which activates c-Kit in the same cells, is sensitive to Raf inhibition and
insensitive to PI3K and PKC inhibitors.

Conclusions: These unexpected findings contrast with previous results in human primary cells
using Epo at supraphysiological concentrations and open new doors to eventually understanding
how low Epo concentrations mediate the moderate proliferation of erythroid progenitors under
homeostatic blood oxygen levels. They indicate that the basal activation of MEKs and Erks in PEPs
by minimal concentrations of Epo does not occur through the classical cascade Shc/Grb2/Sos/Ras/
Raf/MEK/Erk. Instead, MEKs and Erks are signal mediators of PI3K, probably the recently described
PI3K gamma, through a Raf-independent signaling pathway which requires PKC activity. It is likely
that higher concentrations of Epo that are induced by hypoxia, for example, following blood loss,
lead to additional mitogenic signals which greatly accelerate erythroid progenitor proliferation.

Background survival of neurons after stress and injury [5-7]. Epo drives
Erythropoietin (Epo) is a multifunctional cytokine [1-4].  not only the proliferation of already committed early
It has been known for a long time as a crucial regulator  erythroid progenitor cells (burst-forming unit-erythroid;
during all stages of definitive erythropoiesis. More  BFU-E), but also, and prominently, the proliferation and
recently, Epo was shown to have an important role in the
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differentiation of later stage cells (colony-forming unit-
erythroid; CFU-E) towards mature erythrocytes [1,8].

Much of the circulating Epo is produced in the kidneys
where blood oxygen levels are monitored, but other sites
of Epo production - for example, liver and brain - are also
known [9]. Several well-characterized signaling molecules
such as the hypoxia-induced transcription factor HIF-1a
and the 'stress kinase' p38a. are key players in regulating
Epo expression [9-11]. Epo concentrations of 25-50 mU/
ml are found in umbilical cord blood at birth. In adults,
Epo is typically present at 10-30 mU/ml, but levels can
rise up to 3-10 U/ml as a consequence of severe blood
loss.

Epo binds a transmembrane receptor protein (EpoR) that
lacks intrinsic enzymatic activity and associates instead
with tyrosine kinases like Jak2 [2,3,8,12-14]. Targeted dis-
ruptions of the genes for Epo or the EpoR in mice leads to
a complete loss of the definitive embryonal erythropoiesis
[15,16]. Other important clues regarding molecules rele-
vant for Epo-induced signaling have come from disrup-
tions of genes for Jak2, SHP2, PLC-y, STAT5a/b, and
GATA-1 and -2 [17-21]. While these knockout studies
have provided considerable insight into key players in
Epo-induced signaling, mice are not an ideal system for
extensive biochemical analyses because the number of
erythroid progenitors that can be readily obtained from
them is not sufficient.

Therefore, most biochemical studies aiming to unravel the
detailed molecular mechanisms of EpoR signaling have so
far been carried out with cell lines expressing an endog-
enous or stably transfected EpoR (UT-7, SKT6, HEL, F-
36P, HCD57, JE-2, AS-E2, K562, Friend cells, Ba/F3-EpoR,
32D-EpoR, FDCP-EpoR, etc.). Moreover, many of these
experiments have been done with 'pathophysiological'
concentrations of Epo above 1 U/ml.

In the many cell lines analyzed, a plethora of diverse sig-
naling molecules appears to be crucial for Epo signaling.
It is obvious that most discrepancies in the essential sign-
aling proteins reported reflect the genomic instability of
the various cancer cell lines, as well as distinct pre-set wir-
ing diagrams of EpoR-transfected hematopoietic progeni-
tor cells. Thus, these findings are important in defining
candidate pathways potentially involved in vivo, but they
do not necessarily represent actual signals induced upon
Epo stimulation of primary human erythroid progenitors
(PEPs). Consequently, although EpoR signaling has been
intensely studied, many of its aspects are still unknown or
remain puzzling. For example, it is certain that a large
complex of signaling proteins is assembled on the EpoR
upon Epo stimulation of various Epo-responsive cell lines
as well as in vivo, and it is also known that many compo-
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nents of this complex directly associate with phosphor-
ylated tyrosines of the EpoR. On the other hand, these
tyrosines can be spatially separated from the Jak2 binding
site on the EpoR or even abolished without apparent
severe disruption of EpoR function [22-26].

Phosphatidylinositol-3 kinases (PI3Ks) [27-29] have been
implicated in EpoR signaling by precipitation experi-
ments which focussed on the formation of complexes
between the p85/p110 PI3Ks (o and P isoforms) and the
EpoR [13,30-32] and by the use of inhibitors like
LY294002 and wortmannin [33-37], which are mechanis-
tically and structurally distinct [38,39] but lack prominent
selectivity for specific class I PI3K family members. The
results from these experiments have not yet provided clear
evidence of an essential function for p85/p110 PI3Ks in
the activation of MEKs and Erks upon stimulation of cells
with Epo. Only recently, caffeine has been described as an
inhibitor of PI3K activity with a clear preference for cer-
tain PI3K family members in vitro [40]. In combination
with isoform-specific PI3K activity assays, this now allows
one to look at specific PI3K proteins more closely.

For many years it was difficult to perform in-depth bio-
chemical studies with PEPs since methods for their effi-
cient in vitro expansion were quite limited. Fortunately, it
has now become possible to recapitulate the progression
of hematopoietic progenitor cells into the erythroid line-
age under serum-free conditions using defined cytokine
cocktails [41]. This permits massive amplification and
erythroid differentiation of CD34-positive cells isolated
from human cord blood, bone marrow or peripheral
blood, thereby facilitating biochemical analyses like
GTPase and kinase assays. The PEPs generated by this pro-
cedure were shown to be 98% CD36 (thrombospondin
receptor)-positive as well as CD71 (transferrin receptor)-
high and greatly, but not exclusively, dependent on the
presence of Epo for proliferation [41]. First biochemical
experiments from this study showed that upon stimula-
tion of starved PEPs with Epo, the EpoR, Jak2 and STAT5
were phosphorylated [41].

The aim of the current study was to analyze in more detail
how MEKs and Erks are activated in PEPs upon stimula-
tion with minimal concentrations of Epo. As anticipated,
it was found that Ras is activated in these cells. However,
Raf family kinases (c-Rafl, A-Raf, B-Raf), the classical
effector proteins of Ras are not crucial for the subsequent
activation of MEKs and Erks by Epo, while stimulation of
c-Kit by stem cell factor (SCF) activates Erks in a Raf-
dependent manner. Importantly, Ras, MEK and Erk activa-
tion by Epo clearly depends on PI3K activity. Inhibitor
studies and lipid kinase assays implicate PI3K gamma
(PI3Ky) (p101/p110y) as the prime candidate for the Ras,
MEK and Erk-activating signal transducer.
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Dose-dependent activation of STATS5, Ras, MEKs and Erks by
Epo in primary erythroid progenitors (PEPs). Starved (st)
PEPs were mock-stimulated (m) or stimulated with various
concentrations of Epo for 10 min as indicated. 100 g of total
cell protein was then separated by SDS-PAGE and immunob-
lotted with anti-P-STATS5, anti-P-MEK /2, anti-P-Erk1/2 or
anti-Erk1/2. GTP-loaded Ras was precipitated with GST-c-
Rafl RBD from 500 pg total cell protein and immunoblotted
with anti-Ras. @ indicates protein extracts from non-starved
and non-treated PEPs (cultured in the presence of IL-3, IL-6,
SCF and Epo).

Results

PI3 kinase-dependent activation of Ras, MEK and Erk by
minimal concentrations of Epo

In initial experiments it was determined which concentra-
tions of Epo are necessary to activate STAT5 and Erks in
PEPs. For this, the cells were stimulated with increasing
concentrations of Epo for different lengths of time and
then analyzed with activation-specific phospho-epitope
antibodies for STAT5, MEKs and Erks. Activation (that is,
GTP-loading) of the Ras GTPase was also analyzed by
using affinity precipitation with a GST-fusion protein that
contains the Ras binding domain (RBD) of the kinase c-
Rafl. Activation states were further investigated in nor-
mally growing and mock-stimulated PEPs. Since Epo-
induced signals commonly peaked at around 10 min,
PEPs were harvested at that time in all subsequent studies.
While Ras, MEKs and Erks were substantially activated at
0.3 U/ml Epo (Figure 1), activation of STAT5 was already
seen at 0.01 U/ml Epo. In contrast to Ras, activation of the
Rac or Rapl GTPases upon Epo-stimulation was not
observed (our unpublished data).

Since MEKSs are reputed to signal directly upstream of Erks,
it was investigated and confirmed that the widely-used
MEK inhibitor compound U0126 blocked Erk activation
by Epo (data not shown). During the course of these
experiments, another inhibitor LY294002 (LY) that inhib-
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Structurally and mechanistically distinct PI3 kinase inhibitors
prevent Epo-induced activation of Ras, MEKs and Erks. (A)
Starved (st) PEPs were mock-stimulated (m) or pretreated
with 0, 25, 50 or 100 nM wortmannin (WM) for 30 min or
with 30 or 100 uM LY294002 (LY) for | h and then stimu-
lated with 0.3 U/ml Epo where indicated. For comparison,
PEPs starved and pretreated with 100 nM WM or 100 uM LY
where indicated were stimulated with 25 ng/ml stem cell fac-
tor (SCF) for 10 min to activate c-Kit signaling. 100 ug total
cell protein were immunoblotted with P-STATS, P-Akt or P-
Erkl/2 antibodies as indicated. GTP-loaded Ras was precipi-
tated with GST-c-Rafl RBD from 500 pg total cell protein
and immunoblotted with anti-Ras. @ indicates non-starved
and non-treated PEPs. (B) PEPs pretreated with 100 nM WM
for 30 min where indicated were mock-stimulated (m) or
treated with 0.3 U/ml Epo or 25 ng/ml SCF for 10 min. 100
g total cell protein were immunoblotted with P-MEK1/2,
Erkl/2, P-Erk1/2 or P-GSK30a/p antibodies as indicated.
Phosphorylated EpoR was immunoprecipitated with anti-
phosphotyrosine mAb (4G 10) from 500 g cell protein and
immunoblotted with anti-EpoR. @ indicates non-starved and
non-treated PEPs.

its PI3Ks, which was not expected to affect Erk activation,
was also tested. Surprisingly, not only the phosphoryla-
tion of the kinase Akt, a target of PI3Ks, on Ser 473 was
inhibited (Figure 2A), but also a block of Erk activation
was seen with LY, albeit at higher concentrations. Dose-
dependent Erk inhibition was further observed with the
structurally and mechanistically distinct PI3K inhibitor
wortmannin (WM), again at concentrations somewhat
higher than those required to suppress Epo effects on Akt
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Ser473 phosphorylation (Figure 2A). Phospho-Erk inhibi-
tion by LY and WM was also not found when PEPs were
stimulated with low concentrations of the c-Kit ligand
SCF, suggesting that this is an Epo-specific signal (data not
shown). WM also inhibited the phosphorylation of the
Akt targets GSK3a and GSK3p and the activation of MEKs
(Figure 2B). In contrast, effects on tyrosine phosphoryla-
tions of STAT5 (Figure 2A) or EpoR by WM were not
detected (Figure 2B, top panel), and autophosphorylation
of tyrosines 1007 and 1008 in the EpoR-associated kinase
Jak2 was not inhibited (data not shown).

Ras is activated upon Epo treatment of PEPs (Figure 2A)
and often upstream of MEKs. Consequently, the effects LY
and WM have on GTP-loading of Ras (Figure 2A) were
also investigated. Both inhibitors fully blocked Ras activa-
tion by Epo but not by SCF, indicating that Ras is down-
stream of a PI3K activity in Epo-stimulated PEPs. This
mode of signal transmission from PI3K to Ras is distinct
from signaling routes described for many other cell types
or stimuli but not unprecedented, since the PI3Ks can, for
example, induce the release of intracellular calcium,
which is known to regulate Ras via Pyk2 and Ras-GRFs
[42,43].

PI3 kinase gamma (PI13K3y) is activated by Epo

PI3Ks are a diverse family of differentially regulated
enzymes, which consists of three classes or subfamilies
[29]. Of these, class I PI3Ks are frequently involved in the
signal transmission of growth factors, hormones and
cytokines; which type of class I PI3Ks might be responsi-
ble for transmitting Epo signals was therefore analyzed.
The regulatory p85 subunits of the class [a PI3Ks (a, f and
8) are known to translocate to the cell membrane in
response to various stimuli. For this reason it was initially
investigated if this occurred following Epo stimulation of
PEPs, but no translocation was detectable. In activated
p85/p110 PI3Ks, the p85 subunits are often phosphor-
ylated on tyrosines and/or associated with various other
tyrosine-phosphorylated proteins. Active p85/p110 PI3Ks
can therefore be precipitated with antibodies against
phosphotyrosine and activity detected by phosphatidyli-
nositol (PI) kinase assay. Analyses of PEPs stimulated
with Epo or SCF showed that SCF leads to a strong p85/
p110 PI3K activation which can be inhibited by pretreat-
ment with WM. In comparison with SCF, only low PI3K
activation was detectable after Epo treatment (Figure
3A,3B). We were unable to detect significant activation of
PI3Ka or B in PEPs treated with 0.3 U/ml Epo upon
immunoprecipitation of the catalytical subunits. Further-
more, there are at present no isoform-specific inhibitors of
PI3Ks available. Hence, it is not possible to analyze the
class Ia p85/p110 PI3Ks in more detail at this stage.
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The class Ib PI3K, PI3Ky, is not regulated by p85 or similar
subunits and instead interacts with a distinct regulatory
protein, p101. There is at present no evidence that PI3Ky
is regulated by tyrosine phosphorylation. Immunoprecip-
itation of the catalytic subunit PI3Ky p110 from protein
extracts of mock-stimulated or Epo-stimulated PEPs
showed a moderate but statistically significant and highly
reproducible activation of PI3Ky upon Epo treatment.
This effect was inhibited in the presence of WM (Figure
3C,3D).

It has recently been shown that caffeine differentially
inhibits class I PI3Ks in vitro and that PI3Ky is the least sen-
sitive isoform [40]. Pretreatment of PEPs with caffeine
prior to Epo stimulation showed that Erk activation is
only abolished at very high concentrations of caffeine (10
mM) (Figure 4A). As expected, SCF-induced Erk activation
was not affected by caffeine, but phosphorylation of Akt
and its target GSK3a,/B was blocked.

Since the p85 regulated isoforms of class I PI3Ks (o, 3, and
8) are more sensitive to caffeine than PI3Ky, we speculated
that Akt phosphorylation induced by SCF may be blocked
by lower caffeine concentrations compared to Akt phos-
phorylation induced by Epo. This was subsequently con-
firmed by a more detailed titration of the caffeine
concentrations used to pretreat the PEPs (Figure 4B).
From these results it is concluded that PI3K activation is
essential for activation of MEKs and Erks at threshold con-
centrations of Epo, and PI3Ky appears to be the prime can-
didate for transducing these signals. This emerging EpoR
signaling pathway could explain the puzzling finding that
EpoR mutants devoid of docking sites for class Ia PI3K
p85 SH2 domains and classical Ras activator modules
(like Shc/Grb2/SoS) are still able to transmit Epo signals
and apparently do not compromise the viability of the
mutant mice [22-25]. Importantly, this hypothesis does
not preclude the notion that higher concentrations of Epo
lead to additional, biologically significant signals being
transmitted via classical mitogenic and anti-apoptotic
pathways to accelerate PEP proliferation and increase PEP
survival.

Activation of B-Raf by Epo is not essential for MEK and Erk
activation

c-Raf1 has recently been shown to play a role in regulating
the differentiation of erythroid progenitors in mice [44].
The PI3K-dependent activation of Ras by Epo now raised
the question of whether Raf kinases are also essential to
mediate signaling in human PEPs from Ras to MEKs and
Erks. In initial experiments, different phospho-specific
antibodies that recognize phosphorylated epitopes in c-
Rafl (Ser259, Ser338, Tyr340Tyr341) showed no appar-
ent changes in c-Raf1 phosphorylation (data not shown).
Subsequently, coupled Raf-MEK kinase assays with kinase
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Figure 3

Strong activation of class la PI3 kinases by SCF, but PI3Ky activation by Epo. Starved PEPs were mock-stimulated (m), stimu-
lated with 0.3 U/ml Epo or with 25 ng/ml SCF with or without pretreatment with 100 nM WM as indicated. (A, B) The tyro-
sine-phosphorylated p85 regulatory subunits of activated class la PI3K enzymes (PI3Ka, B3, 5) were immunoprecipitated from
500 pig total cell proteins with anti-phosphotyrosine mAb (4G10). To detect PI3K inositol kinase activity, immunoprecipitates
were incubated with phosphatidylinositol (Pl) and 32P-y-ATP. Phosphatidylinositol phosphate (PIP) generated by active PI3Ks
was separated from ATP by thin layer chromatography (TLC) and analyzed by phosphoimaging. A representative example of
the results from the phosphoimaged experiments is shown in (A) and the quantitative analysis of the results obtained with PEPs
from three different cord blood samples in (B). Epo and SCF significantly activate class | PI3Ks (pg,, < 0.01; pscr < 0.001) and
WNWM significantly inhibits the SCF-induced activation (p < 0.01). (C, D) Starved PEPs were mock stimulated (m), stimulated
with 0.3 U/ml Epo with or without pretreatment with 100 nM WM as indicated. PI3 kinase activity was detected as in (A) and
(B) but using anti-p| 10y to immunoprecipitate the catalytic subunit of PI3Ky. A representative example of the results from the
phosphoimaged experiments is shown in (C) (upper panel) and the quantitative analysis of the results obtained with PEPs from
three different cord blood samples in (D). Significant PI3Ky activation (p < 0.001) and inhibition by WM (p < 0.001) was deter-
mined. Equal PI3Ky immunoprecipitation was confirmed by western blot (C, lower panel).
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The PI3 kinase inhibitor caffeine inhibits Epo-induced Akt,
GSK3a/B and Erk1/2 activation. Starved PEPs were mock-
stimulated (m) or treated with 0.3 U/ml Epo or 25 ng/ml SCF
as indicated. Some of the samples were pretreated with caf-
feine as detailed below. 100 pg cell protein were immunob-
lotted with P-STATS5, P-Akt, P-GSK3 a/B, P-Erk|/2 or Akt
antibodies. @-lanes represent non-starved and non-treated
PEPs. (A) Cells were pretreated with 0.1, | or 10 mM caf-
feine for | h before Epo stimulation and with 10 mM before
SCF stimulation where indicated or (B) with 0.1,0.3, I, 3 or
10 mM caffeine for | h.

inactive GST-Erk1K63M as substrate were used to analyze
the different Raf family kinases. c-Rafl and, in particular,
B-Raf were moderately activated upon Epo stimulation of
PEPs. The activation of B-Raf was reduced by WM
pretreatment of the PEPs (Figure 5). No Epo-induced
activity changes were observed with immunoprecipitated
A-Raf (our unpublished data).

To determine whether Raf kinases are crucial for MEK and
Erk activation, PEPs were pretreated with the compound
ZM336372 (ZM), a potent and specific Raf inhibitor [45].
B-Raf activation by Epo, as measured by the coupled in
vitro kinase assay, was found to be fully blocked by pre-
treatment of PEPs with ZM (Figure 6A,6B). ZM pretreat-
ment also suppressed SCF-induced phosphorylation of
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Activation of B-Raf by Epo is blocked by wortmannin. PEPs
were mock-stimulated (m) or stimulated with 0.3 U/ml Epo
or pretreated with 100 nM WM where indicated and then
stimulated with Epo. (A, B) c-Rafl was immunoprecipitated
from 500 g total cell protein with anti-c-Rafl. Precipitates
were immunoblotted with anti-c-Rafl for IP-control (A,
lower panel) or incubated with GST-MEK and subsequently
GST-ErkK63M and 32P-y-ATP for coupled kinase assay. Pro-
teins were separated by SDS-PAGE and phosphorylated
GST-ErklK63M analyzed by phosphoimaging. A representa-
tive example is shown in (A) (upper panel). Quantification of
c-Rafl activation from experiments with three different cord
bloods is shown in B (p,ivacion < 0-001;5 Pinnibition < 0-05). (C,
D) B-Raf activation was analyzed as described in (A) and (B)
but anti-B-Raf was used for immunoprecipitation and immu-
noblotting. Both activation and inhibition were statistically
hlgh')’ Signiﬂcant (Pactivation <0.00 l; Pinhibition <0.0l )

MEKs and Erks (Figure 6C). In contrast, Epo-mediated
activation of MEKs and Erks was not affected by ZM pre-
treatment of PEPs. ZM treatment alone did not activate
Erks in PEPs (data not shown). These data show that Raf
kinases are not crucial for MEK and Erk activation in PEPs
at low concentrations of Epo.

PKC inhibitors block Epo-induced activation of MEKs and

Erks

An alternative mechanism to activate MEKs and Erks inde-
pendent of Rafs is through protein kinase C (PKC) family
enzymes. Since two members of this family, PKCa and
PKCB, are upregulated during the maturation of
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Figure 6

Inhibition of Erks by PKC inhibitors but not by Raf inhibitor. (A, B) Starved PEPs were mock-stimulated (m) or stimulated with
0.3 U/ml Epo with or without pretreatment with 10 uM ZM336372 (ZM) for | h. B-Raf was immunoprecipitated from 500 ng
total cell protein with anti-B-Raf. Precipitates were immunoblotted with anti-B-Raf for IP-control (A, lower panel) or incubated
with GST-MEK and subsequently GST-ErkK63M and 32P-y-ATP for coupled kinase assay. Proteins were separated by SDS-
PAGE and phosphorylated GST-Erkl1K63M analyzed by phosphoimaging. A representative example is shown in (A) (upper
panel). Quantification of B-Raf activation from experiments with three different cord bloods is shown in (B) (p,.sivation < 0-01;
Pinhibition < 0.05). (C) Starved PEPs were mock-stimulated (m) or pretreated with 0, 0.1, | or 10 uM ZM for | h or 4 h and stim-
ulated with 0.3 U/ml Epo as indicated. Other cells were pretreated with 10 uM ZM and then stimulated with 25 ng/ml SCF. 100
g total cell protein were immunoblotted with anti-P-STATS, anti-P-MEK /2, anti-Erk1/2 or anti-P-Erk|/2. @-lanes represent
untreated PEPs. (D, E) Starved PEPs were mock-stimulated (m) or pretreated with PKC inhibitors and stimulated with 0.3 U/
ml Epo or 25 ng/ml SCF. 100 ng of total cell protein were immunoblotted with anti-P-STAT5 and anti-P-Erkl/2. Inhibitor pre-
treatment was with 10, 100 or 1000 nM calphostin C for | h before Epo stimulation and with 1000 nM calphostin C before
SCF stimulation. Other samples were pretreated with 0.1, I, 10 or 100 uM Ro-31-8220 and stimulated with 0.3 U/ml Epo, or
they were pretreated with 100 uM Ro-31-8220 where indicated and stimulated with 25 ng/ml SCF or 100 uM TPA for 10 min.
100 g total cell protein were immunoblotted with anti-P-STATS or anti-P-Erk1/2. @-lanes represent untreated PEPs.
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hematopoietic progenitor cells along the erythroid lineage
[46], these kinases were analyzed by in vitro kinase assays
after Epo stimulation. However, we were unable to
observe an activation of PKCa or PKCB when compared
with control PEPs. Moreover, phospho-specific antibodies
directed against phosphorylated epitopes of different PKC
family members (PKCa, PII Thr638/Thr641; PKCS
Thr505; PKCS Ser603; PKD/PKCp Ser744/Ser748; PKD/
PKCuSer916; PKCO Thr538; PKCL/A Thr403/Thr410) did
not reveal Epo-induced changes (data not shown). There-
fore, calphostin C and Ro-31-8220, two widely used and
structurally distinct inhibitors which affect a broad spec-
trum of PKC family kinases, were tested for their ability to
prevent Epo-stimulated activation of MEKs and Erks. Both
inhibitors blocked Erk activation by Epo and by tetrade-
canoylphorbol 13-acetate (TPA), a strong activator for
many PKCs, but not Erk activation induced by SCF (Figure
6D,6E, lower panels). Neither Epo-induced STAT5
phosphorylation (Figure 6D,6E, upper panels) nor tyro-
sine phosphorylation of Jak2 (data not shown) were
affected.

Western blot analyses of total protein extracts showed that
most isoforms of this large kinase family are expressed in
PEPs (unpublished results). Therefore, it could not be rap-
idly assessed by in vitro kinase assays which PKC isoforms
are activated by Epo. However, in many PKC signaling
events an intracellular translocation of the activated PKCs
to a distinct compartment occurs. Consequently, changes
in the subcellular localization of various specific PKC iso-
forms expressed in PEPs (o, B, 8, €, m, 6, A, 1, w, §) were
analyzed by cell fractionation following mock treatment
or stimulation with Epo or SCF, or after stimulation with
TPA. Most PKC isoforms showed prominent translocation
upon TPA treatment, but we were unable to detect
changes after Epo stimulation (data not shown). There-
fore, it remains to be determined which PKC isoform is
essential for activation of MEKs and Erks.

Discussion

It is well known that Epo-induced signals synergize with
those of other cytokines, growth factors and hormones in
vivo. To dissect out the contribution made by Epo to the
signaling in PEPs, Epo-induced signaling should be
analyzed under serum-free culture conditions to yield
results unbiased by the poorly understood actions of
other factors contained at variable concentrations in
serum. This source of variation was eliminated in the cur-
rent study by the consistent use of a defined cytokine
cocktail throughout all cell culturing. Another potential
source of variability is the heterogeneous genetic back-
ground of the cord blood donors. However, this did not
appear to greatly influence the signaling events that were
observed in the current study.
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minimal Epo SCF
v v
EpoR c-Kit

Figure 7

Schematic model of signaling events to MEKs and Erks
induced by threshold concentrations of Epo. This basic Epo
signal can be amplified or modulated by various other signal-
ing pathways (not shown here) which become activated upon
higher Epo concentrations and/or other factors and will
often depend on SH2 domain interactions with the phospho-
rylated tyrosines in the cytoplasmic EpoR tail. PKCs could
function as signal transducers for PI3Ky, but it is also possible
that PKCs are activated in a parallel pathway to PI3Ky and
that these two pathways converge to activate MEKs. B-Raf
kinase does not significantly promote MAPK activation at low
Epo concentrations, but since it is readily activated, it could
play a role in signaling events induced by higher Epo
concentrations.

The results of the experiments presented here implicate
PI3Ks and, in particular, PI3Ky as crucial mediators of sig-
naling to MEKs and Erks at low Epo concentrations. This
newly emerging EpoR signaling pathway is summarized
and compared to c-Kit signaling in Figure 7. Since PKC
activation influences MEK and Erk phosphorylation (Fig-
ure 6) it is possible that PKC kinases act as mediators
between PI3Ky and MAPKSs. It is also conceivable that
PKCs are activated in a pathway parallel to PI3Ky and that
these two pathways converge to activate MEKs.

Previous studies had shown that PI3Ky functions in the
signal transmission of the Gy subunits of heterotrimeric
G protein-linked receptors to MAPKs [47-49]. Its regula-
tory subunit p101 associates tightly with Gpys leading to
a strong activation of PI3Ky by GPys [50]. Roles for PI3Ky
in inflammation and allergies have been documented in
other studies [51]. Furthermore, a direct in vitro interac-
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tion of Ras with PI3Ky [52,53] has been reported. We have
so far been unable to detect stable complex formations of
the p110 or p101 subunits of PI3Ky with Ras, Jak2 or the
EpoR by co-immunoprecipitation experiments. Exactly
how Epo stimulation of cells leads to an activation of
PI3Ky remains to be clarified. Studies by Mayeux and col-
leagues with Epo-responsive cell lines recently showed a
link between EpoR signaling and heterotrimeric G
proteins [54,55] but whether a similar link exists in PEPs
is not yet certain.

In another set of experiments, relatively little elevation of
tyrosine phosphorylation was detected upon stimulation
of PEPs with 0.3 U/ml Epo. Nevertheless, it was possible
to identify a 150 kDa phosphotyrosyl-protein as the inosi-
tolphosphatase p150 SHIP, which exists in a complex
with Grb2 and Shc as determined by co-immunoprecipi-
tations (our unpublished data). Whether or not this phos-
phorylation is functionally significant remains to be
studied. However, the finding that SHIP is affected by Epo
treatment raises an interesting possibility; it was recently
shown for a variety of protein phosphatases that they
become transiently inactivated by reversible oxidation
upon recruitment to active receptor complexes. Moderate
activation of PI3Ky in combination with an inactivation
of SHIP could lead to a massive increase in signal-trans-
ducing phosphoinositides.

Finally, PI3Ky not only displays PI kinase activity but can
also function as a protein kinase [48]. At present it is not
clear whether the protein kinase activity of PI3Ky plays a
role in Epo signaling, for example in the activation of a
PKC or Ras.

In summary, our results lead us to propose a new model
for Epo signaling in which PI3Ky provides a basal mecha-
nism to transmit Epo signals to Ras, MEKs and Erks, pos-
sibly independent of the multiple tyrosines in the
cytoplasmic tail of the EpoR. Whether PI3Ky is activated
through direct or indirect interactions with the EpoR
remains to be determined.

The basal Epo signal might be modulated and amplified
by other signaling pathways activated by higher concen-
trations of Epo which depend on phosphorylated EpoR
tyrosines. If this model is correct, one would expect that
the absence of the EpoR tyrosines would lead to an
impaired response when the erythroid cell compartment
is challenged by severe blood loss or hemolysis. While this
manuscript was being prepared, a novel study by Woj-
chowski and co-workers reported exactly this finding in
mice with a truncated and mutated EpoR devoid of the
tyrosine residues which are known to serve as docking
sites for various SH2 domain-containing signaling pro-
teins [56].
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Conclusions

Erythropoietin is a key regulator of erythropoiesis and
drives progenitor cell proliferation as well as differentia-
tion. The signaling mechanism through which Epo acti-
vates the mitogenic kinases in primary erythroid
progenitors (PEPs) was until now largely unclear, in part
because only very few in-depth biochemical studies with
primary progenitors have been done so far. Our studies
identify a novel signaling pathway from erythropoietin to
the mitogenic MEK and Erk kinases that requires only
minimal amounts of Epo and is thus believed to reflect
the continuous signaling that occurs under conditions of
blood homeostasis. Specifically, minimal levels of Epo
which lead to a basal activation of the MEK and Erk
kinases moderately activate the class Ib PI3 kinase isoform
PI3Ky. This is, to our knowledge, the first time that the
activity of endogenously expressed PI3Ky has been quan-
tified. Three different PI3K inhibitors, which are structur-
ally and mechanistically distinct, unexpectedly showed
that PI3K activation is essential for MEK and Erk activa-
tion. Moreover, we report for the first time Epo-induced
Ras activation in PEPs. Surprisingly, Ras activation is also
dependent on PI3K activity. This differs greatly from the
signaling mechanism for Ras in many other contexts,
where class Ia PI3Ks are downstream of Ras. The new
pathway described here could be independent of phos-
photyrosyl-SH2 domain interactions that are seen in
many receptor signaling pathways. This would explain
why mice with a mutant Epo receptor that lacks all SH2
domain docking sites are still viable and have a normal
hematocrit when unchallenged.

Methods

Purification and amplification of primary human erythroid
progenitors

Primary human erythroid progenitors were purified as
described in Freyssinier et al. [41]. Briefly, umbilical cord
bloods (approximately 80 ml) were diluted 1:1 with
phosphate buffered saline (PBS) containing 4% fetal
bovine serum (FBS). After Histopaque-1077 (Sigma,
Poole, UK) density gradient centrifugation, the low den-
sity cells were recovered and CD34+ cells purified by
immunomagnetic cell separation (MACS, CD34+ isola-
tion kit, 467-01; Miltenyi Biotec, Bergisch Gladbach,
Germany). Selected CD34+ cells were cultured in 5% CO,
at 37°C for seven days in serum-free RM-B0O cell expan-
sion medium (00201; RTM/MABIO-International,
Tourcoing, France; does not contain dexamethasone,)
with 10 ng/ml interleukin (IL)-3, 10 ng/ml IL-6 and 25
ng/ml SCF (all from PeproTech EC Ltd, London, UK).
After seven days in culture, CD36* cells were immu-
nomagnetically isolated using a mouse anti-CD36* mAb
(0765; Immunotech, Marseille, France) and rat anti-
mouse IgGl microbeads (471-01; Miltenyi Biotec).
CD36+ cells were then further cultured with IL-3, IL-6, SCF
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and 2 U/ml Epo (Janssen-CILAG, Saunderton, UK) for
four days.

Cell stimulation, lysis and protein quantification

On day 7+4 CD36+ cells were starved for 6 h in RM-B00
medium and stimulated with 0.3 U/ml Epo, 25 ng/ml SCF
or 100 uM TPA (Calbiochem, Nottingham, UK) for 10
min, unless indicated otherwise. Mock incubations were
done with the appropriate solvents for cytokines or chem-
icals (H,0O, RM-B00 medium and/or DMSO).

For lipid and protein kinase inhibition experiments, cells
were pretreated with UO126 (Cell Signaling Technology/
NEB, Hitchin, UK), wortmannin, caffeine (both Sigma),
LY294002, ZM336372, calphostin C or Ro-31-8220 (all
from Calbiochem) as indicated. Total cell protein extracts
were prepared by solubilizing in Igepal CA-630 (syn.
Nonidet P-40, NP-40; 1 3021, Sigma) lysis buffer
containing 1% (v/v) NP-40, 50 mM HEPES pH 7.5, 10%
(v/v) glycerol, 150 mM NaCl, 2 mM EDTA, 50 mM
sodium fluoride (NaF), 10 mM sodium pyruvate, 1 mM
sodium vanadate (Na;VO,), 1 mM phenylmethylsulfo-
nylfluoride (PMSF), 10 pg/ml aprotinin, 5 pg/ml
antipain, 0.5 ug/ml leupeptin, 0.7 pg/ml pepstatin A, 1 x
Complete™ inhibitors (1697498; Roche, Mannheim, Ger-
many) and 3 mM dithiotreitol (DTT). After 30 min of
nutation in the cold, lysates were cleared by centrifugation
for 20 min at 2°C with 20,000 x g and supernatants fur-
ther analyzed. Protein concentrations were determined
with the Bradford dye binding assay for all extracts made.

Immunoblotting and immunoprecipitation

100 pg of total cell protein extract were separated by SDS
polyacrylamide gel electrophoresis (SDS-PAGE). After
membrane transfer (Hybond-P, Amersham Pharmacia
Biotech, Little Chalfont, UK) proteins of interest were
detected with antibodies against phospho-STAT5a/b (05-
495; Upstate Ltd, Milton Keynes, UK), phosphotyrosine
(4G10 hybridoma), Ras (R02120; BD Transduction Labo-
ratories, Heidelberg, Germany), phospho-Erk1/2 (9101),
phospho-MEK1/2 (9121), phospho-Akt (pS473; 9271),
phospho-GSK3a/B (9331), Akt (9272) (all from Cell Sig-
naling Technology/NEB) or Erk1/2 (sc-93; Santa Cruz,
Heidelberg, Germany) and ECL (Amersham Pharmacia
Biotech). To detect the tyrosine phosphorylated EpoR,
phosphotyrosyl-proteins from 500 pg of total cell protein
were immunoprecipitated with mAb 4G10 in IP-buffer
(20 mM Tris HCI pH 7.5, 10 mM EDTA, 10 mM EGTA,
100 mM NacCl, 5% glycerol, 0.1% (v/v) Tween20, 10 pg/
ml aprotinin, 1 mM PMSF, 5 pg/ml antipain, 0.5 pg/ml
leupeptin, 0.7 pg/ml pepstatin A, 1 x Complete™ inhibi-
tors, 3 mM DTT, 1 mM NaF, 1 mM Na,;VO,) overnight in
the cold. After SDS-PAGE and membrane transfer, EpoR
was detected with polyclonal anti-EpoR (kind gift from
Patrick Mayeux, Hospital Cochin, Paris, France) and ECL.
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PI3 kinase assay

500 pg of total cell protein extract were immunoprecipi-
tated in NP-40 lysis buffer with 4 pg anti-phosphotyrosine
mAb (4G10) or with 4 pg PI3K p110y polyclonal anti-
body (sc-7177 (H-199); Santa Cruz), respectively. Immu-
noprecipitates were washed three times with NP-40 lysis
buffer, twice with 50 mM TrisHCI pH 7.5 plus 500 mM
lithium chloride (LiCl), once with 20 mM TrisHCI pH 7.5
with 100 mM NaCl and 1 mM EDTA and once with 20
mM HEPES pH 7.5. 10 pg of lyophilised phosphatidyli-
nositol (PI; P2517, Sigma) were then mixed with 10 pul of
lipid kinase buffer (LKB; 20 mM TrisHCI pH 7.5, 100 mM
NaCl, 1 mM EGTA) and sonicated for 6 x 5 sec at 30%
power output with an MS72 sonotrode (Sonopuls GM70;
Bandelin, Berlin, Germany), chilling PI on ice between
sonications. Sonicated PI was then mixed with 30 ul LKB
and added to the immunoprecipitates. After 5 min on ice,
10 pl LKB with 10 pCi 32P-y-ATP (3000 Ci/mMol; Amer-
sham, Little Chalfont, UK) and 2 mM magnesium chlo-
ride (MgCl,) were added and samples incubated at 37°C
for 15 min. The reaction was stopped with 200 pl of 1 N
hydrochloric acid (HCI). After extraction of the samples
with 200 pl of methanol/chloroform (1:1), 50 pl of the
organic phase were used for thin layer chromatography
(TLC) on LK6D plates (4865-821; Whatman International
Ltd, Maidstone, UK). Running buffer was methanol/chlo-
roform/H,0/NH,OH (20:23:4:1). TLC plates were
analyzed on a Storm860 phosphoimager (Amersham
Pharmacia Biotech) with ImageQuant 5.2 (Molecular
Dynamics, Sunnyvale, USA). To confirm equal PI3K
precipitation independent of cell stimulation, parallel
samples of immunoprecipitates from protein extracts ana-
lyzed in lipid kinase assay were separated by SDS-PAGE
and blots probed with anti-p110y mAb (804-230-L001;
Alexis, Nottingham, UK) followed by ECL.

Raf-MEK coupled kinase assay

The coupled kinase assay was done essentially as
described [57] with slight modifications. 500 pg of total
cell protein extract were immunoprecipitated with 4 pg
anti-c-Rafl (R19120; BD Transduction Laboratories) or
with 4 pg anti-B-Raf (07-453; Upstate) in buffer A (20 mM
TrisHCI pH 8.0, 2 mM EDTA, 1% (v/v) TritonX-100, 10%
glycerol). Immunoprecipitates were washed three times
with buffer A and twice with buffer B (50 mM TrisHCI pH
7.5, 75 mM NaCl, 5 mM EGTA, 5 mM MgCl,). 0.2 ng acti-
vatable GST-MEK1 (gift from W. Kolch; or 14-420,
Upstate) together with 5 ul buffer C (50 mM MgCl,, 2 mM
ATP) and 10 pl buffer B were added to the washed
immunoprecipitates, samples were mixed and incubated
at 30°C for 20 min. The reaction was then disrupted by
transferring samples into ice and adding 100 ul buffer D
(buffer B plus 1 mM DTT and 1 mM Na;VO,). 25 ul of this
reaction mix was subsequently incubated with 20 pg
kinase-inactive GST-Erk1K63M (gift from Heidi Greulich,
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Boston), 2 ul buffer E (buffer B with 37.5 mM MgCl, and
1.25 mM ATP) and 5 pCi 32P-y-ATP at 30°C for 15 min.
The reaction was stopped by adding SDS-PAGE sample
buffer. After SDS-PAGE, Raf activity was determined by
detecting GST-Erk1K63M phosphorylation with Image-
Quant 5.2. Subsequently proteins were blotted and mem-
branes probed with anti-c-Raf1 or anti-B-Raf.

Ras assay

Detection of GTP-loaded Ras has been previously
described [58,59]. Cells were lysed in Mg2+-containing
lysis buffer (MLB; 25 mM HEPES pH 7.5, 150 mM Nacl,
10 mM MgCl,, 1 mM EDTA, 10% glycerol, 1% NP-40,
0.25% (w/v) sodium deoxycholate, 1 mM Na;VO,, 10 pg/
ml aprotinin, 0.5 pg/ml leupeptin) at 4°C for 15 min. 500
pg of MLB total cell protein were incubated with 25 pg
GST-c-Rafl RBD (amino acids 1-149) pre-coupled to
GSH-beads (Amersham Pharmacia Biotech) at 4°C for 1
h. Precipitates were washed three times with MLB, sepa-
rated by SDS-PAGE and immunoblotted with anti-Ras.

Statistical analysis of protein kinase assays

p-values were calculated using the Student's t-test (Micro-
soft Excel). Classification of values is p < 0.05, p < 0.01 or
p <0.001.
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