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Abstract: Myofibroblasts are contractile, α-smooth muscle actin-positive cells with multiple roles in
pathophysiological processes. Myofibroblasts mediate wound contractions, but their persistent pres-
ence in tissues is central to driving fibrosis, making them attractive cell targets for the development
of therapeutic treatments. However, due to shared cellular markers with several other phenotypes,
the specific targeting of myofibroblasts has long presented a scientific and clinical challenge. In
recent years, myofibroblasts have drawn much attention among scientific research communities
from multiple disciplines and specialisations. As further research uncovers the characterisations
of myofibroblast formation, function, and regulation, the realisation of novel interventional routes
for myofibroblasts within pathologies has emerged. The research community is approaching the
means to finally target these cells, to prevent fibrosis, accelerate scarless wound healing, and atten-
uate associated disease-processes in clinical settings. This comprehensive review article describes
the myofibroblast cell phenotype, their origins, and their diverse physiological and pathological
functionality. Special attention has been given to mechanisms and molecular pathways governing
myofibroblast differentiation, and updates in molecular interventions.

Keywords: myofibroblast; fibrosis; wound healing; anti-scarring therapy; transforming growth
factor-β1

1. Myofibroblasts

In 1971, Gabbiani et al. identified large fibroblast-like cells within granulation
tissue that had 40–80 A◦ diameter filamentous fibres traversing their entire cytoplasm.
Since similar features are typical of smooth-muscle cells, the term ‘myofibroblast’ was
coined (essentially, muscle-fibroblast intermediate cells) and it was proposed that these
cells were implicated in wound contraction [1,2]. Further characterisation identified
that the filamentous fibres were actin-based, with incorporated myosin and α-smooth
muscle actin (α-SMA) proteins. Therefore, the myofibroblast’s ability to exert con-
tractile force and to contract the wound edge was explained [3–5]. Myofibroblasts
are morphologically enlarged and irregular (star or web-shaped) fusiform cells with
well-developed cell–matrix focal interactions and intracellular gap junctions [6,7]. The
incorporation of α-SMA into actin stress fibres grants the myofibroblast contractile
power, approximately 2-fold that of the force of fibroblasts, when cultured on sub-
strates with high elastomer stiffness [8–10]. Increased production of extracellular
matrix (ECM) components: type I and type III fibrillar collagens, hyaluronan (HA),
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fibronectin (FN), and extra domain A fibronectin (EDA–FN) distinguish the hallmarks
of myofibroblasts [11]. This elevated ECM content is not always causally linked, driving
the myofibroblast differentiation process. Rather, there is a prominent interplay be-
tween ECM composition/arrangement and myofibroblast formation/function [12,13].
Following the delineation of the roles of myofibroblasts in wound contracture, they
were quickly established as key drivers of progressive organ fibrosis [14], and have
since been implicated in tumour development and metastasis [15,16]. More recently,
studies describing an array of functions and regulatory factors exhibited by myofibrob-
lasts have suggested roles beyond wound contraction and scar formation, including
macrophage-like phagocytosis [17], immunomodulation [18,19], and autophagy [20].
In this review, we focus on the best described roles of myofibroblasts during wound
healing and fibrosis. In addition, we summarise recent advancements towards targeting
these cells with therapeutic molecular interventions.

2. Myofibroblast Origins

Multiple cell types are suggested to give rise to myofibroblasts, seemingly dependent
on the tissue type. The heterogenous origins of myofibroblasts implies that these cells
can form inside almost every tissue within the human body. In addition to resident
fibroblasts and pericytes, their cellular origins include circulating bone-marrow-derived
fibrocytes, tissue-derived mesenchymal stem cells, local epithelial and endothelial cells,
de-differentiated smooth muscle cells, other hepatic stellate cells, mesangial cells, Schwann
cells, and even monocytes and macrophages [21–24].

Differentiation from resident fibroblasts, present within most organs and connective
tissues, is the best described process of myofibroblast development. Resting (inactivated)
fibroblasts produce ECM and matrix proteases required for homeostatic turnover [25].
Upon activation, fibroblasts become highly migratory, proliferative, and increase the pro-
duction of ECM, enzymes, and cytokines [26,27]; this transitional, activated state is termed
the proto-myofibroblast. Despite limited information available in the literature regard-
ing this phenotype, key features of the activated fibroblast, or proto-myofibroblast, have
been described [28]. The rearrangement of the actin cytoskeleton from largely membrane-
associated monomeric G-actin to polymerised cytoplasmic F-actin stress filaments, which
traverse the length of the widened cell, is a hallmark feature [10]. These stress fibres
allow junction formation with ECM components and other cells via integrin-containing
complexes at the cell membrane and cadherin-type adherens junctions, respectively [7,29].
The absence of α-SMA within these stress fibres allows for proto-myofibroblast distinc-
tion from myofibroblasts [28]. Maturation into myofibroblasts can be determined by the
neo-expression of α-SMA-positive stress fibres [30].

3. Myofibroblasts in Skin Fibrosis

The fibrotic process is characterised by chronic inflammation; altered epithelial–
mesenchymal interactions; fibroblast proliferation, and fibroblast–myofibroblast differenti-
ation. The latter feature (differentiation of fibroblasts into myofibroblasts) is central to the
dysregulated and excessive production of collagen-rich ECM, otherwise called scar tissue.
Myofibroblasts are thought to be terminally differentiated cells that typically undergo
apoptosis [31–34] after wound contraction, as they are rarely found in non-pathological
situations. Upon tissue trauma, myofibroblasts contribute to excessive ECM production for
rapid, albeit dysfunctional, tissue repair. The tissue defect is repaired, but at the cost of
function, as the organised spatial arrangement of specialised cells and ECM constituents
is replaced by disorganised, abundant fibrous ECM. In this regard, the myofibroblast
could be considered the primordial emergency repair cell. The aberrant persistence and
chronic activation of myofibroblasts can lead to the development of pathological healing
called fibrosis, which afflicts most tissues within the body. Progressive fibrosis leading
to organ failure is considered the end-stage pathology of multiple diseases affecting the
major organs, including but not limited to myocardial fibrosis [35], pulmonary fibrosis [36],
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liver cirrhosis [37], and chronic kidney disease [38]. Skin fibrosis (cicatrix) is an umbrella
term for a large, heterogeneous spectrum of pathological conditions that affect the skin.
Examples of skin conditions in which myofibroblast activity is central include hypertrophic
and keloid scars, scleroderma, Dupuytren’s contracture, eosinophilic fasciitis, and chronic
graft-versus-host disease [39–44]. The shared features of the abnormal and excessive accu-
mulation of ECM constituents, particularly collagens, HA, and FN, in these diseases are
governed by the myofibroblast phenotype. Infiltration of immune cells into fibrotic tissue
also plays a key role in amplifying the fibrotic response, by secreting several cytokines
and chemokines responsible for fibroblast–myofibroblast differentiation, the stimulation of
ECM deposition, and the further recruitment of immune cells [45].

4. Mechanisms of Myofibroblast Formation

At least three local events are needed to generate mature α-SMA-positive, fully dif-
ferentiated myofibroblasts: (i) biologically active TGF-β1; (ii) extracellular stress, arising
from the mechanical properties of the ECM (particularly collagen) and EDA–FN/integrin
interactions; and (iii) the precursory production of phenotypic modulators (EDA–FN, HA)
following activation (Figure 1). Increasing evidence strongly supports the role of inflamma-
tory cell interactions in promoting myofibroblast development. Regardless of the origin,
the resultant myofibroblast cells share the same properties and signalling cascade events
that led to their formation.
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Figure 1. Fibroblast–myofibroblast differentiation. The process of fibroblast–myofibroblast differentiation requires: (i) the
activation of the TGF-β1/Smad signalling pathway; (ii) cell–ECM mechanotransduction signalling; and (iii) the synthesis of
modulators that promote and maintain the myofibroblast phenotype, such as EDA–FN and HAS2-synthesised HA. The
intermediate stage is known as the proto-myofibroblast, and can be distinguished by increased proliferation, migration, and
the rearrangement of cortical, membrane-associated actin into cytoplasmic filamentous actin stress fibres, which form focal
adhesion sites at membrane–ECM junctions. The mature myofibroblast exhibits thick and crosslinked HA pericellular coats,
and contains α-SMA+ cytoplasmic actin stress fibres that form mature focal adhesion plaques at membrane–ECM junctions
and grant increased contractile strength.

4.1. The Canonical Pathway: TGF-β1/Smad

In classical cutaneous wound healing, tissue injury leads to TGF-β1 release from
keratinocytes, macrophages and degranulating platelets [46]. In turn, TGF-β1 binds to
and induces TGF-β receptor (TGFβR) I and II association on the fibroblast cell membrane,
enabling TGFβRII phosphorylation of the TGFβRI kinase domain. In-turn, TGFβRI phos-
phorylates Smad2 and Smad3, which subsequently oligomerize with Smad4, forming
trimeric protein complexes. These complexes are translocated to the nucleus, where they
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act as the transcription or co-transcription factors in the induction or repression of gene ex-
pression [47] (Figure 2A). Ultimately, TGF-β1/Smad pathway activation in fibroblasts leads
to their differentiation into myofibroblasts [48]. TGF-β1 can also induce Smad-independent
and co-receptor signalling pathways, such as mitogen-activated protein kinase (MAPK),
p42/p44 extracellular signal regulated kinase (ERK1/2), Rho/Rho-associated protein ki-
nase (ROCK), phosphatidylinositol-3-kinase (PI3K)/AKT, protein phosphatase 2A (PP2A),
p38/c-Jun N-terminal kinase (JNK), protein kinase C (PKC), and tumour necrosis factor
receptor associated factor (TRAF)-4/6 [49–53]. The tightly controlled TGF-β1/Smad-driven
signalling events have been extensively researched within the context of myofibroblast
differentiation and fibrosis, as highlighted in an eloquent review by Frangogiannis [54].
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Wnt/β-catenin pathways: (A) TGF-β1 is released from the LAP complex and binds to TGFβRII dimers, enabling association
with and the activation of TGFβRI. Smad2 and Smad3 are subsequently phosphorylated and co-associate with Smad4
to initiate the transcription of pro-fibrotic genes; (B) TGF-β1 induced the upregulation of HAS2 synthesised linear HA
and hyaladherin crosslinkers, such as TSG-6 and HC5, resulting in HA interactions with CD44s and the thickening of a
crosslinked HA pericellular coat. HA interactions with CD44s induce clustering of CD44s within lipid rafts, wherein the
co-receptor EGFR is activated and initiates biphasic signalling via ERK1/2 and CaMKII. Early signalling was suggested
to promote differentiation-associated gene expression, whereas late signalling was suggested to promote proliferation-
associated gene expression; and (C) the Wnt ligand binding to the transmembrane Frazzled receptor (FZD), in the absence
of DKK1, which induces localisation with and the activation of LRP5 and LRP6. The Wnt/FZD/LRP signalling drives
the dishevelled-mediated attenuation of the β-catenin inhibitory complex (CK-1/Axin/APC/GSK-3), facilitating the
accumulation of β-catenin and its translocation to the nucleus, wherein it associates with co-transcription factors, TLF and
LEF, to induce pro-fibrotic gene expression.

4.2. The Non-Canonical Pathway: HA/CD44/EGFR

A principal mediator of a non-canonical differentiation pathway in human myofi-
broblasts is HA, a glycosaminoglycan (GAG) formed of repeating d-glucuronic acid and
N-acetyl-glucosamine disaccharide units. HA is synthesised by three HA-synthase (HAS)
isoenzymes (HAS1, HAS2, HAS3) [55], and is metabolised by hyaluronidase (HYAL) en-
zymes (HYAL1, HYAL2, HYAL4) [56]. HA accumulation occurs simultaneously with
upregulated HYAL1 and HYAL2 expression, but both these HA degrading enzymes have
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diminished expression in myofibroblasts. A subsequent decrease in HA degradation may
also favour the accumulation of HA in fibrotic disease [57]. HAS2-synthesised HA is widely
considered to be an important mediator of fibroblast–myofibroblast differentiation and
EMT processes [58–62]. HAS2-synthesised linear HA forms a thickened pericellular coat
that surrounds the activated fibroblast. This crosslinked and thickened HA pericellular coat,
or glycocalyx, has been shown to be an essential structural element for human fibroblast–
myofibroblast differentiation and phenotypic maintenance [59,63]. The HA pericellular
coat remains thin in fibroblast phenotypes resistant to TGF-β1-driven differentiation, such
as oral mucosal fibroblasts [64] and aged/senescent fibroblasts [58]. Interestingly, an en-
riched pericellular HA microenvironment is synthesised by foetal fibroblasts during foetal
wound healing.

The HA pericellular coat is anchored to the fibroblast cell surface by the CD44 recep-
tor [65,66], and crosslinked by hyaladherins [59]. Association with CD44 and other hyalad-
herins orchestrates the HA pericellular coat and results in the activation of downstream
extracellular–intracellular signal cascades, shown to be prominent in disease pathogenesis
including fibrosis, cancers, and inflammatory diseases [67,68]. CD44 exists as multiple
alternatively spliced variants and all CD44 variants (CD44v), as well as the standard form
(CD44s), possess HA binding motifs within their extracellular head domain. CD44v have
variability within alternatively spliced exons of the extracellular stem region [69,70]. Stud-
ies have shown that silencing CD44 using small interfering RNA (siRNA) prevented the
downstream intracellular signalling required for human fibroblast–myofibroblast differ-
entiation and inhibited HA pericellular coat formation [71,72]. These studies concluded
that HA/CD44 association was essential for human myofibroblast differentiation, with
recent research showing that CD44s expressed on the surface of human fibroblasts was
the dominant player in regulating HA coat-mediated myofibroblast differentiation [73].
HA-crosslinking hyaladherins include inter-α-inhibitor (IαI) heavy chains (HC), which are
localised by association with the tumour necrosis factor-stimulated gene (TSG)-6 [74,75].
The increased presence of HA-associated HC and TSG-6 complexes have been associated
with the pathology of multiple inflammatory diseases including arthritis, asthma, and
some cancers [76]. Martin et al. identified that IαI-HC5 was covalently bound to chon-
droitin sulphate on bikunin and was essential for the formation of HA pericellular coats
in myofibroblasts. Increased expression of TSG-6 following TGF-β1 activation of fibrob-
lasts facilitated the transfer of HC5 to HA by TSG-6 catalysis, in a metal ion-dependent
manner [77].

HA binding to CD44 plays a pivotal role in the intracellular signalling required for
human fibroblast–myofibroblast differentiation [58,63,72]. CD44 was shown to be present
throughout the membranes of fibroblasts but clustered into localised populations within
myofibroblast membranes. These distinct areas were identified to be cholesterol-rich
lipid rafts, and ‘locked’ clusters of CD44 within lipid rafts were shown to be dependent
on HA binding and crosslinking into pericellular coats [72]. HA coat removal released
CD44 from lipid rafts and re-enabled their movement through the membrane, but also
inhibited downstream signalling cascades [63]. Further investigation revealed that CD44
was co-localised with epidermal growth factor (EGFR) within membrane lipid raft domains,
which resulted in EGFR activation, and the phosphorylation of downstream effectors and
transcription factors, ERK1/2 and calcium calmodulin kinase (CaMK)-II (CaMKII). The
chemical inhibition of ERK1/2 or CaMKII prevented myofibroblast differentiation, and only
when TGF-βRII and CD44/EGFR signalling were active could myofibroblast differentiation
occur [72]. Both ERK1/2 and CaMKII were phosphorylated in a biphasic manner, with
early and late-phase activation. Early activation of ERK1/2 (<5 min) was thought to be
associated with eventual fibroblast–myofibroblast differentiation, whereas later activation
(>30 min) was suggested to play a role mediating cellular proliferation responses [72]
(Figure 2B). However, signalling functions appear to be cell-dependent as early, but not late,
ERK1/2 signalling peaks were observed in TGF-β1-stimulated non-scarring oral mucosal
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fibroblasts; these cells exhibited an anti-proliferative response in a HA/CD44-independent
manner [65].

4.3. The Wnt/β-Catenin Pathway

The Wnt signalling pathway is well described in its vital roles during embryogenesis
and determination of cell fate, differentiation, proliferation, and apoptosis. We refer in-
terested readers to a thorough review article on Wnt signalling functions [78]. Carefully
orchestrated Wnt signalling has been found to be essential for tissue homeostasis, whilst
the dysregulation of the Wnt pathway can result in pathogenesis [79,80]. Wnt signals
simultaneously through the co-association of Frazzled receptors and low-density lipid
protein co-receptors (LRP). The fate of β-catenin, an important regulator of Wnt signalling,
is regulated by Dickkopf-related protein-1 (DKK1). DKK1 inhibits Wnt signalling by ac-
tivating downstream signalling complexes, and results in β-catenin degradation. When
DKK1 is not present, Wnt signalling leads to β-catenin translocation to the nucleus, its
association with co-transcription factors, and the subsequent activation of Wnt-associated
pro-fibrotic genes [78,79,81] (Figure 2C). The activation of Wnt signalling was implicated
in the fibrogenesis of multiple organs [82]. Wnt-1 and Wnt-10b were noted to be overex-
pressed, whereas DKK1 was decreased, which led to the increased nuclear accumulation
of β-catenin observed in human tissue samples from systemic scleroderma (SSc), idio-
pathic pulmonary fibrosis (IPF), and liver cirrhosis [82]. Wnt signalling stimulated by
TGF-β1-induced inhibition of DKK1 was shown to induce myofibroblast differentiation,
up-regulate the release of ECM components (notably collagens) and induce fibrosis [82–84].
In addition, crosstalk between the TGF-β/Smad pathway and the Wnt/β-catenin pathway
is suggested to be a prominent mechanism in the development of hypertrophic and keloid
scars [85].

4.4. Mechanotransduction

Mechanotransduction is the ability of stress force to convert extracellular to intracel-
lular signalling. Fibroblasts can perceive external forces (mechanoperception) through
their fibronexus structures in vivo or mature focal adhesion (FA) structures in vitro [86,87].
ECM rigidity determines the size of the cell’s FAs, or ‘anchors’, which in turn limit the
level of tension generated within intracellular stress fibres. Only when substrate stiffness
permits the formation of mature FAs (8–30 µm), and the generation of approximately
four-fold greater stress compared with usual FAs (2–6 µm), does α-SMA become incor-
porated into pre-existing cytoplasmic β-actin stress fibres [88]. Thus, the myofibroblast
phenotype is mechanosensitive. The transition of fibroblasts to the proto-myofibroblast
state was suggested to be related to increased microenvironment stiffness [28,88]. TGF-β1
is locked within the ECM by latency-associated peptide (LAP) and latent TGF-β1-binding
protein (LTBP), and is released by proteolysis or integrin-dependent mechanotransduc-
tion [89]; resulting in a feedback loop of pro-fibrotic fibroblast activity and increased ECM
stiffness [29,90–92]. In a recent study, the balance of ECM composition, elasticity, and
TGF-β1 signalling was shown to govern fibroblast phenotypic heterogeneity and give
rise to distinct, but overlapping, fibroblast subsets [93]. Indeed, Kollmannsberger and
colleagues showed that within 3D microtissues grown in vitro, fibroblasts transitioned to
proliferative myofibroblasts at the growth front, where a high degree of tensile force and
stretched FN fibres were present. As the tissue matrix matured into collagen-rich ECM
with low FN fibre tension, more fibroblasts were present, suggesting that the myofibroblast
phenotype stabilised by tensile forces could revert to a fibroblast phenotype by low tensile
force [94]. These studies suggest that substrate stiffness is a key determinant of fibroblast
and myofibroblast plasticity, and that reducing excessive mechanotransduction may be an
option in controlling myofibroblast presence.

Myofibroblasts generate force through stress fibre contraction, and this is transmit-
ted to the ECM via FAs containing transmembrane receptors, typically integrins [87,95],
as summarised in Figure 3. Integrins mediate cell–cell, and especially, cell–ECM inter-



Biomolecules 2021, 11, 1095 7 of 27

actions, and are prominently involved in the initiation, maintenance, and resolution of
fibrosis. EDA–FN is synthesised by fibroblasts and various other cell types [96,97]. The
EDA–FN splice variant can only be detected during tissue repair [98,99], fibrosis [100],
tumour development [101–103], and transiently during embryogenesis [104]. The accu-
mulation of EDA–FN has been observed in multiple fibrotic disorders, including lung,
liver, and skin [100,105–107]. EDA–FN promotes myofibroblast differentiation by orches-
trating LAP/LTBP release and activation of TGF-β1 [108], increasing matrix stress–strain
tension [109,110], and by activating mechanotransducer-integrin signalling via FAK activa-
tion [111–114]. Research by Shinde et al. [115] and Kohan et al. [112] demonstrated that
fibroblast-expressed integrins, α4β1 (VLA-4) and α4β7 (LPAM-1), mediate different roles in
myofibroblast formation, respectively. Integrin α4β1/EDA–FN promoted ECM synthesis
and stiffening [115], whereas integrin α4β7/EDA–FN induced myofibroblast stress fibre
formation and contractility [112]. The combined exclusivity of EDA–FN expression and
the prominent roles it plays in driving the myofibroblast phenotype have highlighted the
protein as an attractive target for anti-fibrotic interventional therapies.
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Figure 3. Mechanisms of mechanotransduction implicated in myofibroblast differentiation and
function. TGF-β1 stimulates an increased expression of EDA–FN. The EDA segment contains the
EDGIHEL motif, which binds to the integrin α4β1/α4β7 receptor cleft, initiating signalling through
RhoA/MLCK and FAK. RhoA signalling results in myosin light chain (MLC) promotion of myosin
(MYH)/actin assembly and stress fibre polymerisation, which is augmented by HYAL2 that relocates
from the membrane to the cytoplasm. RGD motif containing ligands, such as FN and collagens, bind
integrins and facilitate the formation of focal adhesion sites, increasing contractile force and α-SMA
incorporation into actin stress fibres. In addition, the increased matrix stress generated by EDA–FN
and increased MMP activation from CD147 recruitment exacerbates active TGF-β1 release from the
extracellular LAP complex.

Discoidin domain receptor (DDR)1 is a mediator of stromal–epithelial interactions,
and belongs to the family of collagen receptors [116] overexpressed in pro-fibrotic keloid
fibroblasts [117]. DDR1 mediates collagen contraction and stiffness, thereby indirectly



Biomolecules 2021, 11, 1095 8 of 27

mediating pro-fibrogenic responses that are largely independent from collagen binding to
integrins [118]. Additionally, the spatial and structural properties of the local 3D collagen
microarchitecture can distinctly affect fibroblast and myofibroblast activity. Collagen
fibril alignment and diameter were shown to affect fibroblast contractility and migration
via alteration in integrin clustering and the stability of adhesion sites [119]. Seo and
colleagues suggested that collagen fibre thickness held more pertinence over dictating
myofibroblast differentiation independently from collagen quantity [120]. Furthermore,
collagen-rich ECM stiffening can also be potentiated by the myofibroblast and inflammatory
cell production of collagen crosslinking enzymes, such as lysyl oxidases [11,90]. CD147, also
known as extracellular matrix metalloproteinase inducer (EMMPRIN), is a well-established
matrix metalloproteinase (MMP)-inducer that is rapidly becoming understood to mediate
multiple cellular responses. The linked association of CD147 with integrin α6β1 was
observed during increased metastasis in human hepatoma cells [121], suggesting a role
for CD147 in modulating integrin α6β1 associations, with matricellular protein CCN1,
and mechano-sensitivity to senescence or apoptosis [122]. Interestingly, the nullification of
the extracellular domain of CD147 reversed associations with integrin β subunits and FA
sites, suggesting that the extracellular domain of CD147 binds to integrins to regulate the
mechanical tension of the ECM [121,123]. The roles of these mechanotransducer proteins
in stress relay, which is involved in myofibroblast differentiation, will become clearer with
continued investigation.

Increasing evidence suggests that myofibroblasts have the capacity for classical CaMK-
myosin light chain kinase (MLCK)-dependent smooth muscle cell contraction mecha-
nisms [124] and contractile activation by the RhoA/ROCK/myosin light chain phosphatase
(MLCP) pathway [28,125,126], highlighting a key difference between the smooth muscle
cell and myofibroblast contractile mechanisms. It was recently discovered that HYAL2,
previously thought to only possess HA catalytic activity, was shown to have non-enzymatic
functions [69,127,128]. Following TGF-β1 activation, enhanced HAS2 expression by fi-
broblasts leads to increased HA accumulation within the ECM observed in 3D matrices
in vitro [129] and in fibrosis progression in vivo [130]. However, HYAL2 was shown to
re-localize to the cytoplasm and align along the actin cytoskeleton in myofibroblasts [128],
which may contribute to increasing extracellular HA accumulation. The cytoskeleton-
aligned HYAL2 was associated with α-SMA, RhoA, and MLCK. The silencing of HYAL2
did not prevent but only delayed myofibroblast differentiation. The presence of HYAL2 was
shown to accelerate RhoA/MLCK phosphorylation and cellular contractility, suggesting a
role in the mechanotransduction and the orchestration of key cytoskeletal and FA-related
proteins [128]. These early findings suggest that there may be complex orchestration roles
that HYAL2 plays in cytoskeletal reassembly.

Other mediators of mechanotransduction and promising targets in mediating
fibroblast–myofibroblast differentiation include myocardin-related transcription fac-
tor (MRTF) [131,132], Yes-associated protein (YAP) [133–137], cadherins [138], and
Notch [139]. In the case of these multifunctional proteins, further exploratory research
will help establish the feasibility of targeting their activity to interfere with myofibrob-
last differentiation or function.

5. Interventional Strategies to Target Myofibroblasts for Scarless Skin Healing

There are currently no clinically approved anti-scarring therapies specifically designed
to limit or prevent dermal fibrosis. Several wound management strategies completed phase
II trials, but did not advance to phase III trials in recent years. The clinical studies database,
https://clinicaltrials.gov (‘Fibrosis, Skin’ searched 25 June 2021), showed 10 registered
clinical trials that have either completed phase III or are currently in progress (Table 1).
The proposed therapies include a range of treatment modes, including antibody and drug
therapies, scar resection or reduction, and tissue-engineering strategies.

https://clinicaltrials.gov
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Table 1. Recent clinical trials for attenuated scar skin repair (completed phase III or ongoing).

Treatment (Mechanism) Type of Skin Fibrosis Phase Status ClinicalTrials.gov
ID

Rituximab/CD20 mAb
(immunomodulation) Scleroderma, SSc Phase II/III (2019) NCT04274257

FS2/kynurenic acid
(immunomodulation)

Scar, hypertrophic scar,
graft scar, keloid Phase II (ongoing) NCT04186273

Pirfenidone
(unknown mechanism) Scar Phase II/III

(ongoing) NCT03068234

Pentoxifylline, vitamin E
(ECM remodelling)

Postoperative
radiation-induced

fibrosis
Phase III (ongoing) NCT02898376

Fractional CO2 laser
(ECM remodelling) Scar, burns, graft scars N/A (ongoing) NCT04456127

Integra skin substitute
(scar resection and healing) Scar N/A (ongoing) NCT04420442

Autologous cell dermal scaffolds
(scar resection and healing) Scar, hypertrophic scar N/A (ongoing) NCT04389164

Rituximab is a mouse/human chimeric antibody that binds CD20 on the surface
of B-lymphocytes and initiates cell apoptosis, complement activation, and cell-mediated
cytotoxicity. B-cell depletion by rituximab was shown to reduce fibrosis serum markers
and myofibroblast activation in IgG4-related inflammatory diseases [140]. The results from
the phase II/III trial are yet to be released; however, rituximab was shown to reduce B-cell
presence in autoimmune scleroderma skin tissues, but had no discernible benefits to skin
scar tissue histology after 6 months of treatment [141], which suggests that rituximab may
be more effective as a pre-emptive measure. The anti-fibrotic effect of kynurenic acid was
also proposed to occur via the induction of apoptosis in leukocytes and a reduction in
inflammation, but with the additional regulation of the fibroblast production of MMPs and
collagens [142]. Pirfenidone has received extensive attention for its efficacious action in
the treatment of IPF [143,144]. Recently, Chen et al. used in situ self-assembling HA lattice
nanostructure spray-on dressings loaded with pirfenidone to treat deep partial-thickness
burn injuries in mouse models. The addition of pirfenidone to the wound dressing reduced
collagen accumulation and myofibroblast presence within wound sites [145]. Multiple
ongoing clinical trials focus on the management of established scars, with the aim to reduce
scar appearance or to induce physiological healing after scar resection. The combinatory
treatment of radiation-induced fibrosis with pentoxifylline (a hemorheological agent) and
vitamin E was suggested to exhibit synergistic improvement in scar appearance and ECM
remodelling, through actions of increased tissue perfusion and free radical scavenging [146].
Carbon dioxide (CO2) ablative fractional laser therapy has emerged as a promising low-
invasiveness therapy for the induction of collagen remodelling, resulting in scar revision
and reduced hypertrophic scar appearance after multiple sessions [147]. Integra is a
biosynthetic dermal substitute wound dressing widely used in acute wound management;
the ongoing clinical trial aims to perform scar resection and uses Integra to encourage
attenuated scar healing, in a similar manner to previously shown outcomes of Integra-
treated post-burn scar resections [148]. Autologous skin cells were harvested at the point
of graft surgery, using ReCell technology [149]. The cells were applied to chronic wounds
prior to the grafting of autologous donor skin, which resulted in remarkable healing
results [150]. The ongoing clinical trial will attempt to recapitulate this improved healing
response following scar resection in patients with hypertrophic scars.

There are numerous records of clinical trials aimed at one or more of the multifaceted
aspects of skin fibrosis. However, progression to phase III trials appears to be rarely
achieved, perhaps owing to the limited experimental evidence of myofibroblast-specific
targets. Below, we highlight progresses in the experimental and pre-clinical evaluation of
candidate molecular-based therapies that target key myofibroblast functions or activities,
to prevent skin fibrosis.
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5.1. Experimental and Pre-Clinical Interventions for Myofibroblast Differentiation

Popularised pre-clinical strategies for preventing myofibroblast formation focus on
inhibition of the canonical TGF-β1/Smad signalling pathway using cytokines, antibodies,
and regulators of gene expression. Demonstrating the clinical efficacy of anti-TGF-β1
therapies has been hindered by the cytokine’s pleiotropism and ubiquitous presence, as
well as the heterogenous processes of healing and fibrosis. Consequently, therapeutic
targeting of TGF-β and its specific isoforms has proved challenging. Available clinical data
are limited to early phase trials and studies with conflicting outcomes [54]. Recombinant
human TGF-β3 (Avotermin, Juvista) was developed by Renovo and hailed as a potential
novel inhibitor of dermal scar formation, based on its elevated presence and roles in non-
scarring tissues compared to TGF-β1, such as early gestational foetal skin and the oral
mucosa [151–154]. Phase I/II clinical trials concluded that the intradermal application of
Juvista yielded both short- and long-term improvements in scar appearance, compared
to placebo and standard wound care management [155,156]. Unfortunately, Juvista did
not meet the necessary primary or secondary endpoints required by phase III trials, failing
to demonstrate reduced scarring after excisional surgery. Fresolimumab is a neutralising
antibody that targets all TGF-β isoforms; the effects of Fresolimumab on cutaneous SSc
revealed reduced expression of fibrotic biomarkers and diminished myofibroblasts [157].
This suggested that a shotgun approach to TGF-β inhibition had anti-fibrotic effects, whilst
neutralising TGF-β1 alone in SSc failed to demonstrate clinical efficacy [158]. An apparent
trend has emerged, wherein anti-scarring interventions that target an individual aspect or
factor of fibrotic conditions generally fail to realise clinical benefit. Moreover, the efficacious
index of growth factors is limited by their low stability, short half-life in vivo, adverse
effects arising from elevated local and/or systemic concentrations, and their non-specific
nature (multiple protein-binding partners) [159].

MicroRNAs (miRNA) are short non-coding RNAs (18–25 nucleotides) that bind the 3′

untranslated region of mRNA, thereby inhibiting mRNA translation or promoting mRNA
degradation. Multiple studies have shown the regulatory roles of miRNA in pathological
wound healing and skin fibrosis. Notable miRNA targets upregulated in skin fibrosis
include miRNA (miR)-21 [160] and miR-130b [161], whereas miR-29 [162], miR-129-5p [163],
and miR-7 [164,165] were shown to be negative regulators of myofibroblast activity and
fibrosis. The miRNAs, miR-21 and miR-17-5p, have been shown to be directly implicated
in TGF-β1/Smad pathway promotion. Smad2 activity was potentiated by these miRNAs
through their inhibition of Smad7 [166,167]. Thus, inhibiting the activity of these miRNAs
has arisen as a potential avenue in gene therapies to mitigate TGF-β1/Smad pathway
activity and myofibroblast differentiation. We refer readers to an elegantly written review
of miRNAs in various fibrotic diseases for a more in-depth discussion of the miRNAs
involved in modulating TGF-β1 signalling [168].

Bone morphogenetic protein-7 (BMP7) exerted potent anti-fibrotic actions in vitro [169],
and in pre-clinical fibrosis models [170–173]. BMP7 activation of Smad1/5/8 results in the
competitive binding of Smad4, thereby inhibiting the TGF-β1/Smad2/3 pathway’s tran-
scriptional activities [173]. Early reports indicated that BMP7 failed to prevent bleomycin-
induced skin fibrosis [174]. However, a later study showed that BMP7 treatment at the
point of thermal injury prevented hypertrophic scar formation [173]. Thus, BMP7 therapies
require further optimization and testing to determine their effectiveness in the prevention
of dermal fibrosis. Interferon (IFN)-γ induced the expression of Smad7, which antagonised
interactions between Smad2/3 and TGFβRI/II [175]. The effects of IFN-γ on fibroblasts
in vitro are conflicting; exogenous IFN-γ was suggested to abrogate TGF-β1-induced prolif-
eration, migration, and differentiation to myofibroblasts [176]; but T-cell secretion of IFN-γ,
found to be prominent in SSc, aggravated fibrosis by promoting fibroblast proliferation
and collagen synthesis [177]. Early pre-clinical and small clinical studies suggested that
IFN-γ was effective in the attenuation of lung, renal, and liver fibrosis [178–180], and oral
submucosal fibrosis [178–181]. There is a current lack of studies describing definitive IFN-γ
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mechanisms involved in the regulation of myofibroblasts. Thus, whether IFN-γ delivery
would be effective in attenuating dermal fibrosis remains unclear.

Alternative approaches include molecular inhibitors of non-canonical and mechan-
otransduction pathways to regulate ECM composition and disrupt the myofibroblast phe-
notype. Hepatocyte growth factor (HGF) was first implicated in liver regeneration [182],
but has since been shown to prevent fibrosis initiation and progression in animal mod-
els [183,184]. HGF treatment was shown to attenuate collagen production by fibroblasts
in multiple tissues [185–187]. Elevated HGF expression in fibrosis [188–191], but also in
differentiation-resistant fibroblasts [192,193], suggests a duality of HGF actions which
may be a consequence of truncated isoforms possessing a variable number of kringle
domains (HGF/NK1-4) with differential signalling activities. Indeed, human oral mucosal
fibroblast resistance to TGF-β1-induced differentiation was dependent on heightened HGF
and HGF/NK1 expression, whereas HGF/NK2 was preferentially expressed by dermal
fibroblasts [194]. Recently, HGF/NK1 gene therapy was shown to exert potent anti-fibrotic
effects through attenuated collagen types I, III, and IV deposition in mouse models of renal
fibrosis [171]. In addition, the HGF inhibition of collagen synthesis and promotion of MMP
production has shown promise for therapeutic applications in reducing the pro-fibrotic
activity of keloid fibroblasts in vitro and in a keloid heterograft mouse model [195–197].
Small molecule inhibitors of DDR1 have shown promise in reducing collagen types I and IV
deposition in bleomycin-induced renal and lung fibrosis [198–200]. Ongoing research into
DDR1-specific inhibitors have yielded promising results in models of renal fibrosis [199].

HA bioactivity is dependent on its molecular weight, enzymatic synthesis, and en-
dogenous versus exogenous application [55,201,202]. The disruption or prevention of HA
pericellular coat synthesis using hyaluronidase enzymes [203], HAS inhibitors [204,205]
or exogenous HA oligosaccharides [59] results in the failure of TGF-β1-stimulated my-
ofibroblast phenotypic acquisition. The inhibition of HAS2 activity [206] or global HAS
synthesis of HA [204,205] have demonstrated preventative effects in various models of
fibrosis. However, given the ubiquitous role of HAS-synthesised HA in tissues, and the
lack of specific HAS isoenzyme inhibitors, it is unclear at present whether the inhibition
of HA synthesis would be beneficial in a clinical setting. An additional action of BMP7
involved the induction of the nuclear translocation of HYAL2 and the subsequent splicing
of CD44 mRNA, which resulted in the upregulated expression of the variant isoform,
CD44v7/8. Fibroblasts with upregulated expression of CD44v7/8 exhibited ‘HA-phage’
activity, wherein the HA pericellular coat was rapidly internalised and broken down,
resulting in the destabilization of the myofibroblast and phenotypic reversion to fibrob-
lasts [69,169]. Whether CD44v7/8-dependent actions convey anti-fibrotic effects in dermal
fibrosis is currently unknown.

The most promising integrin targets that have demonstrated roles in the pathogen-
esis of fibrosis are α4-containing integrins (α4β1/7) [112,115] and αv-containing inte-
grins (αvβ1/3/5/6) [207–209]. Mechanotransduction by integrin αvβ6 promoted trac-
tion from proliferating liver cholangiocytes to FN/LAP, which subsequently released
active TGF-β1 and initiated the differentiation of surrounding hepatic stellate cells
to myofibroblasts [207,210]. A small peptidomimetic, EMD527040, mimics the RGD-
binding sites of αvβ6 and αvβ1; orally administered EMD527040 attenuated biliary
and non-biliary fibrogenesis [207]. The expression of integrin αvβ6 was elevated in ker-
atinocytes during wound healing and fibrosis [211], but the detailed mechanistic roles
of integrin αvβ6 and epithelial–mesenchymal crosstalk during dermal fibrosis have yet
to be elucidated. Research has identified that integrin interactions with the EDGIHEL
motif of EDA–FN was causative of downstream profibrotic responses [109,113,115].
The IST-9 [109,110], F8 [212,213], and vaccine-generated [214] antibodies that target
EDA–FN or integrin α4 have demonstrated prevention of fibroblast–myofibroblast
differentiation [109,110]. Therapeutic applications of antibodies can be limited by the
cost and complexity of production, off-target immune activation or unspecific protein
masking of critical protein–protein interactions. To address these issues, Zhang et al.
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developed a small blocking polypeptide to bind and block EDA–FN interactions with
the α4β1 binding cleft, with high specificity [114]. The polypeptide, AF38Pep, was
designed to mimic the integrin α4β1 receptor site for the EDGIHEL motif of EDA–FN
and was shown to interfere with TGF-β1-stimulated fibroblast–myofibroblast formation
by the specific blockade of integrin α4β1 signalling, the inhibition of FAK activation,
and the prevention of profibrotic gene transcription [114]. The aforementioned first
generation of small blocking polypeptides have revealed the renewed promise of the
specific interruption of integrin-mediated mechanotransduction and myofibroblast for-
mation. The implementation of integrin receptor peptidomimetics for the prevention of
skin fibrosis will become more apparent in the coming years when the in vitro research
progresses into pre-clinical models.

Another potential peptide therapy is the N-terminal amino acid sequence of α-SMA,
Ac-EEED, which is important for the tropomyosin-1.6/7-stabilized incorporation of α-SMA
into cytoplasmic stress fibres [215]. Interestingly, the cytoplasmic delivery of the Ac-EEED
peptide resulted in the loss of α-SMA from β-cytoplasmic actin stress fibres and inhibited
G-actin polymerization into F-actin [216,217], thereby reducing myofibroblast contraction
in wound healing [218]. Ac-EEED peptide therapy has yet to be evaluated in skin fibrosis
models, which may be related to the current lack of available dermal myofibroblast-
specific targeting moieties that operate by endosomal uptake and the cytoplasmic release
of payloads.

5.2. Immunomodulating Biomolecules for Fibrosis Attenuation

Immunoregulatory interventions aim to control the inflammatory phase in postnatal
skin healing to attenuate scar formation [219,220]. Studies in transgenic mice provided
early indicators that the absence of neutrophils and macrophages led to scar-free heal-
ing [221]. Targeted repression of the gap junction and inflammatory mediator protein,
connexin-43, supported these findings [220,222]. Additionally, connexin-43 was shown
to mediate cardiac fibroblast–myofibroblast differentiation [223] and promote aberrant
cardiomyocyte–myofibroblast functional coupling [224]. Certain interleukin (IL) cytokines
are implicated in the activation of inflammatory cascades. IL-8 production is a chemoat-
tractant to neutrophils, whereas IL-6 secretion by fibroblasts activates macrophages and
monocyte chemotaxis. Both IL-6 and IL-8 exhibit the rapid induction of expression fol-
lowing tissue injury, resulting in the recruitment of circulating inflammatory cells. The
expression levels of IL-6 and IL-8 are elevated and maintained for longer in adult skin,
compared to scarless scar-free foetal repair. The inhibition of phosphodiesterase 4 (PDE4)
reduced scar formation in skin fibrosis models by interfering with the release of IL-6
from M2 macrophages [225]. Thus, IL-6 and IL-8 are considered pro-fibrotic mediators,
whereas IL-10 antagonised their activity [219,226]. IL-10 gene therapy resulted in reduced
inflammation and the promotion of scarless healing in mouse wound healing studies [227].
The exogenous addition and macrophage paracrine production of IL-10 were shown to
induce myofibroblast reversal to fibroblastic phenotypes in vitro [228,229]. More recently,
IL-10 induced myofibroblast–fibroblast dedifferentiation was shown to alter dynamic inter-
actions with the surrounding fibrillar matrix with a demonstratable loss of contractility
in IL-10 treated myofibroblasts [230]. Research into inflammation-induced fibrosis has
revealed additional potential candidate ILs that may be targetable in skin fibrosis, including
IL-11 [35], IL-16 [231], and IL-33 [232]. Keratinocytes have suggested roles in the regulation
of the myofibroblast phenotype and profibrotic ECM during wound healing [233–235].
More recently, the keratinocyte secretion of IL-1α was demonstrated to restrain the myofi-
broblast phenotype, dependent on fibroblast integrin α4β1 expression and Cox-2/Nrf2
signalling [236,237].

The importance and therapeutic potential of macrophages in the wound healing
process has been highlighted in recent years [6,238,239]. Crosstalk between myofibrob-
lasts and macrophages during skin repair was reported [240]. Growth factors secreted
by CD301b+ M2-type macrophages were shown to selectively stimulate the prolifera-
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tion of adipocyte precursor (AP)-derived myofibroblasts only. In aged mice wounds and
experimentally induced mouse skin fibrosis, AP-derived myofibroblasts and CD301b+

macrophages were reduced, and a CD29+ myofibroblast pool was increased. In keloids,
CD301b+ macrophages and AP-derived myofibroblasts were also increased [241]. In fibrotic
lung tissues, cadherin-11 mediated the adhesion between macrophages and myofibrob-
lasts, promoting pro-fibrotic myofibroblast activity via the paracrine release of TGF-β1 by
the macrophages [242]. Experimental research has suggested roles of mast cells in scar
formation [243]; reduced numbers of activated mast cells were reported to improve healing
and minimize scarring [244–246], whereas mast cell hyperplasia was causally linked to
myofibroblast hyperplasia [247–249]. Increased neuropeptide activity and the presence
of substance-P (SP) were found in hypertrophic scar samples [250,251]. Mast cells were
previously suggested to be a major source of neuropeptide SP-stimulated inflammation and
increased myofibroblast activity [252]. These studies showed that myofibroblast activity
could be mediated through regulated leukocyte–myofibroblast interactions and suggest
that targeting certain leukocyte subpopulations may serve as anti-fibrotic strategies.

Targeting inflammatory meditators has shown promise in alleviating the magnitude
of fibrosis in various animal models. Follistatin-like-1 (FSTL1) was found to be elevated
in serum from patients with silicosis and in mouse lung fibrosis models. FSTL1-induced
IL-1β production by macrophages and positively regulated TGF-β1 signalling in fibrob-
lasts. The inhibition of FSTL1 expression or activity protected against lung injury and
fibrosis [253,254]. Recently, FSTL1 neutralizing antibodies were shown to exhibit potent
anti-inflammatory actions, attenuate bleomycin-induced IPF and dermal fibrosis in vivo,
and downregulate TGF-β1-driven fibrosis in human skin ex vivo [255].

The transmembrane serine protease and collagenase, fibroblast activation protein
(FAP) is prominently expressed by activated fibroblasts and myofibroblasts during tissue
remodelling and fibrosis [256]. FAP-cleaved collagen binds to the scavenger receptor (SR)-
A, recruiting SR-A+ macrophages to sites of collagen turnover [257]. The liver expression of
FAP in cirrhosis was shown to correlate with the severity of fibrosis but was not exclusively
expressed by α-SMA+ myofibroblasts, suggesting that FAP marks a differentially activated
fibroblast state [258]. Lines of research have started to establish the mechanistic actions of
FAP in fibroblast heterogeneity and governance over the pro-fibrotic ECM [93]. Treatment
with anti-FAP antibody reduced collagen type I production by fibro-stenotic intestinal
myofibroblasts [259]. The FAP and dipeptidyl peptidase IV inhibitor, talabostat mesylate
(PT100), was used to treat bleomycin-induced IPF murine models. Treatment with PT100
showed anti-fibro-proliferative activity but increased macrophage activation, with no effect
on collagen expression [260]. Therefore, the present scope for specific FAP inhibition in
dermal fibrosis models remains unclear, until more mechanistic information is reported.

5.3. Targeted Myofibroblast Apoptosis

In physiological wound healing, myofibroblasts disappeared following wound closure
and resolution [122,261], predominantly by apoptosis [33]. Despite the elevated production
of reactive oxygen species (ROS) by myofibroblasts during fibrosis, the persistence of
TGF-β1 expression, ECM deposition, and accumulative stress-induced FAK promotes
pro-survival and anti-apoptotic myofibroblast phenotypes [31,262]. The susceptibility of
myofibroblasts to nitric oxide (NO)-induced apoptosis has been reported in vitro [263].
Therefore, a combination of reduced profibrotic growth factor expression, increased ECM
turnover, and increased NO generation may set the stage for triggering myofibroblast
apoptosis during the resolution of tissue repair and remodelling [264,265].

A single chain antibody (C1-3) specifically targets synaptophysin+ liver myofibroblasts
without co-localising with liver monocytes or macrophages [266], thus demonstrating that
the identification of unique markers of myofibroblasts in fibrosis could serve as targeting de-
vices. The researchers showed that C1-3-gliotoxin conjugates induced non-parenchymal cell
apoptosis and depleted liver myofibroblasts without affecting monocytes or macrophages,
resulting in the reduced severity of fibrosis [266]. The anticancer drug, Elesclomol, was
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found to selectively induce apoptosis in activated fibroblasts and myofibroblasts isolated
from scar tissue samples. Elesclomol upregulated intracellular levels of ROS, caspase-3,
and cytochrome-c proteins, resulting in reduced myofibroblast numbers and a lower scar
elevation in vivo [267].

The mechanical tension-stimulated myofibroblast differentiation increased mitochon-
drial priming and death signalling proteins, such as the pro-apoptotic BH3-only protein
BIM [268,269]. The anti-apoptotic protein BCL-XL sequesters BIM and ensures myofibrob-
last survival. Lagares et al. showed that myofibroblasts were susceptible to apoptosis
induced by the BCL-2 inhibitor and the BH3 mimetic drug, ABT-263 (Navitoclax), which
inhibited BCL-XL and allowed BIM to activate myofibroblast apoptosis in mouse models of
scleroderma dermal fibrosis [32]. These results were recapitulated in rabbit ear hypertrophic
scar models, wherein ABT-263 improved scar appearance and collagen arrangement [40].
Future studies into the physiological triggers for time-appropriate myofibroblast apoptosis
could potentially lead to the identification of novel treatments with improved therapeutic
indexes for scarless wound healing.

5.4. Antioxidant Therapeutics

Another proposed regulator of normal and pathological scarring in numerous tissues
is oxidative stress, referring to the overproduction of ROS via such mechanisms as NADPH
oxidases (NOXs) and the mitochondria, at the expense of cellular and tissue antioxidant
defences [270–274]. The induction of the myofibroblast phenotype is accompanied by
depleted cellular antioxidants, leading to ROS generation and the implication of ROS
in multiple signalling pathways associated with myofibroblast differentiation. Thus, an
emergent area of research is focusing on evaluating the efficacious index of antioxidants
against fibrosis and in restoring cellular redox balance. The liposomal delivery of cop-
per/zinc (Cu/Zn) superoxide dismutase (SOD)-attenuated TGF-β1, α-SMA and collagen
type I expression in dermal fibroblasts, although myofibroblast apoptosis remained un-
affected [275]. Similarly, SOD1-containing fusion proteins alleviated oxidative stress in
cardiac myofibroblasts via the reduced expression of TGF-β1, α-SMA, and collagen types I
and III—whilst restoring MMP-1 and attenuating MMP inhibitor (TIMP-1) secretion [276].
Small molecule inhibitors of NOXs, such as GKT136901 and GKT137831, also exhibited
therapeutic potential by reducing murine liver fibrosis [277,278]. In addition to the progress
made with such promising findings, the development of nanoparticles with inherent an-
tioxidant activities, such as cerium oxide, fullerene, and mesoporous silica, have also been
explored as potential therapeutic options for fibrosis, which may also be combined with
payloads of pharmaceuticals, genes, or proteins [279].

Natural compounds have a long history of use in wound healing, and the cellular
mechanisms of action are beginning to be delineated as active components are extracted
and assessed [280–282]. The exploitation of the aromatic nature and antioxidant capabili-
ties of various naturally sourced polyphenolic compounds and their extracts have been
demonstrated in numerous in vitro and in vivo systems, with desirable biocompatible and
anti-fibrotic effects in models of pulmonary [283–285]; renal [286,287]; myocardial [288,289];
and skin fibrosis [290,291]. The clinical potential of natural compound-based therapies is
often restricted by the lack of clarity in their multifaceted bioactivities. Hence, delineating
cellular responses to the more specific and potent actions of natural compound extracts has
become a popularised concept towards their clinical translation.

6. Future Perspectives for the Discovery of Novel Therapeutics

The complex multistage process of wound healing is vulnerable to dysregulation by a
plethora of factors that can initiate and maintain myofibroblast differentiation. Failure of
timely wound resolution and myofibroblast apoptosis can inevitably result in the excessive
and disorganised deposition of the collagen-rich ECM that is characteristic of fibrosis. The
growing knowledge base surrounding myofibroblast cell formation, function, and profi-
brotic regulators of differentiation has revealed promising candidate therapies that target
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the myofibroblast phenotype and functions at various stages of wound healing, with the
aim to achieve attenuated scar formation. In the wake of unsatisfactory pre-clinical and clin-
ical trial results from the inhibition of TGF-β1, researchers have sought alternative routes
to preventing myofibroblast differentiation. Fibroblasts resistant to TGF-β1-stimulated
myofibroblast differentiation, such as embryonic fibroblasts, oral mucosal fibroblasts, and
aged/senescent fibroblasts, which continue to be extensively studied to uncover important
targets, including cytokines, ECM components, receptors, and intracellular signalling
cascades involved in resistance to myofibroblast phenotypic acquisition. Fundamental
research into molecular-based interventions have given rise to an abundance of candidate
treatment modalities, but a key limitation remains: namely a deficit of cell-specific targeted
therapies due to the current lack of identified markers unique to myofibroblasts, perhaps
as a result of their heterogenous origins. Biomaterials and drug carrier technologies may
offer circumvention by facilitating the localised release of bioactive molecules within the
microenvironment and the vicinity of myofibroblasts and are likely to take precedence in
the sophisticated and controlled spatiotemporal delivery of therapeutic agents to wound
sites. The progress and increased accessibility of single cell analytics and multi-omics may
help to further identify subsets of dermal fibroblasts (e.g., fibroblasts from papillary or
reticular dermis) or myofibroblasts that have more prominent roles in driving fibrosis, and
this may facilitate the discovery of uniquely expressed cell surface receptors, proteins, or
other targetable moieties. An alternative strategy only briefly touched upon here includes
the regulation of cell–cell dynamics. Research into direct heterogenous cell binding, cell
paracrine activity, and influence on surrounding cells may provide further clues towards
myofibroblast regulation (e.g., leukocyte, stem cell, keratinocyte/epithelial cell, or endothe-
lial cell regulation of fibroblasts and vice versa). Regardless of the afflicted tissue, the
underlying cellular aetiology of fibrosis is largely similar. This undoubtedly implies that
the progress of research in organ fibrosis will also provide applicable therapies for scarless
wound healing. Here, we provided a comprehensive overview of promising candidate
molecular-based therapies, which have been directly inspired by the discovery of key
regulatory mechanisms implicated in myofibroblast formation and function. Certainly,
continued research into myofibroblast biology will usher in a new era of novel therapeutics
that will, in-turn, contribute to the knowledge pool. This review highlights the current
literature and understanding of cellular mechanisms and interventions of myofibroblasts
in the context of reduced scar skin repair, and our hope is that it serves as a reference guide
for ongoing and planned research.
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