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CB-Dock: a web server for cavity detection-guided
protein–ligand blind docking
Yang Liu1, Maximilian Grimm1, Wen-tao Dai2, Mu-chun Hou1, Zhi-Xiong Xiao1 and Yang Cao1

As the number of elucidated protein structures is rapidly increasing, the growing data call for methods to efficiently exploit the
structural information for biological and pharmaceutical purposes. Given the three-dimensional (3D) structure of a protein and a
ligand, predicting their binding sites and affinity are a key task for computer-aided drug discovery. To address this task, a variety of
docking tools have been developed. Most of them focus on docking in the preset binding sites given by users. To automatically
predict binding modes without information about binding sites, we developed a user-friendly blind docking web server, named CB-
Dock, which predicts binding sites of a given protein and calculates the centers and sizes with a novel curvature-based cavity
detection approach, and performs docking with a popular docking program, Autodock Vina. This method was carefully optimized
and achieved ~70% success rate for the top-ranking poses whose root mean square deviation (RMSD) were within 2 Å from the X-
ray pose, which outperformed the state-of-the-art blind docking tools in our benchmark tests. CB-Dock offers an interactive 3D
visualization of results, and is freely available at http://cao.labshare.cn/cb-dock/.
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INTRODUCTION
Protein–ligand docking has been widely used to predict binding
modes and affinities of ligands. Protein–ligand docking is a
powerful tool for computer-aided drug discovery (CADD).
Currently, there are dozens of commercial and academic tools
available for protein–ligand docking [1–12]. Most docking tools
require the ligand binding region (the rotation and translation of a
ligand in this region) in advance to search for the most energy
favorable binding mode. The binding region is usually represented
as a cubic box, so its size and center are critical for accurate
docking because it defines the boundaries of the conformational
sampling space. In many application scenarios, the binding
regions are unknown. To identify potential interactions between
a given protein and a ligand, docking has to be performed on the
entire protein surface to find the most probable binding mode.
This process is called blind docking [13–16]. Compared to regular
docking, blind docking is less reliable and stable as the docking
space is usually too large to sufficiently sample using a limited
number of random searches. Nevertheless, blind docking is
particularly valuable for discovering unexpected interactions that
may occur in unidentified binding modes [17].
Traditionally, blind docking is performed on the entire protein

surface. Alternatively, docking on putative binding regions of
the given protein usually improves the sampling efficiency and
reduces the computational cost of blind docking [18]. Currently,
many binding site detection tools have been developed [19–29].

These methods help users find residues that potentially bind
with ligands. However, users must cluster residues into groups
and estimate the parameters manually and then perform several
rounds of protein–ligand docking to obtain the final result.
Although this process is feasible, it is not efficient and has not
been systematically optimized. To address this problem, several
blind docking tools have been developed in recent years that
have integrated cavity detection with a focused docking
module. For example, popular software SwissDock [30, 31],
QuickVina-W [15] and BSP-SLIM [32] provide particularly valu-
able services for blind docking. In this paper, we described a
new blind docking tool, named CB-Dock, which focuses on
enhancing the docking accuracy. CB-Dock predicts binding
regions of a given protein, calculates the centers and sizes with
a curvature-based cavity detection approach, and performs
docking with the state-of-the-art docking software Autodock
Vina [33]. CB-Dock also ranks the binding modes according to
Vina scores and provides an interactive 3D visualization of the
binding modes. Our benchmark tests show an ~70% success
rate for the top-ranking poses whose root mean squared
deviation (RMSD) was within 2 Å from the position in the X-ray
crystal structure. It is notably higher than the traditional blind
docking method (~40%) and outperformed other popular blind
docking tools. The server of CB-Dock is freely available at http://
cao.labshare.cn/cb-dock/, together with additional documenta-
tion and tutorials.
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MATERIALS AND METHODS
Benchmark dataset
PDBbind Set. A total of 1684 protein–ligand structures were
selected from PDBbind (v2018) [8, 34]. The molecular weights of
the proteins were limited to 150~500 g/mol, and the numbers of
rotatable bonds were within 10. In addition, the proteins that
share 60% or more similarity to the Astex Diverse Set or
MTiAutoDock data were eliminated. The structures can be
downloaded from our website http://cao.labshare.cn/cb-dock/.

Astex Diverse Set. The Astex Diverse Set contains 85
protein–ligand complexes [35], which were downloaded from
the Protein Data Bank [36]. The redundant identical chains, water
molecules, and heteroatoms were discarded.

MTiAutoDock Set. The test data are from the benchmark set of
MTiOpenScreen [37]. The data contains 27 crystal structures that
cover important drug targets, including enzymes, GPCRs, nuclear
receptors, and PPIs.

Apo Structure Set. The above Astex Diverse Set is composed of
protein–ligand complex (holo) structures. To test the docking in
the unbound state (apo) of proteins, we collected 19 apo protein
structures [18] available in the Astex Diverse Set. Each apo
structure corresponds to a holo structure in the Astex Diverse Set.
The sequence identity and coverage of each pair are greater than
95%. To compare the accuracy of the docking results, we
superimposed each apo structure onto its corresponding holo
structure.

The traditional blind docking and redocking protocols
The parameters of traditional blind docking were customized as
described by the protocol from Di Muzio et al. [38]. The docking
center is the spatial geometric center of all the heavy atoms of the
protein. To obtain the sizes of the docking box, distances between
the center and each atom along the three axes (x, y, and z) were
calculated. Then, the maximum value of the distance along each
dimension is doubled and adds an additional 5 Å as the size of the
docking box [38].
Redocking was performed with known binding sites. The

docking parameters were customized by following the method
from Wei and Michal [39]. In general, the search box size is equal
to 2.857 times the radius of gyration of the ligand, which
consistently obtains the highest prediction accuracy when using
AutoDock Vina [39].

RESULTS
Detecting cavities on proteins
Most small-molecule binding occurs in protein pockets or cavities
because high affinity can only be gained by sufficiently large
interaction interfaces [40]. CB-Dock searches for concave surfaces
to detect cavities. Briefly, CB-Dock generates a set of points to
represent the solvent-accessible surface and calculates the
curvature factor of each point using the method from our
previous work [41, 42]. These points at the concave surface
(curvature factor > 8) are clustered by a density-peak-based
clustering algorithm [43]. Thus, we obtained several clusters of
points that represent cavities on the protein surface. We present
the example of aminopeptidase (PDB ID: 1TXR), whose cavities are
highlighted in Fig. 1a. The cavities were ranked according to their
sizes. We compared our method (called CurPocket) with state-of-
the-art protein–ligand binding site prediction methods using the
benchmark set of COACH [23], which is one of the best prediction
methods. The results showed that our method is comparable to
that of COACH in terms of Matthews correlation coefficient,
precision, and recall (see Supplementary Table S1). Unlike
traditional binding site prediction methods, our method detected
the real binding cavities as much as possible to offer options for
blind docking. To investigate its performance in detecting real
binding cavities, we submitted 1684 structures from PDBbind to
CurPocket (see the Materials and methods section) and examined
their success rates by comparing the top 10 cavities with the real
binding cavities from the crystal structures. Test results showed
that the predicted success rates [44] of the top 1 to 10 cavities
increased from 63.7% to 92.4%, respectively (Fig. 1b). From the top
10 to top 5, the success rate dropped only 2%. To balance the
computational expense and cavity detection accuracy, we
selected the top 5 cavities as candidates for focused docking.

Calculating centers and sizes of docking boxes
For a putative cavity, CB-Dock needs to customize a docking box
for the following computation. A good docking box should
enclose the native binding pose and exclude as many as possible
irrelevant poses. The center and size of the docking box are the
key parameters in this process. The center of the ligand from the
crystal structure is the best choice for the docking box; however,
we can base these parameters only on the putative cavity and

Fig. 1 The cavities detected by CB-Dock. a The putative cavities of
aminopeptidase (PDB ID: 1TXR) were highlighted in green. b
Success rate of detected cavities from top 10 to 1 in the PDBbind
Set. (Top 5= 90.1%)
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unbound ligands to estimate the center and size. Hence, we first
selected the center of the putative cavity, i.e., the center of points
at the concave surface, as the docking center. To quantify its
deviation from the best center, we calculated distances between
the two centers using the PDBbind data set (see the Materials and
methods section). The distances between centers of real and
putative target cavities were distributed from 1 to 10 Å (Fig. 2a).
For most of the data (76.6%), the distances were within 5 Å and up
to 97.7% when distances were within 10 Å. The result indicated
that for the majority of the data, the center of the cavity was close
to the ideal center. Second, we needed to determine the lengths
of the docking box in each dimension, which was related to the
size of the cavity, the size of the ligand and the deviation of the
putative center from the ideal center. After systematical examina-
tion of the outcome from docking, we finally calculated the i axis
length Li of the docking box by a constant x plus the maximum of
the length Ci of the putative cavity or gyration radius R of the
given ligand as follows:

Li ¼ x þmax R; Cið Þ
The constant x is used to compensate for the deviation of the
putative center and to ensure that the ligand is enclosed in the
docking box. To determine x, we tested the above protein–ligand
structures to investigate the proportion of docking boxes that
enclosed the ligands by gradually increasing x from 0 to 12 Å
(Fig. 2b). The results showed that the proportion grows rapidly
when x increases from 0 to 5 Å. When x is 10 Å, all the ligands are
enclosed in the docking box. Thus, we choose x= 10 Å in our
program. Detailed analysis shows that the sizes of the docking box
by the above formula were mostly less than 30 Å, which was
within the recommended upper limit (http://vina.scripps.edu/
manual.html#faq).

The guidance of cavity detection improved blind docking
To assess the performance of CB-Dock, we compared it with
traditional blind docking using a protein–ligand complex from
Astex Diverse Set [35]. The docking parameters of traditional blind
docking are described in section ‘The traditional blind docking
and redocking protocols’. In addition, to determine the upper limit
of this blind docking, we also tested redocking the centers and
sizes of docking boxes that were obtained from crystal structures
[39]. We measured the accuracy by RMSD between the predicted
binding mode with the lowest docking score and the native mode
in the crystal structures. The performances of these methods were

quantified by the percentage of correct predictions (RMSD < 2 Å)
(Fig. 3a). The results show that for traditional blind docking,
redocking, and CB-Dock, the prediction accuracies were 38.8%,
76.5%, and 69.4%, respectively. As we expected, CB-Dock had
significant improvements (~30% higher) over traditional blind
docking, and the overall accuracy was much closer to redocking
and the upper limit of docking using Autodock Vina. Particularly,
when the prediction was correct, CB-Dock and redocking had
nearly identical RMSD values (Fig. 3b). This result implies that the
cavity detection and docking parameters of CB-Dock work rather
well. As AutoDock Vina is based on a random algorithm, whose
results may be different from the repeat runs, we repeated the test
for 3 rounds to investigate the stability of the three methods. The
results showed that the RMSD variations of CB-Dock and
redocking were less than 5%, while it was up to 10% for
traditional blind docking. We argued that CB-Dock appropriately
decreased the sampling space and thereby reduced the random-
ness of the results. In all, cavity detection is a powerful approach
to improve blind docking.

Comparison of CB-Dock with existing blind docking tools
To gain an overall performance of CB-Dock, we further compared
it with four state-of-the-art docking tools, including DockingApp
[38], MTiAutoDock [37], rDock [45], and SwissDock [30, 31].
Though the tools provide multiple usages, we focused on their
performance of blind docking. DockingApp searches for binding
sites over the whole protein surface by AutoDock Vina [33].
MTiAutoDock uses the same strategy but is powered by AutoDock
4.2.6 [5]. rDock and SwissDock perform docking in the vicinity of
predicted cavities. Unlike curvature-based cavity detection in CB-
Dock, rDock uses a two-probe sphere method [45], and SwissDock
employs a variant of the grid-based LIGSITE algorithm [46] to
identify cavities. In general, DockingApp and MTiAutoDock follow
the traditional strategy, while rDock, SwissDock, and CB-Dock only
allow docking in the putative binding regions. We conducted the
benchmarks on the Astex Diverse Set and MTiAutoDock data (see
the Materials and methods section). In the first dataset, Dock-
ingApp, MTiAutoDock, rDock, SwissDock (accurate mode) and CB-
Dock achieved 42.4%, 42.4%, 41.2%, 53.0%, and 69.4% success
rates of top-ranking poses within the RMSD of 2 Å from crystal
structures, respectively (Fig. 4a). In the second set, the five tools
achieved 33.3%, 51.9%, 33.3%, 70.4% and 74.1% success rates,
respectively (Fig. 4b). Both benchmarks illustrated that, in terms of
success rates for top-ranking poses, CB-Dock outperformed other
blind docking tools. As blind docking strongly depends on the

Fig. 2 The parameters of docking box were optimized by the statistical analysis of known binding cavities. a Distribution of distances
between centers of ligands in crystal structures and centers of putative cavities which are closest to the ligand. b The proportion of the test
cases whose docking boxes successfully enclose the target ligands for the given extra edge length x of the box
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accuracy of predicted binding sites, we further compared the
average percentage of correctly predicted binding sites [44]. The
results showed that the accuracies were 70.6%, 67.1%, 71.8%,
78.3%, and 88.2% for DockingApp, MTiAutoDock, rDock, Swiss-
Dock (accurate mode) and CB-Dock, respectively, on the Astex
Diverse Set data (Fig. 4c) and were 70.4%, 70.4%, 77.8%, 88.9%,
and 100%, respectively, on the MTiAutoDock data (Fig. 4d). These
results exhibited good correlations with the above success rates of
predicting the binding sites and indicated the significance of the
binding site prediction in CB-Dock.

The above tests benchmarked blind docking on the ligand-bound
states (holo) of receptors from the protein–ligand complex
structures. The blind docking in unbound (apo) structures is much
more challenging as the conformational changes of proteins are
difficult to predict. We performed blind docking using the 19 apo
crystal structures available in Astex Diverse Set (see Apo Structure
Set in the Materials and methods section). The results showed that
the average percentages of correctly predicted binding sites [44] of
the top-one predictions are 47.4%, 36.8%, 47.4%, 31.6%, and 68.4%
for DockingApp, MTiAutoDock, rDock, SwissDock (accurate mode),

Fig. 4 The performance of DockingApp, MTiAutoDock, rDock, SwissDock (accurate mode), and CB-Dock on Astex Diverse Set and
MTiAutoDock Set. a The success rates of the top-ranking binding modes in Astex Diverse Set. b The success rates of the top-ranking binding
modes in MTiAutoDock Set. c The percentages of correct binding pockets for top-ranking poses in Astex Diverse Set. d The percentages of
correct binding pockets for top-ranking poses in MTiAutoDock Set

Fig. 3 The performance of traditional blind docking, redocking and CB-Dock on Astex Diverse Set. a The percentage of top-ranked poses with
an RMSD below 2 Å of the three methods. b RMSD of CB-Dock versus redocking when RMSDs < 2 Å
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and CB-Dock, respectively. The RMSDs exhibited a similar trend. The
success rates of top-ranking sites within the RMSD of 5 Å are 36.8%,
31.6%, 42.1%, 26.3%, and 63.2%, respectively (see Table 1). CB-Dock
achieved the highest accuracy in the Apo Structure Set. However,
the success rate was notably lower than that on the holo structure
set. Analysis showed that the conformational differences between
apo and holo structures may result in two types of inaccurate
docking. One type is that CB-Dock identifies accurate cavities for
docking; however, the detailed conformation of cavities was
different between apo and holo structures. If the differences were
critical for binding, docking may not be accurate because CB-Dock
does not model the conformational changes between apo and holo
structures. An example of this type is the PDB structure 1L2S (see
Fig. S1a and S1b). The side chain of Ser64 at the protein–ligand
interface was turned 44.5° from the apo structure (PDB ID: 2BLS) to
the holo structure (PDB ID: 1L2S) to avoid atomic clashes. This
difference misled docking on the apo structure. The other type of
inaccurate docking was that the top five cavities of the apo structure
do not include the real binding cavity. An example of this type is the
PDB structure 1YVF (see Fig. S1c and S1d). The real binding cavity
was ranked in the top five cavities on the holo structure (PDB ID:
1YVF), while it was too small to rank in the top five cavities on apo
structure (PDB ID: 2GIR). Hence, the docking has a very large RMSD.
Computational speed is another critical feature of docking in

high-throughput virtual screening. Because only DockingApp,
rDock, and CB-Dock provided a stand-alone version, the time
consumption was analyzed for the three blind docking tools. The
results showed that the average running times of DockingApp,
rDock, and CB-Dock on Astex Diverse Set were 44.4, 75.8, and
62.7 s per blind docking, respectively, on an AMD Ryzen1700
processor (see Table S2). Detailed data showed that the running
time of CB-Dock and DockApp did not show any correlation with
the size of the protein (number of residues) but was slightly
related to the flexibility of ligand (quantified by the number of
rotatable bonds) (See Fig. S2). In contrast, the time consumption

of rDock had a strong relationship with the size of the protein but
not the flexibility of the ligand (see Fig. S2). Although the precise
time consumption of MTiAutoDock and SwissDock was not
available, based on our tests, their online usages took over
10 min on average to return a docking result. Taken together, we
argue that CB-Dock serves as a relatively rapid blind docking tool.
In particular, the protein-size-independent feature of CB-Dock is
suitable for docking-based inverse virtual screening.

CB-Dock web server
To facilitate the use of CB-Dock, we constructed a web server at
http://cao.labshare.cn/cb-dock/, which only requires the input of a
protein file to be in the PDB format and a ligand file in the MOL2,
MOL, or SDF. After submission, CB-Dock checks the input files and
converts them to pdbqt formatted files using OpenBabel [47]
and MGLTools [5]. Next, CB-Dock predicts cavities of the protein
and calculates the centers and sizes of the top N (n= 5 by default)
cavities. Each center and size, as well as the pdbqt files, are
submitted to AutoDock Vina for docking. The final results
are displayed after the computation of N rounds. Users can
browse binding scores, cavity sizes, and docking parameters of the
predicted binding modes in a table. Moreover, users can inspect
the 3D structures of any binding modes on the web page by
clicking the structures in the related table. The interactive 3D
structures are drawn by NGL Viewer [48], which is supported by
most modern browsers. Users are able to display atom-specific
information, rotate and translate molecules, select models and
colors. For more details, users could refer to the manual on the CB-
Dock homepage.
Here, we present a case study of the software CB-Dock (Fig. 5).

Nultin3a, a potential anti-cancer drug, is able to bind with the E3
ubiquitin-protein ligase MDM2 and inhibit the MDM2–P53
interaction. The MDM2 protein structure was downloaded (PDB
ID: 4HG7) from PDB. The Nutlin-3a mol2 file was generated by the
PRODRG software [49]. The two files were uploaded and

Table 1. The RMSDs of five blind docking tools benchmarked in Apo Structure Set

Target protein DockingApp (Å) MTiAutoDock (Å) rDock (Å) SwissDock (Å) CB-Dock (Å)

1hq2 3.019 12.796 3.018 3.601 3.037

1ke5 7.543 21.849 16.685 37.472 7.535

1l2s 15.528 3.874 7.361 31.838 15.497

1l7f 26.68 19.626 34.651 17.328 0.865

1n1m 34.526 18.808 24.157 21.524 23.342

1n2v 22.755 3.903 3.836 27.137 4.517

1oq5 17.044 12.092 14.372 5.265 1.817

1oyt 0.339 0.538 4.766 3.783 0.335

1q41 2.219 1.382 29.771 1.483 2.145

1s3v 3.912 4.098 1.802 3.243 4.622

1t40 4.750 30.219 28.091 30.17 4.726

1t46 17.22 32.354 18.139 17.82 17.206

1v0p 37.477 4.673 36.866 23.273 4.212

1v48 7.971 15.968 13.423 13.615 7.908

1w1p 9.203 10.918 1.721 27.866 13.354

1yvf 16.433 60.384 19.995 13.263 14.687

1ywr 4.428 25.78 4.284 24.156 4.381

2br1 4.383 5.081 3.749 1.589 4.381

2bsm 16.412 16.78 3.744 20.386 0.784

Average 13.255 15.849 14.233 17.095 7.124

RMSD < 5 Å 36.8% 31.6% 42.1% 26.3% 63.2%

The RMSD values < 5 Å are highlighted in bold
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submitted to the CB-Dock server by clicking the button “Submit”.
While processing docking, a progress bar appeared to indicate the
status of the job. When the processing was complete (after
approximately 2 min), the web page was updated with the results.
The table listed Vina scores, cavity sizes, docking centers, and sizes
of predicted cavities. Once a ligand in the table is selected, the
structure in the interactive 3D graphics is visualized. In our
example, the top binding mode with a Vina score of −8.4 also had
the largest binding cavity. The binding mode was almost identical
to the mode of ligand in the crystal structure (RMSD= 0.484 Å).

DISCUSSION
Discovering protein–ligand binding sites and conformations are
particularly important in drug discovery. Blind docking is a
powerful method for obtaining that information. Blind docking
is also one of the key components in high-throughput screening
and inverse docking [50–53]. Therefore, it is of great value to
develop accurate blind docking tools. Thanks to the well-
established AutoDock Vina docking software, we focused on
developing methods of cavity detection and docking parameter
optimization, which are critical for blind docking. CB-Dock is the
first cavity detection-guided blind docking tool designed with
AutoDock Vina among many popular Vina-based tools (http://vina.
scripps.edu/manual.html#faq). The benchmark tests show that CB-
Dock outperforms other state-of-the-art blind docking tools in
terms of predicting binding sites and binding conformations. This
performance is attributed to the curvature-based cavity detection
that precisely narrows down the docking space as well as the
optimized parameters for AutoDock Vina. Some shortcomings of
CB-Dock were also observed in the test. First, compared to regular
docking, CB-Dock was more time expensive because the docking
was performed iteratively in five cavities. To reduce time
consumption, cavity detection should be further improved in
the future. Second, if the size of cavities was notably greater than
that of the ligand, the accuracy of docking tends to decrease. A
typical example is the huge cavity detected on nitric-oxide

synthase (PDB ID: 1MMV), in which the predicted docking position
is at the opposite side of the cavity (see Fig. S3). This result is
mainly related to the accuracy of the scoring function, which is
supposed to distinguish the global minimum from local mini-
mums. Using an additional scoring function to rerank binding
positions could be a solution to this problem. Third, CB-Dock
needs to improve the accuracy of docking in apo structures.
Compared to holo structures, apo structures show conformational
rearrangement in ligand binding sites, which has not been
captured in current CB-Dock software. In the following develop-
ments of CB-Dock, the protein conformation sampling method will
be incorporated in CB-Dock to enhance docking in apo structures.
Apart from blind docking capabilities, user-friendly interfaces

are also very important for docking tools. CB-Dock offers a
convenient web service that allows even nonexpert users to
perform protein–ligand docking and visualize results in 3D. We
believe that CB-Dock can contribute to the characterization of
newly determined protein structures and suggest novel thera-
peutic targets for biological and pharmaceutical studies.
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