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Abstract

We present CoPhosK to predict kinase-substrate associations for phosphopeptide sub-

strates detected by mass spectrometry (MS). The tool utilizes a Naïve Bayes framework

with priors of known kinase-substrate associations (KSAs) to generate its predictions.

Through the mining of MS data for the collective dynamic signatures of the kinases’ sub-

strates revealed by correlation analysis of phosphopeptide intensity data, the tool infers

KSAs in the data for the considerable body of substrates lacking such annotations. We

benchmarked the tool against existing approaches for predicting KSAs that rely on static

information (e.g. sequences, structures and interactions) using publically available MS data,

including breast, colon, and ovarian cancer models. The benchmarking reveals that co-

phosphorylation analysis can significantly improve prediction performance when static infor-

mation is available (about 35% of sites) while providing reliable predictions for the remain-

der, thus tripling the KSAs available from the experimental MS data providing to a

comprehensive and reliable characterization of the landscape of kinase-substrate interac-

tions well beyond current limitations.

Author summary

Kinases play an important role in cellular regulation and have emerged as an important

class of drug targets for many diseases, particularly cancers. Comprehensive identification

of the links between kinases and their substrates enhances our ability to understand the

underlying mechanism of diseases and signalling networks to drive drug discovery. Most

of the current computational methods for prediction of kinase-substrate associations use

static information such as sequence motifs and physical interactions to generate predic-

tions. However, phosphorylation is a dynamic process and these static predictions may

overlook unique features of cellular context, where kinases may be rewired. In this
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manuscript, we propose a computational method, CoPhosK, which uses the mass spec-

trometry based phosphoproteomics data to predict the kinase for all identified phospho-

sites in the experiment. We show that our approach complements and extends existing

approaches.

This is a PLOS Computational BiologyMethods paper.

Introduction

Protein phosphorylation (PP) is a post-translational modification that is central to cellular sig-

nalling where networks composed of kinases, phosphatases, and their substrates regulate the

sites and levels of phosphorylation at the molecular level. MS-based approaches based on phos-

phopeptide enrichment can report the identity and intensity of thousands of protein phos-

phorylation sites in the context of their phosphopeptides [1–4] and these data have populated

several public databases of phosphosites (e.g. phospho.ELM [5] and PhosphoSitePlus [6]) with

over 500,000 sites already identified in humans. Despite this success in identifying cellular

kinase substrates, the identity of the kinase responsible for specific phosphorylation events is

not annotated in the above databases for>90% of the cases. For this reason, effective bioinfor-

matics tools to predict KSAs have been essential to filling the gap between phosphosite identifi-

cation and kinase annotation.

Previous KSA prediction methods have focused mainly on the consensus sequence motifs

recognized by the active sites of kinases [7–11]. The modest specificity of these methods led

researchers to integrate other contextual information such as protein structure and physical

interactions between proteins [12,13]. Addition of these cues to the analysis has enhanced the

accuracy of prediction methods [14]. The latest improvements have reduced hub bias in the

predictions [15] and are promulgated in the software KinomeXplorer (Fig 1). Weaknesses of

these approaches include: 1) the network predictions are static and 2) incomplete information

on protein structure and protein interactions permit predictions of KSAs for only 30–40% of

the sites observed in MS experiments. As cellular signalling is a highly dynamic and transient

process, the incorporation of specific experimental information on the dynamics of phosphor-

ylation (e.g. the changes in phosphosite occupancy and intensity across selected biological

states) into KSA predictions could provide a key to permitting “global” scale predictions.

The payoff is that identifying the correct kinase-substrate relationships can inform kinase

inhibition strategies for combating multiple cancer related phenotypes [16–18]. As of early

2018, over 40 kinase inhibitors have received US FDA approval for the treatment of various

diseases, most of them related to cancer [19]. Overall, a detailed understanding of phosphory-

lation networks is critical for kinase drug discovery and understanding the basic biology of sig-

nalling. To address this challenge, we present CophosK, an algorithmic pipeline that extracts

co-phosphorylation patterns from MS data to provide global predictions of KSAs (Fig 1). Our

results show that pairs of phosphosites that are substrates of the same kinase are significantly

more likely to be co-phosphorylated (i.e., exhibit correlated phosphorylation levels across dif-

ferent biological states and/or over time), as compared to other pairs of phosphosites. Moti-

vated by this observation, our algorithm for predicting kinase-substrates associations is based

on the following principle: If a pair of phosphosites exhibit similar phosphorylation patterns

through different biological states, and if we know that a specific kinase acts on one of these
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phosphosites, it is likely that the kinase acts on the other phosphosite as well. Based on this

principle, we develop a Bayesian framework that utilizes multiple co-phosphorylation relation-

ships of a phosphosite to score and rank kinases for that phosphosite.

Results

MS based phosphorylation data to probe biological states for co-

phosphorylation detection

To develop and validate our method, we initially analysed the following two datasets:

(I) Breast Cancer (BC) Patient-Derived Xenograft (PDX) tissues: Huang et al. used the proteo-

mic method called isobaric tags for relative and absolute quantification (iTRAQ) to iden-

tify 56874 phosphosites in 24 breast cancer PDX models [20]. In this study, we removed

phosphosites with missing intensity values in any sample. This resulted in intensity data

for 15780 phosphosites from 4539 proteins, where 13840 serines, 2280 threonines and 67

tyrosines are phosphorylated. As suggested by Huang et al, the reference sample used to

compute fold change is comprised of a standard sample from 16 out of 24 tumours with

equal amounts from each tumour.

(II) Ovarian Cancer (OC) tumors: The Clinical Proteomic Tumor Analysis Consortium con-

ducted an extensive MS based phosphoproteomic of ovarian HGSC tumors characterized

by The Cancer Genome Atlas [21]. They have reported 24429 phosphosites from 6769

phosphoproteins in 69 tumors. We filtered out the phosphosites with missing data and

also selected a subset of tumors to maximize the number of phosphosites. This resulted in

a total of 5017 phosphosites from 2425 proteins in 12 tumor samples where 4258 serines,

Fig 1. The overview of CophosK and CophosK+. After identification of phosphorylated sites, KinomeXplorer utilizes sequence match scoring and network proximity

of kinases and substrates to predict KSAs. CophosK constructs the co-phosphorylation network in order to infer KSAs. CophosK+ combines all the scores to provide

more accurate KSA predictions. PhosphoSitePlus annotates ~6% of the identified phosphosites by their associated kinases. KinomeXplorer improves the coverage of

annotations to 35% and can improve accuracy of predictions in the context of co-phosphorylation information (CoPhosK+). On the other hand, CophosK alone is able

to annotate 100% of the identified phosphosites in the experiment.

https://doi.org/10.1371/journal.pcbi.1006678.g001
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657 threonines and 102 tyrosines are phosphorylated.

We applied the proposed method to predict KSAs for the above data and assessed the per-

formance of the methods in four additional independent datasets:

(III) BC PDX: The NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) conducted

an extensive MS based phosphoproteomics analysis of TCGA breast cancer samples [22].

After selecting the subset of samples to have the highest coverage and filtering the phos-

phosites with missing intensity values in those tumors, the remaining data contained

intensity values for 11018 phosphosites mapping to 8304 phosphoproteins in 20 tumor

samples.

(IV) Breast Cancer (BC) PDX and Ovarian Cancer (OC) PDX: This dataset was generated to

analyse the effect of delayed cold Ischemia on the stability of phosphoproteins in tumor

samples using quantitative LC-MS/MS. The phosphorylation level of the tumor samples

was measured across 3 time points [23]. After phosphosites with missing intensity values

were filtered out, the dataset included 4802 phosphosites corresponding to 2230 phos-

phoproteins in 12 ovarian tumor samples and 8150 phosphosites mapping to 3025 phos-

phosproteins in 18 breast cancer xenografts.

(V) Colorectal cancer (CC): Abe et al. performed immobilized metal-ion affinity chromatogra-

phy-based phosphoproteomics and highly sensitive pY proteomic analyses to obtain data

from 4 different colorectal cancer cell lines [24]. The dataset included 5382 phosphosites

with intensity values cross 12 different conditions. These phosphosites mapped to 2230

phosphoproteins.

Evidence for statistically significant co-phosphorylation distributions

We used the data above to address two initial questions related to the appropriate development

of our phosphorylation analysis method. First, we considered the type of correlation analysis

approach appropriate for these data and second; we considered the effect of experimental

design (e.g. number of independent samples). For the latter, we intuited that a larger number

of samples should provide greater opportunity to sample a wider range of phosphorylation

states based on sampling a wider range of biological variations. For the analysis, we define the

vector containing the phosphorylation levels of a phosphosite across a number of biological

states as the phosphorylation profile of a phosphosite for which co-phosphorylation will be eval-

uated using fold-change values (vs. the reference sample) as the entries in this vector. For

assessing the correlations of these vectors across the data matrix, we compared the suitability

of various mathematical methods from the literature. For example, for gene co-expression,

Pearson’s correlation is the most popular correlation measure used to capture linear relations

between the expression profiles of genes [25], while mutual information is commonly utilized

to describe non-linear relationships [26]. Song et al. proposed biweight-midcorrelation as an

alternative, and showed that it outperforms mutual information in terms elucidating pairwise

relationships between genes; it is also more robust than Pearson correlation with respect to

outliers [27]. Therefore, we chose biweight-midcorrelation as the primary method to assess the

correlation between the phosphorylation profiles of phosphosites.

As a second consideration, we reasoned that the number of biological states (i.e., the num-

ber of dimensions in the phosphorylation profiles of phosphosites, which is equal to the num-

ber of independent samples/tumors in our datasets) may have a significant effect on the

interpretation and reliability of our co-phosphorylation analysis, thus we investigated the effect

of number of states on the distribution of co-phosphorylation across all pairs of phosphosites.

CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation
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Using the 24 breast cancer PDX samples for testing, we randomly selected 3, 6 and 12 samples

and analysed the co-phosphorylation distribution for phosphorylation profiles composed of

these randomly selected samples. Then, we randomized the phosphoproteomics data (see

below) and compared the distribution of co-phosphorylation among phosphosites in the origi-

nal data against the randomized data (S1 Fig). We observed that for both the original data and

randomized data, co-phosphorylation is normally distributed with a mean around zero when

three or more independent biological states are analysed, and the standard deviation of this

distribution goes down with increasing number of samples (i.e., the correlation between phos-

phorylation profiles tends to be higher when the number of dimensions is lower). However, as

the number of biological states in the study increases, the co-phosphorylation distribution

among pairs of phosphosites becomes statistically significant and more easily distinguishable

from random data (solid vs. dashed lines in S1 Fig). As seen in S1B Fig, the curve is steeply

sloping below 5-dimensions and flattens out considerably above 10 dimensions. To provide

further guidance for benchmarking the method, we carried out simulations using synthetic

data. For this purpose, we generated thousands of random vectors (using normal distributions)

by varying number of dimensions and plotted the distribution of correlation among pairs of

vectors (S2 Fig). Based on this analysis, at least five biological states (or dimensions) are recom-

mended for capturing statistically significant associations. As our datasets had 12- and 24

dimensions, this analysis indicates they were suitable for further analysis. We also show that

selection of different samples with fixed number of dimensions do not have a significant effect

on co-phosphorylation distribution (S3 Fig).

We compared the distribution of co-phosphorylation for both ovarian (12-dimensions)

and breast cancer (24-dimensions) datasets against three different null models to assess the sta-

tistical significance of co-phosphorylation for pairs of phosphosites that were detected in these

experiments. These null models are constructed via (i) random permutation of the phosphory-

lation intensities of phosphosites within each sample (biological state), (ii) random permuta-

tion of phosphorylation intensities representing the phosphorylation profiles across biological

states for each phosphosite, and (iii) random permutation of all intensity values in the phos-

phosite-biological state matrix. The results of this analysis for the breast cancer cell line dataset

are presented in Fig 2. The distribution of co-phosphorylation among pairs of phosphosites in

the original dataset is significantly different as compared to the distribution of co-phosphory-

lation among pairs of phosphosites in all permuted datasets (Kolmogorov-Smirnov (KS) test

p-value << 0.01). Namely, the distribution of co-phosphorylation is wider in the original data

as compared to any of the three null models; e.g. there are more phosphosite pairs with high

positive or negative correlation than would be expected based on random choice.

The distribution of co-phosphorylation for ovarian cancer samples is shown in Supplemen-

tary S4 Fig; a similar pattern is observed for these data. The statistically significant co-phos-

phorylation suggests that the correlations may have underlying biological drivers. The same

result using Pearson correlation also reported in S5–S7 Figs.

As Li et al showed that phosphorylated sites that are modified together tend to participate

in similar biological process [28], we hypothesized that phosphosite pairs exhibiting positive

correlation of co-phosphorylation may be substrates of the same kinase (e.g. shared-kinase
pairs). We thus compared the co-phosphorylation distributions (actually sub-distributions) for

substrates from the same kinase, as annotated by gold standards, to the original distribution.

Using KSAs from PhosphoSitePlus (PSP) for each of the 347 reported kinases, we quantified

the co-phosphorylation of all pairs of phosphosites that are listed as that kinase’s substrates

(37234 and 8235 shared-kinase pairs in breast cancer and ovarian cancer data, respectively).

The distribution of co-phosphorylation of shared-kinase pairs as compared to all other phos-

phosite pairs is shown in Fig 3. As seen in the figure, these two distributions are significantly
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Fig 3. Distribution of co-phosphorylation between phosphosites that are substrates of the same kinase. (a) For each of

347 reported kinases, we compute the co-phosphorylation of all pairs of phosphosites that are reported to be common

substrates of that kinase in PhosphositePLUS (shared-kinase pairs). In panels (b), (c), the green histogram shows the

distribution of co-phosporylation for all shared-kinase pairs and the blue histogram shows the distribution of co-

phosphorylation for all pairs of phosphosites in the dataset. (b) Breast Cancer PDX dataset (37234 shared kinase pairs; μ =

0.05,σ = 0.23,kutosis = 2.85, skewness = 0.10), (c) Ovarian Cancer tumors (8235 shared kinase pairs; μ = 0.11,σ = 0.32,

kutosis = 2.54, skewness = -0.10). For both datasets, the distribution for shared-kinase pairs is significantly wider and

shifted to the right as compared to the distribution for all phosphosite pairs (KS-test p-value<< 1E-9).

https://doi.org/10.1371/journal.pcbi.1006678.g003

Fig 2. Distribution of co-phosphorylation among pairs of phosphosites on breast cancer PDX. The blue histogram shows the distribution

of co-phosphorylation (the correlation between the phosphorylation levels) of all pairs of phosphosites in breast cancer PDX (μ = 0.01,σ =

0.22). (a) Illustration of the three different permutations tests that were used to assess the significance of this distribution. The pink histogram

in each panel shows the distribution of co-phosphorylation of all pairs of phosphosites in 100 permutation representing (b) randomization of

all entries in the phosphorylation matrix (μ = 0.008,σ = 0.20), (c) permutation of all entries across phosphosites for each state (μ = 0.01,σ =

0.20), and (d) permutation of all entries across states within each phosphosite (μ = 0.01,σ = 0.20). The distribution of co-phosphorylation in

the original dataset is significantly broader as compared to the distribution of co-phosphorylation in all permutations (Kolmogorov-Smirnov

(KS) test p-value<< 1E-9).

https://doi.org/10.1371/journal.pcbi.1006678.g002

CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006678 February 27, 2019 6 / 19

https://doi.org/10.1371/journal.pcbi.1006678.g003
https://doi.org/10.1371/journal.pcbi.1006678.g002
https://doi.org/10.1371/journal.pcbi.1006678


different and the co-phosphorylation distribution of shared-kinase pairs is shifted to the right

(Kolmogorov-Smirnov test p-value respective < 7.36E-103, 1.1E-6 for breast cancer PDX and

ovarian cancer, respectively). In other words, substrates that share a kinase are more likely to

be positively co-phosphorylated compared to all pairs of phosphosites.

Although this positive correlation of substrate pairs can be potentially explained by shared

kinase annotation, the data also contains negative correlations of phosphosite pairs (Fig 3) that

point to more complex regulatory relationships. One reason for this observation could be that

for some phosphosites, although multiple kinases have been reported in PhosphoSitePlus the

annotation does not provide context-specific information, e.g., the kinases might not be active

at the same time. The negative co-phosphorylation also might reflect the relationship between

substrates and their associated phosphatases since they are expected to follow the opposite pat-

tern in phosphorylation.

Using co-phosphorylation for kinase-substrate association prediction

Motivated by our observation that substrates of the same kinase are more likely to be positively

co-phosphorylated (Fig 3), we developed a co-phosphorylation based prediction method,

CophosK, that constructs a co-phosphorylation network (Fig 4) and uses a Naïve Bayes frame-

work on this network to predict KSAs. The idea behind the approach is that the likelihood of

the association of a phosphosite with a given kinase is proportional to the fraction of its neigh-

bours in the co-phosphorylation network that are associated with the kinase. This method

directly incorporates the dynamics of phosphorylation into KSA prediction methods. Further-

more, since the co-phosphorylation network is context-specific, this method can potentially

point to variations in KSAs that are context dependent while providing a prediction for all the

substrates in the data. Thus, we are able to score nearly 15,000 KSAs for 101 kinases in breast

cancer data and nearly 5,000 KSAs for 75 kinases in the ovarian cancer data. On the other

hand, as static information provided by tools like NetworKIN and KinomeXplorer and

dynamic information provided by CophosK may be complementary, we also developed

CophosK+. This software is designed to take three main elements into consideration to predict

KSAs: Sequence motifs associated with targets of kinases, the network proximity of kinases

and substrates in the protein association network, and co- phosphorylation of substrates of

Fig 4. Workflow of CophosK for using co-phosphorylation to predict kinase-substrate associations (KSAs). The method takes as input available information on

KSAs and phosphorylation data representing the phosphorylation levels of thousands of phosphosites across multiple biological states. The co-phosphorylation of all

pairs of phosphosites is assessed and a co-phosphorylation network is constructed in which phosphosites represent nodes and the weight of the edges is the correlation

between phosphosites. CophosK then uses a Naïve Bayes classifier that integrates the interactions in this network with partial information on kinase-substrate

interactions to predict new kinase substrate interaction.

https://doi.org/10.1371/journal.pcbi.1006678.g004
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kinases (Fig 1). In this case the number of KSA predictions is limited to those that can be pre-

dicted by KinomeXplorer.

Static and dynamic data provide orthogonal KSA predictions

To test the effectiveness of CoPhosK and CophosK+ in making KSA predictions, we use leave-

one-out cross validation using the list of KSAs reported in PhosphoSitePlus. Namely, for each

phosphosite, we hide the association between the phosphosite and its known kinase (called the

target kinase) and we use other reported KSAs to rank the likely kinases for that phosphosite.

To enhance the reliability of the predictions, we only consider kinases that have at least two

reported substrates in the database. For each phosphosite in the dataset, we rank all kinases

based on the scores computed by CophosK, CoPhosK+ and KinomeXplorer and determine the

rank of the target kinase.

Fig 5(A) shows the rankings provided by KinomeXplorer (on the y-axis) and the rankings

provided by CophosK (on the x-axis) for 313 kinase-substrate association predictions for the

ovarian cancer data and 740 kinase-substrate association predictions for the breast cancer

PDX data. In the figure, a point that is closer to the origin indicates higher ranking. Fig 5B

shows the data in box plot format, this visualization indicates that the distribution of results is

overall similar. If the two methods were consistently correct in their predictions, we would see

a cluster of points only around the origin. In fact aside the dense cluster around the origin,

many predictions are “close to the axes”, indicating a high rank from one approach and a low

rank from the competing method. This suggests that these two methods contribute different

information, therefore integrating the prediction of these two methods might (or might not)

improve the predictions. Fig 5(B) shows the box plot distributions of target kinase rankings for

the breast cancer PDX and ovarian cancer data.

To investigate whether CophosK+ can exploit any potential synergy between dynamic co-

phosphorylation and static predictions, we investigated the performance of CophosK+ using

the leave-one-out cross validation method described above. Fig 6 shows the overall perfor-

mance of CophosK, CophosK+, KinomeXplorer, and PUEL, an alternative analysis approach

[29], when analysed with respect to the six cancer datasets (the residue-specific performance is

Fig 5. The correspondence between the predictions of CophosK vs. KinomeXplorer in ranking kinases for each phosphosite. For all kinase-substrate associations

reported in PhosphoSitePlus for which we can detect a substrate in the LC/MS data, we perform leave-one-out cross validation by hiding the association between the

phosphosite and kinase and using CophosK to utilize other kinase-substrate associations and co-phosphorylation to rank the likely kinases for the phosphosite. (a)

shows the comparison of the rankings provided by CoPhosK (x-axis) against the rankings provided by KinomeXplorer (y-axis) for breast cancer PDX data (740

predictions) and ovarian cancer (313 predictions). In (b), the box plot distribution of the rank of the target kinase according to the prediction of two methods are

presented.

https://doi.org/10.1371/journal.pcbi.1006678.g005
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reported in S8 Fig). In the figure, we report the fraction of phosphosites for which the target

kinase is ranked in top 1 and top 5 by each scoring method. As seen in the figure, CophosK

and KinomeXplorer deliver similar prediction performance. Since PUEL’s predictions are

considerably less accurate on breast cancer (I) and ovarian cancer (II) datasets, we did not run

it on other datasets. However, CophosK+, our algorithm that comprehensively integrates co-

phosphorylation, sequence motifs, and protein interactions, improves the accuracy of KSA

predictions over all approaches.

CophosK provides global predictions of KSAs

Next, we investigate the coverage of the phosphoproteome provided by the proposed KSA pre-

diction methods. The number of phosphosites annotated by each method (i.e., the number of

phosphosites for which the method was able to make a prediction) is shown in S9 Fig. In the

ovarian cancer and breast cancer datasets, respectively 5017 and 15780 phosphosites are identi-

fied. Among these, approximately 6% have reported kinase substrate associations in Phospho-

SitePlus. If we use KinomeXplorer, we can predict the associated kinase for 47% and 35% of

identified phosphosites in ovarian cancer and breast cancer study, respectively.

Since we can compute the co-phosphorylation among all the identified phosphosites in

these studies, CoPhosK can predict the associated kinase for all of the phosphosites identified

in these studies, providing annotations for 12,000 phosphosites that had no kinase annotation

previously available. A downside of these predictions is that their current estimated accuracy is

just over 50%, if we consider ranking in the top five a true positive (Fig 6). To this end,

Fig 6. Performance of CophosK, KinomeXplorer and CophosK+ in predicting kinases for phosphosites. For each dataset, we consider all

phosphosites that are identified in the dataset and/or reported in PhosphoSitePlus. For each phosphosite, we perform leave-one-out cross

validation by hiding the association between the phosphosite and one of its associated kinases (target kinase) to rank the likely kinases for the

phosphosite using PUEL, CophosK, KinomeXplorer, and CophosK+. We report the fraction of phosphosites for which the target kinase is

ranked in the top 1 and top 5 predicted kinases by each method (as indicated by different colors in the bar plot). Each panel shows the

performance of the methods on (a) breast cancer PDX data(I), (b) ovarian cancer(II), (c) breast cancer(III), (d) breast cancer(IV), (e) ovarian

cancer(V), and colorectal cancer(VI) datasets.

https://doi.org/10.1371/journal.pcbi.1006678.g006
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CophosK+ and CoPhosK together capture the trade-off between adding new annotations and

improving existing annotations. Using CophosK+ the annotations of phosphosites with exist-

ing “static” annotations can be enhanced. Using CoPhosK, on the other hand, new annotations

can be also developed for previously uncharacterized phosphoproteins. Thus, the methods cre-

ate a set of medium confidence predictions for all the phosphosites and high confidence pre-

dictions (65%) for the better annotated subset. The kinases predicted for all phosphosites by

CophosK and CophosK+ are available at compbio.case.edu/cophosk. Any phosphoproteomics

data and pre-defined KSAs data can be used for predictions. For example, the results obtained

by the application of the proposed methods using phospho.ELM (an alternative phosphosite

database) is reported in S10 Fig.

The runtime of CophosK depends on the number of kinases that should be scored for each

phosphosite. We assess the runtime of CophosK using a workstation with an AMD Opteron

CPU with a 1.9 GHz processor with 64G RAM. For ovarian cancer data, it takes approximately

1 hour and 20 minutes to score 75 kinases for 5017 phosphosites. For breast cancer data,

CophosK scores 101 kinases for 15780 phosphosites in approximately 18 hours. Please note

that the reporting time is for a single thread process. Since the scoring procedure of each

kinase and substrate is independent of each other, this process is highly parallelizable and can

be optimized.

CophosK+ provides reproducible predictions

To investigate whether the KSA predictions provided by CoPhosK+ are reproducible, we com-

pared the prediction results from datasets I and II with the other two independent public MS-

based phosphoproteomics datasets from human ovarian tumors and breast cancer xenograft

tissue (IV and V). 543 phosphosites appear in both ovarian cancer datasets. 373 out of 543

phosphosites have a predicted kinase in KinomeXplorer and consequently in CophosK+. We

have run CophosK+ on these new datasets and crosschecked the KSA predictions. Our results

showed that the top predicted kinase of 155 phosphosites in this new ovarian cancer data is

identical to the predicted kinase in the previous ovarian cancer data (i.e. 155/373 = 41% repro-

ducibility rate for the top-ranked prediction). Moreover, the top-ranked kinase for 349 of the

373 phosphosites in the previous ovarian cancer dataset are ranked in the top 5 predicted

kinases in this new dataset (i.e. 349/373 = 93% reproducibility rate for top-1 vs. top-5). There

were 1899 common phosphosites between the two breast cancer datasets. CophosK+ has

kinase predictions for 1079 out of 1899 phosphosites. Our result showed that, for these data-

sets, there are 22% and 40% reproducibility in top 1 and top 5 predicted KSAs, respectively.

Enhancing KSA prediction by combining datasets

In Fig 7(A), we examine the overlap of CophosK+ based KSA predictions in the two biological

contexts we consider (breast cancer and ovarian cancer). For this analysis, considering the top-

ranked kinase as the prediction of CoPhosK+, we cluster the predictions by CophosK+ into three

categories: 1. Predictions of CophosK+ that are consistent with those reported in PhosphoSitePlus.

These include 402 predictions with 80 in common between breast and ovarian cancer datasets. 2.

Prediction of CophosK+ is different from the kinase reported in PhosphoSitePlus. These include

393 predictions, with 29 in common. 3. No kinase annotation is available for that phosphosite in

PhosphoSitePlus. These include 6425 phosphosites that are newly annotated with respect to a pre-

dicted KSA in this CophosK+ analysis, with 678 in common. Note that the predictions in the sec-

ond category do not necessarily represent false positives, since a phosphosite can be targeted by

multiple kinases and the annotations provided by PhosphoSitePlus are limited. The top-ranked

kinase according to CophosK+ is identical for 109 phosphosites in categories 1 and 2. Among
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these, the kinase that is reported in PhosphoSitePlus is identical to that reported by CophosK+ for

80 phosphosites. If we define precision as the number of target kinases that are ranked first (cate-

gory 1) divided by the total number phosphosites with a known target kinases in PhosphoSitePlus

(union of category 1 and category 2), we can expect that (at least) 73% of top predictions which

are identical between two different datasets will be correct. This improved accuracy also may be

applicable in the context of expanded coverage for the 678 phosphosites that do not have any

annotation in PhosphoSitePlus (category 3).

Motivated by the observation that predictions that are supported by two datasets have

improved accuracy as compared to predictions that are supported by a single dataset, we also

Fig 7. Consistency and reproducibility of kinase-substrate predictions made using different phosphorylation data sets. For each phosphosite in each data set, we

rank the kinases using CophosK+, and then we identify the top ranked kinase based on two different datasets. (a) The Venn diagrams show (1) the number of

phosphosites for which top-ranked kinase agrees with that reported in PhosphoSitePlus (True Positive), (2) the number of phosphosites that have kinases reported in

PhosphoSitePlus but top-ranked kinase does not agree with that reported in PhosphoSitePlus (False Positive), and (3) the number of phosphosites with no kinase

annotation reported in PhosphoSitePlus. The blue circles represent predictions based on ovarian cancer tumor cell lines, pink circles represents predictions based on

breast cancer PDX. For the phosphosites for which at least one kinase is listed in PhosphoSitePlus, the right panel shows the “precision” (True Positive / (True Positive

+ False Positive)) of the top ranked kinase for each individual dataset and the intersection between the two datasets (i.e., the same kinase is ranked top in both datasets).

(b) The number of phosphosites with at least one annotation in PhosphoSitePlus (upper panel) and no annotation in PhosphoSitePlus (lower panel) are shown as a

function of the number of datasets that contain the phosphosite. Among these phosphosites, the number of phosphosites for which the top ranked kinase is identical

across multiple datasets (identical predicted KSAs) is also shown as a function of the number of supporting datasets. For the phosphosites with annotations, the number

of predictions that are consistent with PhosphositePlus annotations are also shown (true identical KSAs).

https://doi.org/10.1371/journal.pcbi.1006678.g007
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investigate the effect of the number of datasets supporting a prediction on the accuracy of

that prediction. To characterize the trade-off between accuracy and coverage in integrating

multiple datasets, we also assessed the number of predictions that are supported by multiple

datasets as a function of the number of datasets. The results of this analysis are tabulated in

Fig 7(B). As seen on the table, if the kinase that is ranked top by CophosK+ is identical across

multiple datasets, it is more likely to be the kinase that is also reported in PSP, as compared

to a candidate KSA that is predicted on only one dataset. Thus, the accuracy is much

improved when multiple phosphoproteomics datasets are available as compared to the accu-

racy of predictions provided by CoPhosK+ on a single dataset. These predictions are also

drastically more accurate than the predictions of KinomeXplorer alone. While CoPhosK

+ can provide predictions for thousands of sites using one or two datasets (e.g., the number

of sites that are shared between two datasets is 2020 and the top-ranked kinase for 1417 of

these 2020 sites are identical for the two datasets; only 122 of these 2020 have an annotation

in PSP and the predicted kinase for 91 of these 122 sites is consistent with the PSP annota-

tion.), there are only a few sites for which the predicted kinase is supported by at least five

datasets. Nevertheless, as seen on the table, CoPhosK+ is able to provide predictions for

more than 100 sites for which the predicted kinase is supported by four datasets (12 of which

have annotations in PSP and 9 of these annotations are consistent with CoPhosK+’s predic-

tions) and more than 400 sites for which the predicted kinase is supported by three datasets

(57 of which have annotations in PSP and 48 of these annotations are consistent with

CoPhosK+’s predictions).

CophosK provides context-specific predictions of co-phosphorylation

networks

As some phosphosites can be phosphorylated by multiple kinases, ascertaining which individ-

ual kinase is activated in different cell or tissues types is challenging to predict and yet crucial

to the drug discovery process. Therefore, an important benefit of integrating MS-based phos-

phoproteomic data into KSA predictions is that these data can capture the context-specificity

of these interactions. Clearly, no other method can consider a similar global biological context

while predicting KSAs, since sequence motifs, structural information, and protein interactions

considered by these methods do not represent a specific biological context, at least with the

current state of cell based information. To investigate how CophosK+ captures context-speci-

ficity of KSAs, we identify common phosphosites between two datasets such that the kinase

ranked as the top kinase by CophosK+ is different for different datasets, but all the kinase

annotations are reported in PhosphoSitePlus (S1 Table). For example, NDRG1, the N-Myc

downstream regulated 1, is known in PhosphoSitePlus to have multiple possible kinases, SGK1
and PRKACA, for which its phosphosite S330 represents a substrate target. However, a previ-

ous study shows that several Akt-inhibitor-sensitive breast cancer cells showed marked

NDRG1 phosphorylation despite the low or undetectable level of SGK1 protein [30]. Co-phos-

phorylation analysis suggests strong correlation between the behaviour of SGK1 substrates and

S330 in the ovarian cancer cell line while PRKACA annotated substrates track S330 more

closely in the breast cancer models (S1 Table). NDRG1 is clearly annotated as having multiple

and wide ranging roles in cellular stress response [31], proliferation and growth arrest [32],

and tumor progression and metastasis [33] and a static prediction for its regulatory circuitry

may not suffice for explaining its diverse roles. Our co-phosphorylation approach provides

clear and testable predictions to uncovering these relationships in the relevant cellular or dis-

ease context. Nevertheless, they must be validated by knocking out the target kinase and assess-

ing the effect on phosphorylation of specific sites of interest.

CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006678 February 27, 2019 12 / 19

https://doi.org/10.1371/journal.pcbi.1006678


Discussion and future work

In this paper, we present an integrative approach for KSA prediction using correlations among

phosphosite intensities from phosphoproteomics data alone or coupled to sequence and pro-

tein interaction data to provide global and accurate predictions of KSAs. Although these

advances are considerable, there is still much work to be done to better understand the power

of co-phosphorylation analysis. For example, our method is limited by the coverage of phos-

phosites identified in LC/MS studies and prior knowledge of KSAs. The former limits the over-

lap between datasets making comparisons difficult while the latter limits the benchmarking of

the approach and the ability to extend predictions more confidently to new phosphosites. As

our understanding of phosphorylation overall improves, the tools will become more valuable

over time. In particular, the functional meaning of negative correlations in the data needs fur-

ther exploration.

Negative co-phosphorylation between a pair of phosphosites might occur for different rea-

sons. One possibility involves sites on the same protein, where the phosphorylation of one site

inhibits the phosphorylation of another site [28,34] thus exhibiting negative (and statistically

significant) co-phosphorylation values. For negative correlations of sites on different proteins

many explanations are possible, and should be considered. First, phosphorylation of a kinase

may activate or inhibit the kinase; in the former case the kinases’ substrates will tend towards

positive co-phosphorylation with that regulatory site on the kinase or negative co-phosphory-

lation when the effect of the phosphorylation is inhibitory [35]. Furthermore, it is expected

that phosphatases regulated by phosphorylation may exhibit negative or positive co-phosphor-

ylation with their substrates depending on whether the phosphorylation is activating or inhibi-

tory towards the phosphatase. More subtle effects are also clearly possible, where a chain of

kinases and phosphatases (essentially a pathway) may activate or deactivate a key regulatory

node at the intersection of other regulatory circuits. Thus, negative or positive correlation “sig-

nals” can be generated across the cell resulting in the complex set of in interactions implied by

this analysis.

In the context of gene co-expression analysis, partial correlation is often utilized to remove

indirect effects of genes on each other, thereby revealing direct interactions [36]. The applica-

tion of partial correlation in the construction of co-phosphorylation networks can also

improve the accuracy of these networks, and thus can improve the accuracy of CoPhosK’s pre-

dictions. The application of partial correlation to the assessment of co-phosphorylation

requires consideration of the relationships between the phosphorylation sites on the same pro-

tein, as well as the relationship between the expression of proteins and the phosphorylation

levels of the sites on these proteins. The promising results presented in this paper, along with

the availability of multi-omic data that includes measurements of protein expression and phos-

phorylation, pave the way for the application of such advanced statistical measures to co-phos-

phorylation analysis as well.

As functional signalling networks rely on many types of post-translational modifications

(PTMs), an integrated correlation analysis framework for multiple PTMs must ultimately be

developed to explain phenotype and may be effective in defining relationships between types

of PTMs. Nevertheless, CophosK provides a strong data-driven approach for prediction of

KSAs and drastically increases the coverage of the phosphosites for which kinase associa-

tions can be predicted. Thus, generation of more high-throughput MS-based phosphopro-

teomics data representing a variety of biological contexts can be used in conjunction with

CophosK to better enable drug discovery and provide a deeper understanding of biological

signalling.
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Methods

Co-phosphorylation

Co-phosphorylation between phosphorylation sites is computed using Biweight midcorrela-

tion. In contrast to other measures of correlation that use the mean to standardize observa-

tions, biweight midcorrelation uses the median. Biweight midcorrelation of two vectors x 2
R1×m and y 2 R1×m is computed as

cxy ¼
Xm

i¼1

x0 iy
0

i ð1Þ

where,

xi
0 ¼
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med(x) represents the median of vector x and mad(x) represents the median absolute deviation

of vector x. I(u) is the indicator function which takes on value 1 if u> 0 and 0 otherwise.

y0i and w
y
i are also computed similarly for vector y.

Model development for kinase prioritization

In order to prioritize the kinases for phosphorylation sites, we apply Bayes’ rule to derive the

score for every pair of kinase-substrate.

Construction of co-phosphorylation network

Let T denote a set of all phosphorylation sites in PhosphoSitePlus and P denote the set of all

phosphorylation sites that are present in the experimental data. We create a complete graph G
in which the nodes represent the phosphosites in P. The weights of each edge are computed as

the co-phosphorylation between the two corresponding phosphosites. Namely, for phospho-

sites p,q 2 P, we denote the co-phosphorylation of p and q as cpq.

Scoring schema (CophosK)

Note that it is possible to compute the co-phosphorylation of two phosphosites only if both

phosphosites are present in the MS data (i.e, both sites are in P). Let A denote the distribution

of co-phosphorylation among all pairs of phosphosites in P (i.e., A is the set of cpq values across

all (p,q) 2 P × P). On the other hand, kinase information is available for the phosphosites that

are in T. We call two phosphosites a shared-kinase pair if the two phosphosites are annotated

as being regulated by the same kinase in PhosphoSitePlus. We denote the distribution of co-

phosphorylation among shared-kinase pairs as S (i.e., S is the set of cpq values across all (p,q) 2

(T \ P) × (T \ P)).

For a kinase k, we define Tk� T as the set of phosphosites that are reported in PhosphoSite-

Plus as the substrates of kinase k. For a pair of phosphosites (p,q) 2 P, Pr(Cpq> cpq|S) is the

probability that the co-phosphorylation of p and q would be higher than cpq given that p and q
share a kinase. On the other hand, Pr(Cpq> cpq|A) represents the probability that the co-phos-

phorylation of p and q would be higher than cpq for any pair of phosphosites. Using the

CoPhosK: A method for comprehensive kinase substrate annotation using co-phosphorylation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006678 February 27, 2019 14 / 19

https://doi.org/10.1371/journal.pcbi.1006678


Bayesian rule, we compute the log-likelihood of the association of phosphosite p with kinase k
using the weights of edges between p and its neighbours that are in Tk:

h k; pð Þ ¼
X

8q2fP\Tkg

log2
PrjCpq > cpqjSÞ
PrjCpq > cpqjAÞ

 !

ð4Þ

For a given phosphosite p 2 P, CoPhosK computes all h(k,p) values (i.e. the log likelihood

of association of kinase k and phosphosite p) for all kinases k and ranks the kinases in decreas-

ing order of h(k,p), where a larger value of h(k,p) indicates that k is more likely to be a kinase

that phosphorylates p.

Integrated score (CophosK+)

To integrate the co-phosphorylation-based scores with static information, we have downloaded

the pre-computed data for all available predictors on known phosphorylation sites from Kino-

meXporer-DB.version59. The scores reported by KinomeXplorer-DB represent the likelihood

of association of kinases and substrates based on the integration of protein interaction based

scoring and sequence-based scoring. Assume that the KinomeXplorer score for the interaction

between kinase k to phosphosite p is x(k,p). We compute CophosK+ score (i.e.M(k,p)) for phos-

phosite p and kinase k by combining CophosK score and KinomeXplorer score as follows:

Mðk; pÞ ¼ hðk; pÞ þ log2ðxðk; pÞÞ ð5Þ

As in CoPhosK, CoPhosK+ also computesM(k,p) for all phosphosite-kinase pairs, and

ranks kinases for each phosphosites such that a larger value ofM(k,p) indicates that k is more

likely to be a kinase that phosphorylates p.

Running PUEL

We downloaded the jar file provided byYang et al. and used the default parameters as initial

parameters (Size of ensemble = 50, kernel type = radial). For each kinase, we run PUEL on our

data using the known kinase-substrate interactions downloaded from PhosphoSitePlus as the

training set. Then, for each phosphosite, we rank the kinases using the computed scores.

Supporting information

S1 Fig. Effect of number of dimensions on co-phosphorylation distribution among phos-

phosite pairs in breast cancer PDX dataset. Using the 24 breast cancer PDX samples, (a) we

randomly selected subsets of samples and plot the co-phosphorylation distribution among

phosphosites (solid line). We also randomize that data to compare against the co-phosphoryla-

tion distribution in original data (dashed line). (b) The standard deviation of the co-phosphor-

ylation distribution is shown in the blue line and red line shows changes of Kolmogorov-

Smirnov test statistic (the maximum absolute difference between cumulative distribution of

co-phosphorylation in original and permuted data) in different number of dimensions.

(TIF)

S2 Fig. Correlation distribution among pairs of randomly generated vectors as a function

of number of dimensions. We generated 1000 random vectors from a normal distribution

with zero mean and a standard deviation of one and plotted the distribution of correlation

among all pairs of vectors. Each panel shows the histogram of correlations among pairs of vec-

tors for a specific number of dimensions (denoted d).

(TIF)
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S3 Fig. Effect of different sample selections on co-phosphorylation distribution among

phosphosite pairs in breast cancer PDX dataset. Using the 24 breast cancer PDX samples,

we randomly select 6, 12 and 18 subsets of samples 100 times and plot the co-phosphorylation

distribution among phosphosites.

(TIF)

S4 Fig. Co-phosphorylation distribution among phosphosite pairs in ovarian cancer

tumors. The blue histogram shows the distribution of co-phosphorylation (the correlation

between the phosphorylation levels) of all pairs of phosphosites in ovarian cancer (μ = 0.09,σ =

0.31). The pink histogram in each panel shows the distribution of co-phosphorylation of all

pairs of phosphosites in 100 permutation tests representing (a) randomization of all entries in

the phosphorylation matrix (μ = 1.6E-5,σ = 0.29), (b) permutation of all entries across phos-

phosites for each state (μ = 0.08,σ = 0.29), and (c) permutation of all entries across states within

each phosphosite (μ = 1.3E-4,σ = 0.29). The distribution of co-phosphorylation in the original

dataset is significantly different as compared to the distribution of co-phosphorylation in all

permutations (Kolmogorov-Smirnov (KS) test p-value << 1E-9).

(TIF)

S5 Fig. Co-phosphorylation distribution among phosphosite pairs in breast cancer PDX

using Pearson correlation. The blue histogram shows the distribution of co-phosphorylation

(the correlation between the phosphorylation levels) of all pairs of phosphosites in breast

cancer (μ = 0.003,σ = 0.23). The pink histogram in each panel shows the distribution of co-

phosphorylation of all pairs of phosphosites in 100 permutation tests representing (a) random-

ization of all entries in the phosphorylation matrix (μ = -1.6E-5,σ = 0.2), (b) permutation of all

entries across phosphosites for each state (μ = 0.005,σ = 0.21), and (c) permutation of all

entries across states within each phosphosite (μ = -1.9E-6,σ = 0.2). The distribution of co-phos-

phorylation in the original dataset is significantly different as compared to the distribution of

co-phosphorylation in all permutations (Kolmogorov-Smirnov (KS) test p-value << 1E-9).

(TIF)

S6 Fig. Co-phosphorylation distribution among phosphosite pairs in ovarian cancer

tumors using Pearson correlation. The blue histogram shows the distribution of co-phos-

phorylation (the correlation between the phosphorylation levels) of all pairs of phosphosites in

breast cancer (μ = 0.1,σ = 0.32). The pink histogram in each panel shows the distribution of

co-phosphorylation of all pairs of phosphosites in 100 permutation tests representing (a) ran-

domization of all entries in the phosphorylation matrix (μ = -2.6E-5,σ = 0.3), (b) permutation

of all entries across phosphosites for each state (μ = 0.09,σ = 0.3), and (c) permutation of all

entries across states within each phosphosite (μ = -3.4E-5,σ = 0.3). The distribution of co-phos-

phorylation in the original dataset is significantly different as compared to the distribution of

co-phosphorylation in all permutations (Kolmogorov-Smirnov (KS) test p-value << 1E-9).

(TIF)

S7 Fig. Comparison of co-phosphorylation distribution among phosphosite pairs in (a) breast

cancer PDX and (b) ovarian cancer tumors using biweight-midcorrelation (blue curve) and

Pearson correlation (red curve).

(TIF)

S8 Fig. Number of phosphosite and site-specific prediction performance. Number of anno-

tated phosphosites and the methods’ performance separated on specific residue is reported in

(a) and (b), respectively.

(TIF)
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S9 Fig. Coverage of kinase-substrate interaction predictions. Number of phosphosites in

each dataset that are annotated by each method is shown.

(TIF)

S10 Fig. Performance of CophosK, KinomeXplorer and CophosK+ in predicting kinases

for phosphosites in breast cancer and ovarian cancer data using phosphor.ELM as prede-

fined KSAs. There is 2427 KSAs reported in the Phospho.ELM dataset and 1350 KSAs are

common between PhosphoSitePlus and Phospho.ELM

(TIF)

S1 Table. Data-specific kinase prediction. The phosphosites listed in this table are reported

to have more than one kinase in PhosphoSitePlus. CophosK+ identifies previously reported,

but different kinases as the top-ranked candidate based on each dataset.

(TIF)
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