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IFNL3/4 genotype is associated with altered immune cell
populations in peripheral blood in chronic hepatitis C infection
KS O’Connor1, SA Read2, M Wang1, S Schibeci1, M Eslam2, A Ong2,3, MD Weltman4, MW Douglas2,3, A Mazzola5, A Craxì5, S Petta5,
GJ Stewart1, C Liddle2, J George2, G Ahlenstiel2 and DR Booth1

Single-nucleotide polymorphisms near the interferon lambda 3 (IFNL3) gene predict outcomes to infection and anti-viral treatment
in hepatitis C virus (HCV) infection. To identify IFNL3 genotype effects on peripheral blood, we collected phenotype data on 400
patients with genotype 1 chronic hepatitis C (CHC). The IFNL3 responder genotype predicted significantly lower white blood
cells (WBCs), as well as lower absolute numbers of monocytes, neutrophils and lymphocytes for both rs8099917 and rs12979860.
We sought to define the WBC subsets driving this association using flow cytometry of 67 untreated CHC individuals. Genotype-
associated differences were seen in the ratio of CD4CD45RO+ to CD4CD45RO− ; CD8CD45RO+ to CD8CD45RO− , NK CD56 dim to
bright and monocyte numbers and percentages. Whole blood expression levels of IFNL3, IFNLR1 (interferon lambda receptor 1),
IFNLR1-mem (a membrane-associated receptor), IFNLR1-sol (a truncated soluble receptor), MxA and T- and NK (natural killer) cell
transcription factors TBX21, GATA3, RORC, FOXP3 and EOMES in two subjects were also determined. CHC patients demonstrated
endogenous IFN activation with higher levels of MxA, IFNLR1, IFNLR1-mem and IFNLR1-sol, and IFNL3 genotype-associated
differences in transcription factors. Taken together, these data provide evidence of an IFNL3 genotype association with differences
in monocyte, T- and NK cell levels in the peripheral blood of patients with CHC. This could underpin genotype associations with
spontaneous and treatment-induced HCV clearance and hepatic necroinflammation.
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INTRODUCTION
Hepatitis C virus (HCV) infects over 200 million people.1 Sponta-
neous clearance of HCV infection is largely affected by variants
of the interferon lambda 3 (IFNL3) gene.2 Failure to clear leads to
chronic hepatitis C (CHC), which can result in significant complica-
tions including liver cirrhosis, hepatocellular carcinoma and death
from liver failure, as well as other immune-related phenomena such
as cryoglobulinaemia and lymphoma.3

In 2009, three landmark genome-wide association studies
(GWAS) identified a set of single-nucleotide polymorphisms
(SNPs) in the vicinity of the IFNL3 gene, which were significantly
associated with clearance of genotype 1 HCV on conventional
therapy.4–6 Subsequently, this genetic variation has been strongly
associated with spontaneous clearance of HCV.2 In 2013, a new
polymorphism (ss469415590) between IFNL2 and IFNL3 was
identified and found to induce a frameshift mutation, resulting
in transient expression of an IFN analogue, IFN lambda 4 (IFNL4),
in stimulated human hepatocytes.7 The genotype-dependent
production of the protein IFNL4 resulted in altered IFN-sensitive
gene (ISG) expression and thus may explain the effects on
viral clearance. ss469415590 is in high linkage disequilibrium with
rs12979860 but more strongly associated with spontaneous and
treatment-induced HCV clearance. We have referred to the SNPs
rs12979860 and rs8099917 as IFNL3 SNPs in this paper, although
they could also be referred to as being from the gene IFNL4.

IFNL3, a member of the type III IFN family, induces potent innate
anti-viral effects against a number of viruses including HCV.8–11 Its
effects are mediated via signalling through the interferon
lambda receptor 1 (IFNLR1) complex, whose expression has been
confirmed on a variety of cells including lymphocytes.8,12,13 There
are at least two splice variants of the IFNLR1 receptor chain:
a membrane-associated receptor (IFNLR1-mem) and a truncated
soluble receptor (IFNLR1-sol), which lacks the transmembrane
domain. It has therefore been speculated that the soluble
receptor acts as a negative regulator of type III IFNs by binding
to the cytokines before cell contact.14 However, soluble receptors
can also increase signalling by increasing cytokine half-life15 or
potentiating signalling.16

The host immune response is pivotal to a successful outcome
at initial infection, during and after development of CHC. A strong
virus-specific cytotoxic response, largely mediated by CD4 T
helper type 1 (Th1) cells and natural killer (NK) cells, is required
to remove infected hepatocytes, secrete cytokines and promote
hepatocyte production of ISGs that allow for the inhibition of viral
replication.17 In contrast, there is some evidence to suggest that
a CD4 Th2-dominant response is associated with HCV treatment
failure and viral persistence.18,19 The anti-viral role of CD8 T cells in
CHC is thought to be negligible.20

We hypothesised that IFNL3 genotype may mediate differences
in the immunological phenotype in CHC. To test our hypothesis,
we initially analysed a large cross-sectional cohort of genotype 1
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CHC subjects, then performed a flow cytometric analysis on a cohort
of 67 of these. Analysis was also performed on transcription factors,
as the master regulators of Th cell and NK differentiation and
mediators of the immune response, including: TBX21 (Th1, NK cells),
GATA3 (Th2), RORC (Th17), FOXP3 (T-regulatory cells (Tregs)) and
EOMES (CD8, NK cells).21 Finally, we also assessed the expression
of IFNL3-associated genes (IFNL3, IFNLR1, IFNLR1-mem, IFNLR1-sol
and MxA). These data provide evidence of IFNL3 genotype-
associated monocyte, T- and NK cell alterations in peripheral
blood, which could be due to variation in immune cell trafficking to
the infected liver, and may explain the genetic associations with
viral clearance, necroinflammation and response to therapy.

RESULTS
Haematological markers correlate with IFNL3 genotype and HCV
viral load
The baseline characteristics of the 400 patients according to IFNL3
genotypes are summarised in Table 1. No significant difference
between the groups was observed for age or gender. At baseline,
a number of highly significant haematological differences
between the IFNL3 genotypes were detected (Table 1). The IFNL3
responder genotype groups demonstrated lower baseline white
blood cell (WBC) count (rs8099917 P= 2.8 × 10−4 and rs12979860
P= 2.8 ×10− 3), absolute lymphocyte count (ALC) (rs8099917
P= 5.0 ×10− 3 and rs12979860 P= 0.015), absolute neutrophil count
(ANC) (rs8099917 P= 0.013 and rs12979860 P= 0.022) and absolute
monocyte count (AMC) (rs8099917 P= 6.1 ×10−4 and rs12979860
P= 0.021). An association with lower haemoglobin was also
observed, but only for rs8099917. There was no significant difference
in platelet counts between the IFNL3 genotypes.
HCV viral load measurements were stratified into high

(⩾8.5 × 105 IU ml− 1) and low (o8.5 × 105 IU ml− 1) viral load

groups. A significantly higher proportion of IFNL3 responder
genotypes were observed in the high viral load group compared
with the low viral load group (rs8099917: 35% low viral load vs
61% high viral load, P = 0.0007 and rs12979860: 16% low viral load
vs 50% high viral load, Po0.0001). The high viral load group
demonstrated lower WBCs (P= 0.034) and ALC (P= 0.034) (Table 2).

Flow cytometric deconvolution of leucocytes confirms
genotype effect
Flow cytometric analysis of peripheral blood mononuclear cells from
67 CHC patients before therapy indicated a reduction in monocytes
(Po0.05) in the rs12979860 responder genotype (Figure 1a). Further
subsetting demonstrated a reduction in CD56 high NK cells
(Po0.05), and a similar trend in CD4+ T cells, as indicated by
a reduced CD4/CD8 ratio (P= 0.054). Responder genotypes also had
a lower proportion of RO+ to RO− in both CD4 and CD8 subsets
(Po0.001, P= 0.08, respectively).

Transcription factor expression in peripheral blood in CHC
As CD4CD45RO T and NK cells are thought to mediate viral
clearance, we assessed their abundance in peripheral blood
by measuring cell subset-specific transcription factors.22,23 Com-
parison was made for transcription factors FOXP3, GATA3, RORC
and TBX21 between CHC cohort (n = 24) and healthy controls
(n= 22). A significantly higher expression (P= 0.04) of circulating
FOXP3 cells were detected in CHC cohort compared with healthy
controls (Figure 2).
No significant correlation between IFNL3 genotype and

transcription factor expression was detected in CHC. As Th1 and
NK cells facilitate viral clearance, we hypothesised that the IFNL3
responder genotype would have a Th1, NK-dominant phenotype.
To identify relative differences within the lymphocyte population,

Table 1. Demographic and baseline haematological parameters according to IFNL3 genotype in 400 Caucasian patients with chronic hepatitis C

Rs8099917 P-value Rs12979860 P-value

TT (responder) GT/GG (non-responder) CC (responder) TC/TT (non-responder)

n (%) 194 (49) 206 (51) — 133 (33) 267 (67) —

Sex M:F (%) 110:84 (57):(43) 124:82 (60):(40) 0.48 86:47 (65):(34) 148:119 (55):(45) 0.08
Age (years) 49.7± 9.8 51.1± 11.8 0.17 49.3± 10.3 51.0± 11.3 0.13
Hb (g l− 1) 147± 12 151± 14 0.011 149± 12 149± 14 0.56
Platelet (×109/l) 217± 66 224± 65 0.34 214± 61 224± 67 0.12
WBC (×109/l) 6.5± 1.8 7.2± 2.0 2.8 ×10−4 5.65± 1.9 7.1± 1.9 2.8× 10−3

ANC (×109/l) 3.7± 1.4 4.0± 1.5 0.013 3.6± 1.5 4.0± 1.4 0.022
ALC (×109/l) 2.2± 0.6 2.4± 0.8 5.0 ×10−3 2.2± 0.7 2.3± 0.8 0.015
AMC (×109/l) 0.40± 0.15 0.45± 0.18 6.1 ×10−4 0.40± 0.14 0.44± 0.17 0.021

Abbreviations: ALC, absolute lymphocyte count; AMC, absolute monocyte count; ANC, absolute neutrophil count; Hb, haemoglobin; WBC, white blood cell.
The P-values in bold are statistically significant (o0.05).

Table 2. Haematological parameters according to low or high pre-treatment HCV viral load

Viral load o8.5 × 105 IU ml− 1 Viral load ⩾ 8.5 × 105 IU ml− 1 P-value

Rs8099917 TT:TG/GG (%) 32(35):59(65) 49(61):31(39) 7×10−4

Rs12979860 CC:CT/TT (%) 15(16):76(84) 40(50):40(50) o0.0001
Hb (g l− 1) 148± 13 149± 13 0.38
Platelet (×109/l) 209± 54 191± 60 0.12
WBC (×109/l) 6.6± 1.9 6.1± 1.4 0.034
ANC (×109/l) 3.6± 1.4 3.4± 1.0 0.19
ALC (×109/l) 2.4± 0.7 2.1± 0.7 0.034
AMC (×109/l) 0.45± 0.19 0.41± 0.14 0.14

Abbreviations: ALC, absolute lymphocyte count; AMC, absolute monocyte count; ANC, absolute neutrophil count; Hb, haemoglobin; WBC, white blood cell.
The P-values in bold are statistically significant (o0.05).
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we used ratios to compare Th1, NK (TBX21) to the other subsets:
Th2 (GATA3), Th17 (RORC) and Treg (FOXP3). In addition, as the
transcription factors are variably expressed, we used their rank
across sample rather than their absolute expression values.
For rs8099917, we found a significant association with a TBX21
(Th1/NK)-dominant effect: TBX21/GATA3 (Th1, NK/Th2: P= 0.017);
TBX21/RORC (Th1, NK/Th17: P = 7.4 × 10− 3) and TBX21/FOXP3
(Th1, NK:Treg: P = 0.036), with the ratio higher for responders in
each case. For rs12979860, the same trend was also observed and
this was significant for: TBX21/GATA3 (Th1, NK/Th2: P = 0.038) and
TBX21/RORC (Th1, NK/Th17: P = 5.2 × 10− 3) (Figure 3). In other
works,24 we have confirmed that the expression of these genes is
highest in these subsets.

IFNLR1 and MxA mRNAs are increased in peripheral blood in CHC
IFNL3, IFNLR1 and MxA expression was measured in peripheral
blood samples from healthy controls (n= 22) and HCV-infected
untreated subjects (n= 24). CHC patients demonstrated significantly
higher expression levels of MxA (P= 3.0×10−6) (Figure 4e), IFNLR1

(P=3.2× 10−12) (Figure 4b), IFNLR1-mem (P= 0.041) (Figure 4c) and
IFNLR1-sol (P= 3.0×10−3) (Figure 4d) compared with healthy
controls. However, no difference in IFNL3 mRNA expression was
detected between untreated HCV-infected subjects and healthy
controls (Figure 4a). We looked for an association between IFNL3
genotype and expression levels of IFNL3, IFNLR1, IFNLR1-sol, IFNLR1-
mem andMxA in untreated CHC subjects. There was a trend towards
higher baseline expression of all five parameters measured (IFNL3,
IFNLR1, MxA, IFNLR1-sol and IFNLR1-mem) compared with those with
the IFNL3 responder genotypes (rs809917 TT and rs12979860 CC).
However, this only reached statistical significance for IFNLR1-sol
(rs809917: P= 0.02).

DISCUSSION
In this study, we sought to define IFNL3 genotype effects on
peripheral blood immune cells to improve our understanding of
the basis IFNL3 genotype-associated differences in viral clearance.
We demonstrate, for the first time, significantly lower baseline
total white cell, neutrophil, lymphocyte and monocyte counts for
people with IFNL3 responder genotypes (for both rs8099917 and
rs12979860) and an association between higher pre-treatment
viral load and lower white cell and lymphocyte counts. From
flow cytometric analysis, responder genotypes had a lower CD56
high/dim ratio, lower CD45RO+/− ratio and fewer monocytes. The
IFN-sensitive genes MxA and IFNLR (sol- and membrane-bound
isoforms) were higher in CHC compared with that in controls, but
IFNL3 was not. For responders for all genes there was a trend for
higher expression.
Further, in patients with IFNL3 responder genotype, transcrip-

tion factor analysis revealed evidence for a Th1/NK-dominant state
in peripheral blood. Taken together, these results suggest that
in individuals with the IFNL3 responder genotype there may be
increased lymphocyte redistribution to the liver and secondary
lymphoid organs, resulting in increased priming and activation
of adaptive immune cells. On treatment with exogenous IFNA, the
Th1/NK-dominant response increased immune cell activation and
immune cell residency in the liver would favour rapid viral

Figure 1. Flow cytometric analysis of immune cell subsets in CHC by rs12979860 genotype (n= 67). (a) Percentage of major immune
cell subsets (Po0.05 for monocytes and P= 0.05 for CD8s). (b) Ratio of CD56 high to CD56 low cells (Po0.05). (c) Ratio of CD4/CD8 (P⩽ 0.05).
(d) Ratio of CD45RO− to RO+ for CD4 (Po0.001) and CD8 (P = 0.08) cells.

Figure 2. Transcription factor expression by qPCR in peripheral
blood from HCV-infected patients (n= 24) compared with controls
(n= 22). FOXP3 was significantly higher (P = 0.04) in CHC cohort
compared with healthy controls.
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clearance and may explain IFNL3 genotype-associated associations
with rapid virological response and sustained virological response.
Lymphopenia is associated with viral infections and others have

shown that this is related to redistribution of lymphocytes to
secondary lymphoid organs25 and increased lymphocyte tissue
residency time.26 This lymphocyte redistribution is mediated, in
part, by endogenous type I IFNs in viral infection.27 Cirrhosis is also

associated with haematologic abnormalities including varying
degrees of cytopenias. However, in neither instance has this been
observed to relate to type III IFN genotype. Moreover, in cirrhosis,
thrombocytopenia is the most commonly detected abnormality,
with low WBCs and anaemia tending to develop later in the
disease course.28 In our study, we saw no consistent association of
platelet counts or haemoglobin with IFNL3 genotype, suggesting

Figure 3. Expression of transcription factor ratios in the peripheral blood of HCV-treated subjects (n= 24) analysed for differences in IFNL3
genotype. (a) Ratios show a TBX21 (Th1/NK)-dominant effect associated with the IFNL3 responder genotype (rs8099917 TT and rs12979860 CC).
(b) Ratio of TBX21/GATA3 (Th1, NK/Th2) showing significant differences for rs8099917 (P = 0.017) and for rs12979860 (P = 0.038). (c) Ratio of
TBX21/RORC (Th1, NK/Th17) showing significant differences for rs8099917 (P = 7.4 × 10− 3).

Figure 4. IFNL3, IFNLR1, IFNLR1-mem, IFNLR1-sol and MxA expression by qPCR in peripheral blood from healthy controls (n= 22) and untreated
HCV-infected patients (n= 24). Significantly higher expression of (b) IFNLR1 (P = 3.2 × 10− 12), (c) IFNLR1-mem (P = 0.041) and (d) IFNLR1-sol
(P= 3.0 × 10− 3) and (e) MxA (P = 3.0 × 10− 6) in the HCV-infected individuals is demonstrated. No difference in (a) IFNL3 expression between
controls and HCV subjects in peripheral blood was detected and for rs12979860 (e) at T0 (P = 5.2 × 10− 3). (c and f) Ratio of TBX21/FOXP3 (Th1:
Treg) showing significant differences for rs8099917 (c) at T0 (P = 0.036) and T4w (P = 0.018).
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a targeted effect on immune cell activation and trafficking. Thus,
our data suggest an IFNL3 genotype-specific altered immune state
and blood profile, likely triggered by chronic viral infection and
endogenous IFNs.
In support of this contention, we demonstrate evidence of

endogenous activation of the peripheral blood compartment
by the IFN system in CHC. Significantly higher levels of MxA have
been described previously,29 and here we additionally show that
expression of IFNLR1, IFNLR1-mem and IFNLR1-sol are also elevated in
infected patients compared with healthy controls. Interestingly, we
did not observe higher expression levels for IFNL3 mRNA in HCV-
infected subjects, compared with controls. IFNL3 production is
produced by rare immune cell subsets, including BDCA3 dendritic
cells and plasmacytoid dendritic cells, as we and others have
previously demonstrated.13,30 It is therefore possible that differences
in production of IFNL3 between healthy controls and CHC subjects
may be only detectable by analysing these immune cell subsets.
In relation to IFNL3 genotype, we observed higher ISG expression

in the peripheral blood of patients with the responder genotype,
using MxA as the candidate ISG. Patients with the IFNL3 responder
genotype have been shown to express more IFNL3, yet demonstrate
lower hepatic ISG expression compared with non-responders at
baseline.31–33 Taken together, these data suggest that IFNL3 may act
predominantly on immune cells to facilitate HCV clearance in these
individuals.
Since the publication of genome-wide association studies in 2009

identifying SNPs in the vicinity of IFNL3 associated with response
to treatment in CHC, there has been an intense research effort
to determine the molecular basis for the genotype effect. A number
of significant advances have been reported, including replicated
associations of the favourable IFNL3 genotype with lower hepatic ISG
expression,31–33 increased hepatic necroinflammation,34–37 higher
baseline viral load4,38,39 and increased rates of rapid virological
response/early virological response.40–43 However, the basis for these
associations remains largely conjectural. An altered host immune
state linked to the IFNL3 polymorphism may result in a Th1/NK-
dominant response to HCV infection. Although Th1/NK cytokines
favour viral clearance, they are likely to also have a role in mediating
hepatocellular damage, if clearance is not achieved. Among the
Th1/NK cytokines interleukin-2, IFN-γ and tumour necrosis factor-α
have been shown to mediate tissue injury,17 whereas high levels have
been associated with lymphopenia, particularly T-cell lymphopenia.27

Those with the responder genotype have fewer effectors T cells,
fewer NK CD56 bright than dim and lower monocyte counts, which
may be due to increased trafficking or redistribution of these cells to
the liver and secondary lymphoid tissues, resulting in increased
priming and activation of adaptive immune cells. Following treatment
with exogenous IFNA, the milieu in IFNL3 responder genotype
individuals renders them primed for viral clearance. This is particularly
the case as IFNL3 has the ability to modulate Tregs and enhance the
adaptive cellular response through induction of Th1-biased
responses.44

Our study has several limitations, including the small number
of patients with detailed kinetic and transcription factor analysis.
Further, the observed genotype associations with transcription
factor ratios may be driven by immune cells other than those from
which their expression was expected. The Th subset (Th1, Th2,
Treg and Th17) and NK findings should ultimately be confirmed
with cytokine and flow cytometric analysis of peripheral blood.
Ideally, but perhaps unrealistically, paired liver biopsies would be
required to validate our hypothesis of altered cell trafficking to
the liver in IFNL3 genotypes, but the recent report by Honda
et al.45 suggests that this is indeed the case. Interestingly, a recent
genome-wide association study subanalysis from the Individua-
lized Dosing Eficacy vs. Flat Dosing to Assess Optimal Pegylated
Interferon Therapy (IDEAL) study,41 performed to detect SNPs
associated with cytopenias during treatment, failed to detect any
association with IFNL3 genotypes.46 There is some evidence that

this cohort had less advanced liver disease compared with our
patients, including milder fibrosis, higher platelet counts and
younger age (summarised in Supplementary Table 2). In addition,
there were a number of exclusion criteria in the IDEAL study
(including low pre-treatment ANC, platelet and haemoglobin),
which did not apply to our patient population, and it is known
that lower WBCs and anaemia tend to develop later in the disease
course.28 Thus, the IFNL3 genotype effect we observed may be
cohort-dependent and requires replication.
In summary, we observed an altered pre-treatment immune

state in the peripheral blood of patients with genotype 1 CHC,
with reduced numbers of WBC, ANC, ALC and ANC and a Th1/NK
bias in the IFNL3 responder genotypes. Compared with controls,
CHC subjects demonstrated evidence of endogenous IFN activa-
tion with higher expression levels of MxA, IFNLR1, IFNLR1-mem
and IFNLR1-sol, but not IFNL3. These novel and highly significant
associations with IFNL3 genotype strengthen support for an
immune cell-mediated foundation for the molecular basis of this
genotype effect.

MATERIALS AND METHODS
Study cohort
The three study cohorts consisted of Caucasian subjects with genotype 1
HCV infection (summarised in Figure 5). Briefly, baseline haematological
data were collected on an initial cohort of 400 subjects (Cohort 1). HCV
viral load measurements were also available for 171 of these subjects.
From Cohort 1, 67 subjects (Cohort 2) were studied with a flow cytometric
panel. Expression of a panel of genes was undertaken for 24 of these
subjects (Cohort 3) using PAXgene Blood RNA tubes (Qiagen, Valencia, CA,
USA). In addition, PAXgene Blood RNA tubes were collected from 22 age-
matched healthy Caucasian controls for comparison.

Ethics statement
Ethical approval was obtained from the Human Research Ethics Committees
of the Sydney West Area Health Service and the University of Sydney.
All subjects gave written informed consent (HREC2002/12/4.9(1564)).

Flow cytometry
Venous blood was collected in EDTA and peripheral blood mononuclear
cells isolated on Ficoll-Paque Plus (VWR International, Brisbane, QLD,
Australia), washed in phosphate-buffered saline and cryopreserved in
RPMI-1640 medium (Life Technologies, Carlsbad, CA, USA) containing 2 mM

glutamine, 10% heat-inactivated foetal bovine serum (Fisher Biotec,
Wembley, WA, Australia), 10% dimethyl sulphoxide and 50 U ml− 1

penicillin and 50 μg ml− 1 streptomycin. Peripheral blood mononuclear
cells were thawed, washed in RPMI with 2% foetal bovine serum and
incubated for 30 min in RPMI with 2% foetal bovine serum, 10 mM HEPES,
1 mM magnesium chloride and 100 U ml− 1 DNase I (Roche, Sydney, NSW,
Australia). Antibodies used were: mAb to CD19-BV421 (HIB19), CD3-PE
(UCHT1) and CD4-BV570 (RPA-T4) from BioLegend (San Diego, CA, USA);
CD14-PerCP (MϕP9), CD56-PECy-7 (NCAM16.2), CD8-BV650 (RPA-T8),
CD45RO-APC-H7 (UCHL1), T-Bet-Alexa Fluor 647 (4B10) and corresponding
isotype control (IgG1) from BD Biosciences (San Jose, CA, USA); Eomes-FITC
(WD1928) and corresponding isotype control (IgG1) from ebioscience

Figure 5. Summary of the three cohorts included in this study.
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(San Diego, CA, USA). Cells were blocked with mouse IgG (33 μg ml− 1; Life
Technologies) and stained for all extracellular antigens except CD14 in
Brilliant Stain Buffer (BD Horizon, San Jose, CA, USA). Cells were fixed,
permeabilised, blocked in mouse serum and stained for Eomes and T-bet (or
corresponding isotype controls) and CD14 using the Foxp3 Staining Buffer
Set (ebioscience) according to the manufacturer’s instructions. Cells
were analysed on a Fortessa (BD Biosciences) using the FlowJo software
(Tree star Inc., Ashland, OR, USA).

IFNL3 genotyping and gene expression by qPCR
All healthy controls and HCV-infected subjects (summarised in Table 1)
were genotyped for the rs8099917 and rs12979860 SNPs by methods
reported previously.13,47

Total RNA was extracted from whole blood in PAXgene tubes using the
PAXgene Blood RNA Kit (Qiagen, Hilden, Germany). The RNeasy Kit (Qiagen,
Valencia, CA, USA) was used for immune cell pellets. cDNA was prepared
using Superscript III, RNaseOUT, OligodT12–18 primer and random primers
(Life Technologies) in a Mastercycler gradient 5331 (Eppendorf AG, Hamburg,
Germany). Reverse transcription was performed at 50 °C for 45 min.
Gene expression was measured by quantitative PCR (qPCR) using

custom-designed primers (Sigma-Aldrich, St Louis, MO, USA) specific for
IFNL3 (forward: 5′-CCCAAAAAAGGAGTCCCCTG-3′ and reverse: 5′-GGTT
GCATGACTGGCGGA-3′). Specificity for IFNL3 was confirmed by sequencing
of the PCR pro(methods published previously13). In addition, primers for
IFNLR1 were designed (forward: 5′-CTAAGCCCACCTGCTTCTTG-3′; reverse:
5′-GTCAGTTCCTTTTGGGGACA-3′). These primers detected both splice
forms of IFNLR1: the membrane-associated and soluble forms. Primers
for the membrane-associated (INLR1-mem, forward: 5′-CTAAGCCCAC
CTGCTTCTTG-3′; reverse: 5′-TGTCCCCAAAAGGAACTGAC-3′) and soluble
receptor (INLR1-sol, forward: 5′-CTAAGCCCACCTGCTTCTTG-3′; reverse:
5′-TGTCCCCAAAAGGAACTGAC-3′) were also designed.13 MxA (forward:
5′-GCCGGCTGTGGATATGCTA-3′; reverse: 5′-TTTATCGAAACATCTGTGAAA
GCAA-3′) was selected as the candidate ISG given published associations
with HCV treatment outcomes.48 GAPDH primers (forward: 5′-TC
CACCACCCTGTTGCTGTA-3′; reverse: 5′-ACCACAGTCCAGCCATCAC-3′) were
used as the housekeeping gene. Amplification was measured using Power
SYBR Green PCR Master Mix (Life Technologies). Gel electrophoresis was
used to confirm the absence of gDNA products from the PCR reactions.
Expression was measured using CT values, normalised to that of GAPDH
(ΔCT = CT (GAPDH)−CT (target) and then expressed as 2 -ΔCT . CT values
were o30, and all amplifications were carried out in duplicate.
Transcription factor expression was assessed using Taqman Gene
Expression assays from Applied Biosystems (Carlsbad, CA, USA).

Statistics
Baseline and 4-week data for various demographic, haematological,
biochemical and virological characteristics are expressed as mean± s.d.
The difference between IFNL3 genotypes was assessed by χ2 test or t-test
where appropriate. qPCR data were transformed for normality (log(Y×106).
Pearson's R coefficient was used to determine the correlation between
samples. Transcription factor expression levels across the samples were
ranked, and the ratio of the ranks was compared. A two-sided P-value
o0.05 was considered significant.
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