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Microarray meta-analysis
reveals IL6 and p38β/MAPK11 as
potential targets of hsa-miR-124
in endothelial progenitor cells:
Implications for stent
re-endothelization in diabetic
patients
Alberto Arencibia and Luis A. Salazar*

Department of Basic Sciences, Faculty of Medicine, Center of Molecular Biology and
Pharmacogenetics, Universidad de La Frontera, Temuco, Chile

Circulating endothelial progenitor cells (EPCs) play an important role in the

repair processes of damaged vessels, favoring re-endothelization of stented

vessels to minimize restenosis. EPCs number and function is diminished in

patients with type 2 diabetes, a known risk factor for restenosis. Considering

the impact of EPCs in vascular injury repair, we conducted a meta-analysis

of microarray to assess the transcriptomic profile and determine target genes

during the differentiation process of EPCs into mature ECs. Five microarray

datasets, including 13 EPC and 12 EC samples were analyzed, using the online

tool ExpressAnalyst. Differentially expressed genes (DEGs) analysis was done

by Limma method, with an | log2FC| > 1 and FDR < 0.05. Combined p-value

by Fisher exact method was computed for the intersection of datasets. There

were 3,267 DEGs, 1,539 up-regulated and 1,728 down-regulated in EPCs, with

407 common DEGs in at least four datasets. Kyoto Encyclopedia of Genes and

Genomes (KEGG) analysis showed enrichment for terms related to “AGE-RAGE

signaling pathway in diabetic complications.” Intersection of common DEGs,

KEGG pathways genes and genes in protein-protein interaction network

(PPI) identified four key genes, two up-regulated (IL1B and STAT5A) and two

down-regulated (IL6 and MAPK11). MicroRNA enrichment analysis of common

DEGs depicted five hub microRNA targeting 175 DEGs, including STAT5A, IL6

and MAPK11, with hsa-miR-124 as common regulator. This group of genes

and microRNAs could serve as biomarkers of EPCs differentiation during

coronary stenting as well as potential therapeutic targets to improve stent

re-endothelization, especially in diabetic patients.
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Introduction

Circulating endothelial progenitor cells (EPCs) are a
heterogeneous group of circulatory cells that play an important
role in the repair processes in damaged tissues (1). EPCs
are mobilized from the bone marrow into the circulation in
response to tissue damage (2) and have the capacity to home
to injured blood vessels and differentiate in mature endothelial
cells (ECs) (3).

In the context of acute coronary syndrome treated with
percutaneous coronary intervention (PCI) there is a profound
damage of the vascular wall (4). Coronary stenting results in
clinical or subclinical neointima formation with stent restenosis
in about 30% of patients (5). Coronary stenting cause a burst
of EPCs within 24 h when comparing to balloon angioplasty
(6). Drug eluting stents (DES) avoid neointima formation by
vascular smooth muscle cells, but also target ECs, limiting
stent re-endothelization and favoring in-stent restenosis and
thrombosis (7).

EPCs have been extensively investigated for their capacity
to modulate neointimal formation in PCI (8). Recruiting EPCs
into the stent with CD34 + (9) or CD133 + (10) antibodies
promote early re-endothelization while reducing the risk of stent
thrombosis and in-stent restenosis (11) when comparing with
bare metal stents (BMS) (12).

Reduction of EPCs has been proposed as a novel mechanism
of cardiovascular disease in type 2 diabetes. In comparison
with normoglycemic patients, diabetic patients have a significant
reduction of EPCs number and function with increased
apoptosis (13). Another investigation described impaired
number, migration, CXCR4 expression, and nitric oxide (NO)
production in EPCs from diabetes patients and were further
reduced in patients with coexisting coronary artery disease.
The expression of CXCR4 and activation of Pi3K/Akt/eNOS
signaling cascade were suppressed in cultured EPCs treated with
hyperglycemia and oxidized LDL (14).

TABLE 1 Gene expression omnibus (GEO) datasets used for this study.

GEO
accession
number

Platform Total
genes

EPCs/
ECs

GSE25979 Affymetrix Human Exon 1.0
ST Array

22,011 3/4

GSE20283 Illumina HumanWG-6 v3.0
expression BeadChip

21,815 3/1

GSE46328 Illumina HumanHT-12 V3.0
expression BeadChip

48,803 2/2

GSE2040 Affymetrix Human Genome
U95 version 2 Array

12,554 3/3

GSE54969 Affymetrix Human Gene 1.0
ST Array

33,298 2/2

EPCs, Circulating endothelial progenitor cells; ECs, Endothelial cells.

A recent meta-analysis showed that lower baseline
EPCs count has been associated with a significantly greater
occurrence of in-stent restenosis (HR 1.33; 95% CI 0.97–1.82,
P = 0.045). Nevertheless, in EPCs-capturing DES, target lesion
revascularization was significantly more common than with
standard DES (15).

Considering the theoretical and practical impact of EPCs
in vascular injury repair, we conducted a meta-analysis
of microarray to assess the transcriptomic profile and
determine targets genes during the differentiation process
of EPC into mature EC.

Materials and methods

Data compilation and processing

We queried the Gene Expression Omnibus (GEO)
repository using the following terms: “endothelial progenitor”
[All Fields] AND “Homo sapiens” [porgn: txid9606] AND
“Expression profiling by array” [Filter]. Datasets were manually
curated to select those studies comparing EPCs and ECs. Five
datasets: GSE25979, GSE20283, GSE46328, GSE2040, and
GSE54969 were selected for further processing (Table 1). Only
samples of interest were included, excluding cells subjected to
any treatment. Three studies used Affimetrix array and two
used Illumina platform. Thirteen samples of early EPCs and
twelve samples of ECs were included. Individual datasets were
analyzed with G2R online tool (16).

Assessment of differentially expressed
genes

Meta-analysis of microarray was performed using the
online tool ExpressAnalyst (17). Unprocessed data with
array intensities were used as input and variance stabilizing
normalization in combination with quantile normalization
was performed (18). Study batch effect was adjusted using
ComBat to compare information from different platforms (19).
Differential expression analysis was done by Limma method,
with an absolute log2FC > 1 (20). The cut-off p-values were
adjusted using the Benjamini–Hochberg’s False Discovery Rate
(FDR) < 0.05 (21). The combined p-value by Fisher exact
method was computed for the intersection of datasets (22).

Functional enrichment analysis of
differentially expressed genes

Functional enrichment analysis of DEGs [GO and Kyoto
Encyclopedia of Genes and Genomes (KEGG)] was carried out
using KOBAS v3.0 (23); Fisher’s exact test was used to calculate
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p-values. The pathways with FDR ≤ 0.05 were defined as the
significantly enriched pathways. DEGs in at least four databases
were intersected with genes in principal pathways to select
biologically significant genes (key genes).

Protein-protein interaction network
construction

DEGs that were significantly dysregulated in four databases
were included in the PPI. The online search tool STRING
(24) was used to construct the network, setting a combined
score of ≥ 0.7. Cytoscape v3.7.2 was used to visualize the PPI
network, and significant enriched interactions were selected by
CytoHubba using maximum clique centrality score (MCC) (25).

Micro ribonucleic acid enrichment
analysis

We explored the microRNAs associated to our set of
DEGs in TargetScan (26) and miRTarBase (27) databases,

setting a threshold of minimum number of miRNA-target
interactions > 2 and FDR < 0.05. The network was constructed
in Cytoscape and intersected with the set of DEGs in at least four
datasets. The key nodes were extracted by CytoHubba.

Results

Identification of differentially
expressed genes in endothelial
progenitor cells vs. mature endothelial
cells

Preprocessed and normalized data were downloaded from
the National Center for Biotechnology Information GEO
website. Description of each dataset is available on Table 1.
Two datasets were processed with Illumina platform and three
datasets with Affimetrix. A total of 13 EPCs and 12 ECs samples
were included for further analysis.

GEO2R tool analysis for DEGs between EPCs and ECs on
each dataset is presented using volcano plots (Figures 1A–
E). Significantly dysregulated genes were defined as absolute

FIGURE 1

Differentially expressed genes (DEGs) on (A) GSE25979, (B) GSE20283, (C) GSE46328, (D) GSE2040, and (E) GSE54969 datasets. GEO2R online
tool was used to identify DEGs for each dataset with | log2FC| > 1.0 and adjusted p-value < 0.05; red dots and blue dots represents the
significantly down-regulated and up-regulated DEGs on EPCs, respectively. (F) Common DEGs before meta-analysis, by simple crossing each
dataset, visualized through a Venn diagram. Twelve genes were dysregulated with the intersection of the five datasets.
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log2FC > 1.0 and adjusted p-value < 0.05. There were 2,881
DEGs in GSE25979 (1,715 down and 1,166 up-regulated); 3,151
DEGs in GSE20283 (1,670 down and 1,481 up-regulated); 3,867
DEGs in GSE46328 (2,199 down and 1,668 up-regulated); 919
DEGs in GSE2040 (513 down and 406 up-regulated); and 385
DEGs in GSE54969 (215 down and 170 up-regulated).

Intersection of each dataset is shown in Figure 1F as a
Venn diagram. Almost 63% of all DEGs were dysregulated
in individual datasets. Only twelve genes were commonly
dysregulated in all datasets.

Meta-analysis of microarrays was performed using the
online tool ExpressAnalyst. Differential expression analysis was
done by Limma method. The cut off p-values were adjusted
using the Benjamini–Hochberg’s FDR < 0.05.

The combined p-value for the intersection of datasets was
computed by Fisher exact method and DEGs surviving the
analysis were plotted in a cord diagram. There were 38 common
DEGs in the meta-analysis, 10 up-regulated and 28 down-
regulated genes in EPCs (Figure 2).

Top differentially expressed genes in
the meta-analysis and functional
annotation

The meta-analysis identified 3,267 DEGs (Supplementary
Table 1), 1,539 up-regulated and 1,728 down-regulated in EPCs.
Figure 3 shows the top 100 up-regulated (panel A) and the top
100 down-regulated genes (panel B), with a uniform expression
level among cell type.

GO analysis of DEGs (Figure 4A) shows significant
enrichment for terms related to cell activation (GO: 0001775),
regulation of immune system process (GO: 0002682), de-
methylation (GO: 0070988). While analysis of KEGG terms
(Figure 4B) showed significant enrichment of “PI3K-Akt
signaling pathway,” “AGE-RAGE signaling pathway in diabetic
complications” and “TNF signaling pathway,” among the
principal functional pathways (Supplementary Table 2).

Diabetes is one of the most important risk factors for stent
restenosis; and advanced glycation end (AGE) products have

FIGURE 2

Up-set plot detailing the number of common elements among microarray datasets. Horizontal bars indicate the number of significant
differentially expressed genes (DEGs) in each study. The vertical bars indicate the common elements in the sets, indicated with dots under each
bar. The single points represent the number of unique elements in each group. There were 38 genes commonly dysregulated in the five
datasets.
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FIGURE 3

Hierarchical clustering of top 100 up-regulated DEGs (A) and top 100 down-regulated DEGs in EPCs (B). Green and red color represent z-score
expression levels, light green is the lowest and dark red is the highest value. Samples were grouped by type (EPCs and ECs) and batch. Genes
were clustered by Ward method.

a paramount importance in diabetes induced cardiovascular
complications. Moreover, EPCs mobilization and homing are
hampered in diabetic patients. Thus, we intersect top DEGs
expressed in at least four datasets with genes overrepresented
in the principal KEGG pathways, including “AGE-RAGE
signaling pathway in diabetic complications”. We selected
two up-regulated genes: IL1B and STAT5A; and two down-
regulated: IL6 and MAPK11.

Protein-protein interaction network
analysis

We conducted a PPI network analysis to explore the
most significant clusters for 407 DEG. The STRING database
version 11.5 was used to obtain significant interactions and

resulting network was visualized in Cytoscape (Figure 5A).
The MCC (maximum clique centrality) method from the
CytoHubba app in Cytoscape was used to screen for key
proteins (Figure 5B). There were 157 nodes, 234 edges and
PPI enrichment p-value < 1.0e–16. The most connected hubs
were HCK and VAV1 among up-regulated genes; and SHC1 and
PLCG1 among down-regulated genes. The four selected genes
(IL1B, STAT5A, IL6, and MAPK11) were also retained in this
analysis.

Micro ribonucleic acid enrichment
analysis

MicroRNAs are key epigenetic regulators that modulate
cell fate by means of post-transcriptional repression of gene
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FIGURE 4

Gene ontology (GO) analysis (A) for DEGs in EPCs. Color intensity represents adjusted p-value, circle size the number or genes. The main
biological processes are depicted in the graph. Functional enrichment of KEGG terms (B). Color represents clusters of DEGs and bar length the
enrichment ratio.

FIGURE 5

PPI network representation of 407 DEGs (A). The network was constructed by STRING and visualized in Cytoscape. Hub proteins network (B)
according to CytoHubba MCC coefficient. Red and green color represent upregulated and downregulated proteins. PPI, protein-protein
interaction; MCC, maximum clique centrality. Red color represents up-regulated genes and green color down-regulated.

expression. We explored microRNAs associated to our set
of DEGs in TargetScan and miRTarBase databases. There
were 96 microRNAs targeting 2,605 DE mRNAs, with 12,915
interactions. Intersection with the top dysregulated genes is
shown in Figure 6A, with 96 microRNAs interacting with 285

DE mRNAs. Five hub microRNAs (hsa-miR-1, hsa-miR-16,
hsa-miR-26b, hsa-miR-92, and hsa-miR-124) were selected
(Figure 6B), targeting 175 mRNAs with 1,463 interactions.
Among targeted DEGs there were STAT5A, IL6 and MAPK11.
IL-6 gene was regulated by seven microRNAs, STAT5A was
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FIGURE 6

Network representation of microRNA-mRNA target interactions. (A) Shows interactions between 96 MicroRNA and 285 DEG in EPCs. Hub
microRNAs were selected according to CytoHubba MCC coefficient (B). IL6, STAT5A and MAPK11 are highlighted in larger size. Red color
rep-resents up-regulated genes and green color down-regulated. Circle represents mRNA and blue diamond’s represents microRNA. MCC,
maximum clique centrality.

regulated by three microRNAs and MAPK11 only by one
microRNA. MicroRNA hsa-miR-124 was a common regulator
of STAT5A, IL6, and MAPK11.

Discussion

Microarray meta-analysis is an useful strategy to reveal
new associations between genes and pathological states, it is
the first step of a pipeline for the discovery of new drugs or
biomarkers (28). The approach used allowed us to compare a
large amount of transcripts from 25 samples in two different
platforms (Illumina and Affymetrix) (29).

Meta-analysis was superior than the individual dataset
analysis to detect significant DEGs. Simple merging of
datasets detected twelve common DEGs to all datasets, while
meta-analysis detected 38. Data normalization and batch
effect correction allowed comparison among multiple samples
increasing the sensibility of the detection protocol (30).

EPCs are pluripotent stem cells derived from bone marrow,
with the ability to home to sites of endothelial denudation
(31). Considering that EPCs are extremely rare in circulating
blood, ex vivo expansion culture systems are used to select rare
EPCs using whole blood peripheral mononuclear cells (PBMCs).
PBMCs are platted in fibronectin-coated dishes and exposed
to growing factors (32). Early EPCs appear within 4–7 days
of culture, show a limited proliferating potential for long term
culture, and disappear after 2 weeks in in vitro conditions.

They express both endothelial and monocytic markers, have
a low expression of endothelial nitric oxide synthase (eNOS)
and VEGFR-2 and release proangiogenic growth factors, as
confirmed by transcriptomic data. Late EPCs develop from 2 to
3 weeks after plating and show a cobblestone appearance like
mature ECs, expressing only endothelial markers. They show a
long life span and rapidly replicate from several cells to a colony
becoming a monolayer (33).

There is still a significant controversy regarding the origin of
EPCs, their role and function once they migrate into the vessel.
These CD34 + CD133 + early EPCs are intensively recruited
after vascular injury but their proliferative potential and capacity
to form mature ECs is limited. They appear to support vascular
repair indirectly via paracrine secretory activities. On the other
hand, late EPCs are capable of maturing into functioning
endothelium. These cells have a higher proliferative potential
and express CD31 + and KDR + (34). Comparison between
early and late EPCs has also shown many dysregulated genes and
proteins. These dissimilarities were pointed out by Kukumberg
et al. by combining transcriptomic, proteomic and electron
microscopy images analysis (35).

Due to the described differences, we only selected early EPCs
samples from the datasets for further meta-analysis, as there
were only three samples of late EPCs available.

EPCs are increased during vascular injury induced by
balloon angioplasty and stenting, and its levels correlate with
patient’s outcome (36). Patients with peripheral artery disease
exhibit less EPCs, especially if associated with diabetes (37).
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Type 2 diabetes is one of the main clinical risk factors for
vascular dysfunction and stent restenosis increasing the odds
to 2–4-fold (38). In diabetic patients there is a diminished
amount of EPCs, and an altered function of these cells due
to premature differentiation, accelerated by hyperglycemia and
increased oxidative stress (39).

The amplified inflammation in diabetes lead to increased
bone marrow cell turnover, inhibiting the distribution of EPCs
to ischemic tissues (40). There is also an insufficient release of
marrow-stimulating factors, such as VEGFR and SDF-1, which
results in downregulation of hypoxia-inducible factor (HIF-1)
through the PI3K-AKT-eNOS pathway (41).

PI3K-AKT signaling pathway plays a central role in
cellular physiology by mediating growth factor signals during
critical cellular processes, such as glucose homeostasis, lipid
metabolism, protein synthesis and cell proliferation and
survival (42). VEGF and statins induce EPCs differentiation
by stimulation the PI3K-AKT pathway (43). In diabetic mice,
aerobic and resistance training increased PI3K-AKT pathways,
improving the proliferation and adherence capacities of EPCs
(44). In patients with diabetes, exercise improved in vivo
endothelial repair capacity of EPCs by increased NO production
and reduced superoxide anion level (45).

AGE products are heterogeneous groups of irreversible
adducts produced by non-enzymatic glycation and
glycoxidation of proteins, nucleic acid with reducing sugars
(46). AGE interacts with RAGE to produce reactive oxygen
species that activates nuclear factor kappa-B (NF-kB) and
numerous proinflammatory genes of cytokines such as tumor
necrosis factor-α (TNF-α), interleukins as IL6, and adhesion
molecules (47). In an animal model, AGE-RAGE induced
osteoblast differentiation of EPCs, mediated by p38, MAPK,
and JNK signaling, promoting accelerated atherosclerosis (48).
Enrichment of PI3K-AKT and AGE-RAGE signaling pathway
for DEGs detected in meta-analysis reinforce the biological
significance of our findings.

Hyperglycemia can induce EPC dysfunction triggering
inflammation via SDF-1β/CXCR7–AMPK pathway resulting in
secretion of IL6. Exendin-4, a glucagon-like peptide-1 analog
could revert inhibitory effects of hyperglycemia, modulating
inflammatory imbalance, restoring EPC viability and biological
capacities (49).

IL6 was downregulated among EPC in our study, its
potential interaction with several microRNAs (hsa-miR-1,
hsa-miR-9, hsa-miR-107, hsa-miR-124, hsa-miR-98, hsa-
miR-155, hsa-let-7c), seems an interesting approach to
modulate EPC function.

STAT5A is part of the JAK-STAT pathway, it can form
tetramers in addition to dimers. The cytokines that activate
STAT5A mainly include IL3, IL2 as well as grown factors (EGF,
EPO, GM-CSF, TPO, and PDGF). The biological functions of
STAT5A include: (1) Regulation of growth and development.
(2) Regulation of the immune system. (3) Regulation of tumor

immunity. (4) Regulation of cell growth, differentiation, and
apoptosis (50).

In EPCs isolated from type 2 diabetic patients there is an
inhibition of STAT5/PPARγ transcriptional complex, leading
to inactivation of Cyclin D1 and cell cycle arrest. Constitutive
activation of STAT5 restore EPCs proliferation. The authors
demonstrated that STAT5A is crucial for gene targeting and
EPCs fate and the mechanisms of EPCs dysfunction in diabetic
patients (51).

MicroRNA enrichment analysis detected hsa-miR-221,
hsa-miR-222, and hsa-miR-124 targeting STAT5A. In breast
cancer cells, repression of hsa-miR-221 and hsa-miR-222
were associated to overexpression of STAT5A conferring a
more aggressive tumor phenotype (52). In hyperglycemic
induced damage of mesangial cells, hsa-miR-222 transfer via
extracellular vesicle, derived in STAT5A repression, protecting
cells from hyperglycemic injury (53).

The p38 MAPK family is composed of α, β (MAPK11),
γ and δ, isoforms which are encoded by separate genes.
These kinases transduce extracellular signals and coordinate the
cellular responses needed for adaptation and survival. However,
in cardiovascular and other disease states, these same systems
can trigger maladaptive responses that aggravate, rather than
alleviate, the disease (54). Its activation in ECs leads to actin
remodeling, angiogenesis, DNA damage response and thereby
has major impact on cardiovascular homeostasis, and on cancer
progression (55).

Seeger et al. showed that p38 MAPK plays a pivotal role
in the signal transduction pathways regulating the number of
EPCs. EPCs from patients with coronary artery disease had
significantly higher basal p38-phosphorylation levels compared
with healthy subjects. Additionally, TNF-α and glucose induced
a dose- and time-dependent activation of the p38 MAP kinase
in healthy EPCs. Treatment with SB203580, an inhibitor of p38-
kinase could reverse impaired capacity for neovascularization
and augmented EPCs number (56).

Other study demonstrated the deleterious effect of
hyperglycemia on EPCs via p38 MAPK phosphorylation.
The exposure of cultured EPCs to high glucose significantly
accelerated the rate of senescence compared with that in
osmolar control during culture. The phosphorylation of p38
MAPK in EPCs was increased by glucose compared with control
in a dose-dependent manner. Hyperglycemia-induced EPC
senescence was significantly inhibited by the addition of an
inhibitor of the p38 MAPK, SB203580 (57).

Hsa-miR-124 has been shown to target p38 MAPK in silico
as well as in experimental models (58). The expression levels of
hsa-miR-124 and p38 MAPK showed and inverse correlation
in patients with coronary artery disease with over expression
of p38 MAPK and repression of hsa-miR-124. Furthermore
hsa-miR-124 transduction in macrophages inhibited apoptosis
via targeting p38 MAPK signaling pathway in atherosclerosis
development (59).
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Chang et al. deciphered the microRNA profile of EPCs (early
and late) and ECs by small RNA sequencing. Of note, among top
five selected microRNAs, only hsa-miR-124 was overexpressed
in early EPCs, with null expression in late EPCs and ECs (60).

Conclusion

The present study guided to the identification of a
set of mRNAs dysregulated during the differentiation of
circulating early EPCs into mature ECs, specially related
to AGE/RAGE signaling pathway in diabetic complications.
Furthermore, a group of microRNAs potentially associated
with key differentially expressed mRNAs was highlighted.
We hypothesize that overexpression of hsa-miR-124 might
repress IL6 and p38β/MAPK11, allowing EPCs differentiation
into mature ECs.

This group of genes could serve as biomarkers of EPCs
differentiation during coronary stenting as well as potential
therapeutic targets to improve stent re-endothelization,
especially in diabetic patients. However, further studies
are needed to validate and explore the impact of the
proposed genes on EPCs.
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