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ABSTRACT
Background  Oncofetal splice variants of extracellular 
matrix (ECM) proteins present a unique group of target 
antigens for the immunotherapy of pediatric cancers. 
However, limited data is available if these splice variants 
can be targeted with T cells expressing chimeric antigen 
receptors (CARs).
Methods  To determine the expression of the oncofetal 
version of tenascin C (TNC) encoding the C domain (C.TNC) 
in pediatric brain and solid tumors, we used quantitative 
reverse transcription PCR and immunohistochemistry. 
Genetically modified T cells were generated from human 
peripheral blood mononuclear cells and evaluated in vitro 
and in vivo.
Results  We demonstrate that C.TNC is expressed on a 
protein level in pediatric tumors, including diffuse intrinsic 
pontine glioma, osteosarcoma, rhabdomyosarcoma, and 
Ewing sarcoma. We generate C.TNC-CAR T cells and 
establish that these recognize and kill C.TNC-positive 
tumor cells. However, their antitumor activity in vivo is 
limited. To improve the effector function of C.TNC-CAR T 
cells, we design a leucine zipper-based chimeric cytokine 
receptor that activates interleukin-18 signaling pathways 
(Zip18R). Expression of Zip18R in C.TNC-CAR T cells 
improves their ability to secrete cytokines and expand 
in repeat stimulation assays. C.TNC-CAR.Zip18R T cells 
also have significantly greater antitumor activity in vivo 
compared with unmodified C.TNC-CAR T cells.
Conclusions  Our study identifies the C domain of the 
ECM protein TNC as a promising CAR T-cell therapy for 
pediatric solid tumors and brain tumors. While we focus 
here on pediatric cancer, our work has relevance to a 
broad range of adult cancers that express C.TNC.

INTRODUCTION
Chimeric antigen receptor (CAR) T-cell 
therapy has shown promise for pediatric 
hematological malignancies; however, prog-
ress in the solid and brain tumor space has 
been limited.1–3 Although failure of CAR T 
cells in solid tumors is likely a multifactorial 

issue, a critical first step to success is target 
antigen selection.1 2 Most tumor-associated 
antigens targeted by CAR T cells are surface 
proteins; however, there have been preclinical 
successes in targeting secreted proteins such 
as oncofetal fibronectin and collagen.4–8 We 
recently developed a computational pipeline 
to discover cancer-specific exons as targets 
for the immunotherapy of pediatric solid and 
brain tumors.8 Top hits included oncofetal 
splice variants and differentially expressed 
proteins of the extracellular matrix (ECM), 
which have been previously described in a 
broad range of adult cancers.

One of the identified ECM proteins was 
oncofetal tenascin C (TNC), a hexameric 
protein that can bind to cells via several cell 
surface proteins and integrins.9 In normal 
development, TNC undergoes splicing of 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Oncofetal splice variants of extracellular matrix 
(ECM) proteins have so far been studied mainly in 
adult cancers, and the majority of ECM-targeted 
therapeutic approaches rely on antibody drug, cyto-
kine, or radioisotope conjugates.

WHAT THIS STUDY ADDS
	⇒ We demonstrate here that the oncofetal version of 
tenascin C (TNC) encoding the C domain (C.TNC) is 
expressed on a protein level in both pediatric brain 
and solid tumors and can be targeted with C.TNC-
chimeric antigen receptor T cells.
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	⇒ Our study highlights that oncofetal splice vari-
ants of ECM proteins are viable targets for cellular 
immunotherapy.
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nine exons between FN-III domains 5 and 6.10 Changes 
in isoform expression have been linked to changes in 
pH, the upregulation of SRSF6, and growth factors such 
as TGFβ1 and FGF.11–16 The long isoforms of TNC have 
been previously described in cancer and can be impli-
cated in tumor cell proliferation and migration as well 
as impairing antitumor immune responses.17–19 Antibody-
drug or cytokine conjugates targeting oncofetal TNC for 
solid and brain tumors have shown promising safety and 
antitumor activity in preclinical models, and early-phase 
clinical studies have confirmed the safety of oncofetal 
TNC as a target for immunotherapy.20

T cells can produce cytokines to self-sustain their effector 
function; however, in the setting of chronic antigen expo-
sure, cytokine production is limited.21 To engineer this 
component of T-cell effector function, investigators have 
genetically modified T cells to co-express CARs with 
unmodified or membrane-bound cytokines, or chimeric 
cytokine receptors.2 3 For solid tumor-specific CAR T 
cells, predominately, JAK/STAT-activating cytokines 
interleukin (IL)-7, IL-12, IL-15, IL-21, and IL-23 have 
been investigated.22–31 In addition, we and others have 
shown that MyD88 signaling, either via IL-18 signaling or 
including MyD88 as a CAR signaling domain, is benefi-
cial to CAR T cells in the setting of chronic antigen expo-
sure.32–36 Building on these findings, we decided to use 
our modular leucine zip receptor (ZipR) platform37 to 
design a constitutively active IL-18 receptor.

In this study, we explored CAR T cells redirected to 
the C domain, one of the exons expressed in oncofetal 
TNC (C.TNC-CAR T cells), as an immunotherapeutic 
for pediatric brain and solid tumors. We developed a 
second-generation CAR specific for C.TNC based on 
the G11 monoclonal antibody (mAb), which recognizes 
the human and murine C domain.38 We found that 
C.TNC-CAR T cells have antigen-specific cytolysis of target 
tumor cells but limited efficacy in xenograft models. 
While altering CAR design did not improve antitumor 
activity, expressing a constitutively active IL-18 receptor 
in C.TNC-CAR T cells bolstered their effector function, 
resulting in improved antitumor activity in vivo.

METHODS
Please see online supplemental methods for details on 
tumor cell lines, immunohistochemistry (IHC), reverse 
transcription quantitative PCR (RT-qPCR), retroviral 
vectors, CAR T-cell generation, flow cytometry, co-cul-
tures, MILLIPLEX, and statistical analysis.

Patient-derived xenograft and primary sarcoma tissue 
samples
Patient-derived xenografts were obtained from the Child-
hood Solid Tumor Network (CSTN) (https://cstn.stjude.​
cloud/search/).39 Fresh frozen tissues were hand homog-
enized in DPBS (Gibco, 14190–144) + 1% FBS (Gibco) 
and filtered through polystyrene test tubes with cell 
strainer caps (Falcon, 352235) to generate a single-cell 

suspension. Formalin-fixed paraffin-embedded tissues 
were also obtained for IHC purposes. De-identified 
formalin-fixed paraffin-embedded tissue blocks from clin-
ical patient tumor samples were cut and stained as previ-
ously described.8

Single-cell RNA sequencing
Sample collection
C.TNC-CAR.IL-18 receptor-based ZipR (Zip18R) T cells 
were generated by double transduction as previously 
described for two biological donors. C.TNC-CAR.Zip18R 
T cells were collected at baseline or after 12, 24, and 48 
hours stimulation with ​LM7.​green fluorescent protein 
(GFP).firefly luciferase (ffLuc) in the presence of IL-15 
(PeproTech; 5 ng/mL). Samples were sorted for viability 
and hashed for multiplexing with TotalSeq-C anti-
human Hashtag Antibodies (BioLegend 394661, 394663, 
394665). To add hashing antibodies, up to 5e6 cells were 
collected and incubated with Human TruStain FcX block 
(BioLegend), followed by a hashing antibody in a volume 
of 100 μL.

Library preparation
Equal cell numbers from each hashed sample were 
pooled before loading onto a Chromium Controller to 
generate 10,000 single-cell gel beads in emulsion for 
single-cell RNA sequencing (scRNA-seq). Libraries were 
prepared using Chromium Next GEM Single Cell 5’ V.2 
(Dual index) and Gel Bead Kit (10x Genomics). Comple-
mentary DNA (cDNA) was amplified (13 cycles), after 
which it was used for the preparation of gene expression 
and cell surface protein libraries. The cDNA content of 
each sample and library was quality-checked using a high-
sensitivity DNA chip with a 2100 Bioanalyzer (Agilent 
Technologies). The libraries were sequenced on NovaSeq 
(Illumina) with paired-end reads of 26 cycles for read 1 
and 90 cycles for read 2×. Median reads per cell ranged 
from 117,565 to 132,623 in the baseline cohort and 
13,717–31,087 reads for the stimulated cohort.

Data preprocessing and sample integration
C.TNC-CAR and Zip18R sequences were added to the 
human reference transcriptome (refdata-gex-GRCh38-
2020-A) for reads mapping. The Cell Ranger V.7.1.0 
Single-Cell software suite (10x Genomics) was used to 
process scRNA-seq FASTQ files. The “cellranger multi” 
and “cellranger bamtofastq” commands were performed 
for sample demultiplexing and extracting sample FASTQ 
files. The “cellranger count” command was performed 
to align FASTQ files to reference genome and summa-
rize the data into matrices describing gene read counts 
(unique molecular identifier (UMI)) per cell. Single-
CellExperiment40 object was generated and used for the 
following analysis. Damaged or dying cells were filtered 
based on the outlier status of mitochondrial genes expres-
sion using scuttle.41 Cells with a detected gene number 
less than 300 were filtered out. Read counts were normal-
ized using scuttle logNormCounts function.41 Top 2,000 
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high-variance genes were selected to calculate principal 
components using scater.41 Harmony42 was used to inte-
grate all the samples for batch correction. To get a pure 
T-cell population, any cells with no CD3δ expression 
(zero count) were filtered out.

Differentially expressed gene detection and pathway enrichment 
analysis
For each sample, the T-cell population was classified into 
four subpopulations (C.TNC-CAR.Zip18R, C.TNC-CAR, 
Zip18R, non-transduced) based on whether the CAR or 
Zip18R was expressed or not (zero count). Then pseudo-
bulk data for each subpopulation in each sample was 
generated using scuttle.41 DESeq2 pipeline43 was used 
to generate principal component analysis (PCA) plot. 
Delegate (pseudo-bulk DESeq2 method with Wald test)44 
was used to detect differentially expressed genes. Clus-
terProfiler45 was used to perform Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment anal-
ysis. Particularly, DESeq2 default normalized counts were 
used to calculate log2 fold change between samples in 
two conditions (pseudo-count as 10 defined from counts 
distribution). “gseKEGG” commands were performed 
with Benjamini-Hochberg (BH) adjustment method.

Statistical analysis
To identify differentially expressed genes from different 
cell populations on scRNA-seq data, the software Dele-
gate44 was performed with pseudo-bulk DESeq243 method 
and Wald test. KEGG pathway enrichment analysis for 
pseudo-bulk T-cell population was performed with 
“gseKEGG” commands in ClusterProfiler45 and p value 
was adjusted by BH method.

Data availability
The scRNA-seq data generated in this study has been 
deposited in the European Genome-Phenome Archive 
(EGA) under the title “Single-cell RNA sequencing of 
human IL-18R supported CAR T cells targeting oncofetal 
Tenascin C”. The raw data can be obtained by a request to 
EGA. The scRNA-seq expression matrices are available on 
Gene Expression Omnibus (GEO) under ascension code 
GSE282046.

Xenograft mouse models
Animal experiments followed a protocol approved by the 
St. Jude Institutional Animal Care and Use Committee 
(646–100595). All experiments used NOD-scid IL-2R-
gammanull (NSG) mice obtained from St. Jude’s NSG 
colony. Studies were done in biological duplicate, altering 
mouse gender between experiments. For imaging, mice 
were injected in the intraperitoneal (i.p.) cavity with 
150 mg/kg of D-luciferin (PerkinElmer) 5–10 min before 
imaging, anesthetized with isoflurane, and imaged under 
anesthesia with a Xenogen IVIS-200 imaging system. The 
photons emitted from the luciferase-expressing cells 
were quantified using Living Image software (Caliper 
Life Sciences). Total emitted photon flux (photons per 
second) was used to evaluate tumor burden. For the i.p. 

tumor model, 5–6-week-old mice were injected i.p. with 
1×106 LM7.GFP.ffLuc cells, and after 7 days, received a 
single i.p. injection of 1×106 T cells. For the intracranial 
(i.c.) tumor model, 10–12-week-old mice were injected 
i.c. with 1×106 DIPG007.YFP.ffLuc cells in 2 µL of 80% 
Matrigel (Corning) mixed with PBS (Gibco), and after 
7 days, received a single i.c. injection of 1 or 2×106 T cells. 
In both models, mice were imaged to confirm the pres-
ence of tumors prior to T-cell injection, and mice were 
euthanized when they reached (1) two consecutive flux 
values >1×1010, (2) a single flux value >1×1011, or (3) phys-
ical euthanasia criteria (weight loss, signs of distress). For 
the subcutaneous (s.c). tumor model, 7–9-week-old mice 
were injected in the right flank s.c. with 2×106 A673 cells, 
and after 7 days, received a single intravenous injection 
of T cells. Mice were euthanized when they met physical 
euthanasia criteria or when the tumor size was greater 
than 4,000 mm3.

RESULTS
C.TNC is expressed in pediatric solid and brain tumors
We first set out to establish C.TNC expression in pediatric 
solid and brain tumor samples. First, we screened pedi-
atric diffuse intrinsic pontine glioma (DIPG) and pedi-
atric sarcoma cell lines using RT-qPCR and confirmed 
that all samples contained the C.TNC exon at an RNA 
level (figure  1A). We screened patient-derived xeno-
graft samples and demonstrated high expression of 
C.TNC in osteosarcoma (OS) samples (figure 1B, online 
supplemental STable 1). Protein expression was further 
confirmed by IHC, using the G11 mAb to stain primary 
samples of H3K27M+DIPG, ZFTA-fusion positive ependy-
moma, OS, rhabdomyosarcoma, and Ewing sarcoma 
(figure 1C,D). C.TNC expression, as determined by IHC, 
was localized to both the cytoplasm and membranes of 
cells in primary and xenograft tumor samples, and was 
also observed within the immediate tumor microenviron-
ment, which was interpreted as tumor-associated produc-
tion and secretion of C.TNC by the evaluated pediatric 
tumor types. Depending on the xenograft or primary 
patient samples, neoplasms expressed C.TNC at moderate 
to strong levels based on their H-score.

C.TNC-CAR T cells recognize and kill C.TNC-positive tumor 
cells
We generated a retroviral vector encoding a C.TNC-CAR 
consisting of a single chain variable fragment (scFv)-
based C.TNC binding domain derived from the G11 
mAb, a short hinge, a CD28 transmembrane, and a ​
CD28.​zeta endodomain, a self-cleaving T2A sequence, 
and truncated CD19 (tCD19) (figure 2A, online supple-
mental SFigure 4A). C.TNC-CAR T cells were generated 
by standard retroviral transduction and average trans-
duction efficacy was~70% as determined by flow cytom-
etry, detecting either the CAR (scFv or linker) or tCD19 
(figure  2B). We evaluated C.TNC-CAR T-cell effector 
function against C.TNC-positive (sarcoma, DIPG) and 
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C.TNC-negative (CCRF-CEM) cell lines. In co-culture 
assays, C.TNC-CAR T cells produced significant amounts 
of interferon (IFN)-γ compared with non-transduced 
(NT) T cells only in the presence of C.TNC-positive cell 
lines (figure 2C,D). C.TNC-CAR T cells also had signifi-
cant cytolytic activity against C.TNC-positive sarcoma cell 
lines compared with NT T cells (figure 2E,F), and no cyto-
toxicity against the C.TNC-negative cell line CCRF-CEM 
(figure 2G). We determined the phenotype of C.TNC-CAR 
T cells cultured with and without stimulation with C.TNC-
positive LM7.GFP.ffLuc cells. C.TNC-CAR expression 
alone in T cells did not alter the CD4/CD8 ratios or their 

phenotype (online supplemental SFigure B, C). With 
antigen stimulation, C.TNC-CAR T cells demonstrated 
T-cell differentiation as judged by a decline in naïve-like 
subsets as compared with NT T cells (online supplemental 
SFigure D, E). To further confirm antigen-specificity, we 
generated a non-functional ​C.​TNC.​mu-​CAR that lacked 
the intracellular CD28 domain and had mutated CD3ζ 
ITAMS (online supplemental SFigure 4F). ​C.​TNC.​mu-​
CAR T cells were successfully expressed in T cells (online 
supplemental SFigure 4G) and had no cytolytic activity 
against LM7.GFP.ffLuc cells compared with NT cells 
(online supplemental SFigure 4H). Next, we assessed the 

Figure 1  C.TNC is expressed in solid and brain tumors. (A,B) Reverse transcription quantitative PCR of (A) pediatric cell lines 
(n=3 bioreplicates, mean+SEM) and (B) patient-derived xenografts for C.TNC. ΔCT is relative to GAPDH. Acute lymphoblastic 
leukemia cell line CCRF-CEM had no C.TNC detected. (C) H-scores of primary human H3K27M+DIPG, ZFTA fusion-positive 
ependymoma (EPN), osteosarcoma (OS), rhabdomyosarcoma (RMS), and Ewing sarcoma (EWS) tumors. (D) Representative 
immunohistochemistry staining of primary FFPE human tumor samples and tonsils (negative control (neg Co)) with a C.TNC-
specific antibody. 20× magnifications, 100 µM scale bar. Images were taken with an Olympus BX46 microscope and a Nikon 
DS-Fi3 camera at a 20× magnification and edited with Photoshop 25.5.1. C.TNC, tenascin C encoding the C domain; DIPG, 
diffuse intrinsic pontine glioma.
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Figure 2  C.TNC-CAR T cells have antitumor activity in vitro and in vivo. (A) Schematic of C.TNC-CAR design. (B) Transduction 
efficiency of healthy donor T cells determined via flow cytometry on day 7 (n=5, mean+SEM). Graph shows the percentage of 
positive cells stained for each respective antibody for CAR transgene detection. (C,D) IFN-γ production measured by ELISA 
after 48 hours of co-culture with (C) sarcoma or (D) brain tumor cell lines at 2:1 effector to target (E:T) ratio. Negative values 
were plotted as zero (mean+SEM, n=3–4 for NT and C.TNC), two-way ANOVA, ***p<0.001, ****p<0.0001. (E,F) Cytotoxicity 
after 72 hours at a 4:1 E:T ratio determined by a luciferase-based assay (mean+SEM, n=3), two-way ANOVA, ****p<0.0001. 
(G) Cytotoxicity of C.TNC-negative cell line CCRF-CEM determined by a luciferase-based assay (n=4–5, mean+SEM). 
(H) Schematic of experiment in 5–6-week-old female NSG mice. 1×106 LM7.green fluorescent protein.firefly luciferase cells were 
injected intraperitoneally (i.p.), followed by 1×106 T cells injected i.p. 7 days later. (I) Flux values from weekly IVIS images (n=5 
per cohort). (J) Overall survival of the mice, Mantel-Cox test, **p<0.01. (K) Schematic of experiment in 10–12-week-old male 
NSG mice. 1×106 DIPG007.YFP.ffLuc cells were injected intracranially (i.c.), followed by 2×106 T cells injected i.c. 7 days later. 
(L) Flux values from weekly IVIS images (n=5 per cohort). (M) Overall survival of the mice, Mantel-Cox test. ANOVA, analysis of 
variance; CAR, chimeric antigen receptor; C.TNC, tenascin C encoding the C domain; DIPG, diffuse intrinsic pontine glioma; 
IFN, interferon; NT, non-transduced; scFv, single chain variable fragment.
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antitumor activity of C.TNC-CAR T cells in vivo in our OS 
LM7.GFP.ffLuc and DIPG007.YFP.ffLuc xenograft models 
(figure 2H,K). In both models, C.TNC-CAR T cells exhib-
ited antitumor activity at early time points as determined 
by a reduction in tumor flux values as compared with 
controls (figure  2I,L; online supplemental SFigures 5 
and 6). This transient antitumor activity of C.TNC-CAR 
T cells translated to a significant survival advantage in the 
OS model, and although this did not reach significance 
for the mice in DIPG007, the median survival between 
the groups reached 50 days (figure  2J,M). To evaluate 
the presence of tumor cells, T cells, and TNC expression 
post C.TNC-CAR T cell therapy, DIPG007-bearing mice 
were euthanized 2 weeks after intratumoral injection 
of NT or C.TNC-CAR T cells. NT T cell-treated tumors, 
identified by H3K27M-staining, were larger in compar-
ison to tumors injected with C.TNC-CAR T cells (online 
supplemental SFigure 7). This was mirrored by decreased 
TNC expression. Human CD3-positive T cells were only 
detected in mice after C.TNC-CAR T-cell therapy (online 
supplemental SFigure 7).

To explore if redesigning the CAR structure could 
improve C.TNC-CAR T-cell effector function, we designed 
four additional CARs with changes in the linker, hinge, 
and transmembrane domains (online supplemental 
SFigure 8A). All CARs were expressed in T cells (online 
supplemental SFigure 8B), and all C.TNC-CAR T-cell 
populations had antitumor activity compared with NT T 
cells in a 24-hour cytotoxicity assay (online supplemental 
SFigure 8C). Based on their performance in their cyto-
lytic activity, we selected the C.TNC-SL-CAR and C.TNC-
zeta-CAR T cells for in vivo testing (online supplemental 
SFigure 8D). Neither design improved the antitumor 
activity of C.TNC-CAR T cells (online supplemental 
SFigure 9), and we, therefore, continued to use the orig-
inal ​CD28.​zeta CAR design in future experiments.

An IL-18-based constitutively active cytokine receptor 
improves the effector function of C.TNC-CAR T cells
A key requirement for CAR T-cell effector function is 
the provision of signal 3, or proinflammatory cytokine 
support.46 47 We and others have demonstrated that 
MyD88 signaling improves CAR T-cell effector function 
by inducing type 2 cytokine signaling and enhancing 
T-cell expansion and proliferation.32–36 We first evalu-
ated if C.TNC-CAR T cells expressing a granulocyte-
macrophage colony-stimulating factor (GM-CSF)/IL-18 
switch receptor (GM18), which requires GM-CSF binding 
for IL-18 signaling, could better control tumor growth in 
our LM7.GFP.ffLuc in vivo model.33 C.TNC-CAR.GM18 
T cells had limited antitumor activity compared with NT 
T cells (online supplemental SFigure 10). We recently 
published the development of modular leucine zipper-
based chimeric cytokine receptors (ZipRs) to provide 
constitutive JAK/STAT signaling to transduced T cells.37 
We decided to explore here if our modular chimeric cyto-
kine receptor platform could be adapted for the IL-18 
receptor (Zip18R) for constitutive IL-18 support. We 

designed two Zip18Rs with one (1X) or two (2X) pairs 
of leucine zippers (figure  3A) and cloned these into a 
retroviral vector that also encoded a P2A sequence and 
mClover.

Both Zip18Rs were functional and their functionality 
was dependent on the expression of MyD88 as judged 
by their ability to activate NFKB/AP-1 only in a reporter 
cell line in which MyD88 was present (figure  3B,C). T 
cells could be readily transduced with retroviral vectors 
encoding Zip18Rs with a transduction efficiency of~50% 
as judged by mClover expression (figure  3D). Expres-
sion of either Zip18R alone enhanced the survival of T 
cells after 1 week of cytokine starvation but had similar 
viability when starved for 2 weeks (figure 3E,F). In vivo, 
the antitumor activity of CAR T cells targeting EphA2, 
a cell surface antigen,48 was significantly enhanced by 
expressing either Zip18R (figure 3G–K). Since there was 
no difference between both Zip18Rs, we selected the 1X 
Zip18R for further testing.

C.TNC-CAR.Zip18R T cells were generated by co-trans-
duction, and the resulting T-cell populations consisted 
of~44% double-positive cells (figure  4A). We evaluated 
C.TNC-CAR and C.TNC-CAR.Zip18R T cells against LM7.
GFP.ffLuc cells in a repeat stimulation assay, in which T 
cells are co-cultured with tumor cells at a 2:1 effector to 
target ratio in the presence of IL-15, and only restimulated 
if they killed the tumor cells and expanded (figure 4B). 
Controls included NT, Zip18R, ​C.​TNC.​mu-​CAR, and ​C.​
TNC.​mu-​CAR.​Zip18R T cells. C.TNC-CAR.Zip18R T cell 
expansion was significantly greater after each stimula-
tion compared with C.TNC-CAR T cells (figure  4C,D). 
All four control T-cell populations did not kill LM7.GFP.
ffLuc cells and did not expand significantly after the first 
stimulation, confirming antigen-specific C.TNC-CAR and 
C.TNC-CAR.Zip18R T-cell expansion and demonstrating 
that expression of Zip18R in T cells does not induce 
autonomous cell growth (figure 4C). During the repeat 
stimulation assay, we collected media 48 hours post each 
stimulation to evaluate cytokine and chemokine produc-
tion using a 48 Multiplex Assay. After the first stimulation, 
C.TNC-CAR and C.TNC-CAR.Zip18R T cells produced 
significant amounts of type 1 (GM-CSF, IFN-γ, IL-2, 
tumor necrosis factor (TNF)-α), type 2/type 17 (IL-6, 
IL-10, IL-13, IL-17A), and chemokines (CXCL1, CXCL9, 
CXCL10, CCL2, CCL5, CCL7, CCL22) compared with 
Zip18R T cells (figure 4E–G). In addition, C.TNC-CAR.
Zip18R T cells produced higher amounts of IL-5, IL-17A, 
and IL-17F and less IL-10 compared with C.TNC-CAR T 
cells. ​C.​TNC.​mu-​CAR.​Zip18R, Zip18R, and NT T cells did 
not produce higher levels of cytokines or chemokines in 
the presence of tumor cells (online supplemental SFigure 
11). There were no significant differences in the cyto-
kine/chemokine expression profile of NT and Zip18R T 
cells (online supplemental SFigure 11). To evaluate the 
long-term effects of Zip18R expression on cytokine and 
chemokine production, we determined cytokine produc-
tion after the fourth stimulation. After the fourth stimu-
lation, C.TNC-CAR T cells produced significantly lower 
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Figure 3  Zip18R improves CAR T-cell effector function. (A) Schematic of 1X and 2X Zip18Rs, the leucine zippers (Zip) are 
connected with a (G4S)3 linker. The 1X and 2X Zip18Rs retroviral vectors also encode a P2A skip sequence and mClover. TM/IC: 
transmembrane and intracellular. (B) Representative transduction efficiency of Ramos-Blue and Ramos-Blue KD-MyD NF-κB/
AP-1 reporter cells determined via flow cytometry. (C) Absorbance values of transduced Ramos-Blue NF-κB/AP-1 reporter cell 
supernatant mixed with QUANTI-Blue reagent (n=3 from two separate transductions). (D) Transduction of T cells with Zip18R 
(n=3, mean+SEM). (E,F) Populations after (E) 7 days or (F) 14 days of cytokine starvation as determined by flow cytometry (n=3, 
mean+SEM). Two-way analysis of variance, *p<0.05, **p<0.01, ***p<0.001. (G) Schematic of A673 model. T cells were sorted 
prior to injection. 7–9-week-old male NSG mice were used. (H) Tumor caliper measurements (n=4 for tumor and CAR only, n=5 
for CAR.Zip18Rs). (I) Kaplan-Meier survival curve, Mantel-Cox test, **p<0.01. (J) Tumor caliper measurements. (n=3 for tumor 
and CAR.2XZip18R, n=4 for CAR and CAR.1XZip18R). (K) Kaplan-Meier survival curve, Mantel-Cox test, *p<0.05. CAR, chimeric 
antigen receptor; NT, non-transduced; Zip18R, interleukin-18 receptor-based leucine zipper receptor.
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Figure 4  Zip18R bolsters C.TNC-CAR T-cell effector function in vitro. (A) Transduction efficiency of primary T cells was 
determined via flow cytometry on day 7 post-transduction (n=4, mean+SEM). Determined via F(ab’)2 staining and mClover 
expression. (B) Repeat stimulation assay schematic. T cells were stimulated with LM7.green fluorescent protein.firefly luciferase 
at an effector to target ratio of 2:1 in the presence of IL-15 every 4 days. (C) Expansion of T cells in repeat stimulation assay. 
Each graph represents one donor. (D) Fold change of C.TNC-CAR and C.TNC.CAR.Zip18R T cells after stimulations 1 through 
10, paired t-test, ****p<0.0001. (E–G) Quantification of (E) type 1 and (F) type 2/type 17 cytokines, and (G) chemokines 48 
hours post first stimulation of the repeat stimulation assay (n=3, mean+SEM), data was log-transformed before statistical 
analysis, two-way analysis of variance, *p<0.05, **p<0.01, ***:p<0.001, ****p<0.0001. (H–J) Comparison of the sum of (H) type 1 
cytokines, (I) type 2/type 17 cytokines, and (J) chemokines produced post first stimulation and fourth stimulation by C.TNC-CAR 
T cells and C.TNC-CAR.Zip18R T cells from repeat stimulation assay (n=3), unpaired t-test, *p<0.05, **p<0.01. CAR, chimeric 
antigen receptor; C.TNC, tenascin C encoding the C domain; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, 
interferon; IL, interleukin; NT, non-transduced; TNF, tumor necrosis factor; Zip18R, interleukin-18 receptor-based leucine zipper 
receptor.
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levels of type 1 cytokines, and higher levels of chemok-
ines (figure  4H–J, online supplemental SFigure 12A). 
In contrast, there was no significant decrease in type 1 
and an increase in type 2/type 17 cytokine production 
of C.TNC-CAR.Zip18R T cells, and while chemokine 
production was also increased, this did not reach signif-
icance (online supplemental SFigure 12B).

To evaluate the transcriptional changes induced 
by Zip18R expression, we performed scRNA-seq of 
C.TNC-CAR.Zip18R T cells. We collected C.TNC-CAR.
Zip18R T cells from two donors at baseline and after 12, 24, 
or 48 hours of co-culture with LM7.GFP.ffLuc cells in the 
presence of IL-15 (figure 5A). We were able to detect NT, 
Zip18R+, C.TNC-CAR+, and C.TNC-CAR+Zip18R+cell 
populations within each CAR T-cell product (online 
supplemental SFigure 13). Using principal component 
analysis, we found that the T-cell populations clustered 
according to the donor (online supplemental SFigure 
14A), which in part was due to differences in their gender 
(online supplemental SFigure 14B). Over the course of 
tumor cell stimulation, C.TNC+Zip18R+T cells enriched 
while NT T cells decreased, suggesting antigen-dependent 
expansion of C.TNC-CAR.Zip18R T cells (figure 5B).

We next used Gene Set Enrichment Analysis to 
uncover which pathways were activated by Zip18R expres-
sion in C.TNC-CAR T cells. At baseline, we found that 
both donors had IL-17 signaling and cytokine–cyto-
kine receptor interaction pathways upregulated in 
C.TNC-CAR.Zip18R T cells compared with C.TNC-CAR T 
cells (figure 5C). Those pathways were also upregulated 
after 48 hours of antigen stimulation (figure 5D). In addi-
tion, for one donor, there were several immune-related 
disease pathways upregulated in C.TNC-CAR.Zip18R 
T cells (figure  5C,D (Donor B)). We next evaluated 
genes involved in MyD88 signaling, T-cell activation, and 
T-cell exhaustion at baseline and over the time course of 
antigen stimulation (online supplemental SFigure 15). 
IL-2RA gene expression was upregulated in C.TNC-CAR.
Zip18R T cells at both baseline and over the antigen stim-
ulation course, and IFN-γ gene expression was elevated 
at baseline for both donors. We did not see significant 
changes in gene expression for other MyD88-signaling-
related genes. At baseline, TIGIT (Donor A) and HAVCR2 
(TIM3) (Donor B) gene expression was significantly 
increased in C.TNC-CAR.Zip18R T cells. Post antigen 
stimulation, this only persisted for TIM3 at the 48-hour 
time point (online supplemental SFigure 15).

To confirm our gene expression findings, we used 
flow cytometry to evaluate three different donors after 
48 hours of culture in cytokine-starved media or co-cul-
tured with LM7 cells. We again found that C.TNC-CAR 
and C.TNC-CAR.Zip18R T cells populations enriched 
after antigen stimulation (figure 5E). Activation markers 
CD69 and CD28 were similar across all four T-cell popu-
lations at baseline, suggesting that Zip18R constitutive 
signaling does not alter baseline T-cell activation. After 
antigen stimulation, we observed a significant increase 
in CD69-positive C.TNC-CAR and C.TNC-CAR.Zip18R 

T cells, and only a significant increase in CD28-positive 
C.TNC-CAR T cells (figure 5F,G). For TIM3 and CD39, 
markers associated with T-cell exhaustion, we found at 
baseline that C.TNC-CAR.Zip18R T cells had significantly 
greater populations of TIM3-positive and CD39-positive T 
cells compared with C.TNC-CAR T cells (figure 5H,I). On 
co-culture with LM7 cells, the frequency of TIM3-positive 
and CD39-positive T cells increased in C.TNC-CAR and 
C.TNC-CAR.Zip18R T cells with no significant differ-
ences between both T-cell populations. We also evaluated 
lymphocyte activation gene 3 (LAG3), programmed cell 
death protein 1 (PD-1), and cytotoxic T-lymphocyte asso-
ciated protein 4 (CTLA-4) expression, which had much 
lower expression levels (online supplemental SFigure 
16). C.TNC-CAR and C.TNC-CAR.Zip18R T cells followed 
similar trends, with only C.TNC-CAR T cells having an 
increase in CTLA-4 expression after antigen stimulation, 
mirroring the CD28 expression data.

Zip18R improves the antitumor activity of C.TNC-CAR T cells 
in vivo
Having established that Zip18R improves the effector 
function of C.TNC-CAR T cells in vitro, we evaluated if 
this translates into improved antitumor activity in vivo 
(figure 6A,B). In the LM7.GFP.ffLuc model, C.TNC-CAR.
Zip18R T-cell infusions were well tolerated, and mice 
continued to gain weight at the same rate as mice that 
received other CAR or NT T-cell populations (online 
supplemental SFigure 17). C.TNC-CAR.Zip18R T cells 
had significantly greater antitumor activity compared 
with the C.TNC-CAR T cells (figure  6C; online supple-
mental SFigures 18 and 19), resulting in a significant 
survival advantage (figure 6D). The gender of mice did 
not impact the observed benefit in antitumor activity 
of C.TNC-CAR.Zip18R T cells (online supplemental 
SFigure 20). The improvement in antitumor activity was 
dependent on the expression of a functional CAR in T 
cells since Zip18R expression in ​C.​TNC.​mu-​CAR or NT 
T cells did not improve their antitumor activity. Three of 
the C.TNC-CAR.Zip18R T-cell treated mice (figure  6B) 
had tumor flux values that returned to baseline. On day 
136, we rechallenged these mice with another i.p. injec-
tion of LM7.GFP.ffLuc cells to evaluate for functional 
C.TNC-CAR.Zip18R T-cell persistence (figure  6E). All 
three mice rejected the tumor, while in control, untreated 
mice, LM7.GFP.ffLuc tumor cells grew (figure 6F).

We next evaluated if Zip18R could enhance 
C.TNC-CAR T-cell antitumor activity against DIPG007.
YFP.ffLuc i.c. tumors. After 2 weeks post T-cell injections, 
both C.TNC-CAR and C.TNC-CAR.Zip18R T cells had a 
significant reduction in tumor burden as compared with 
NT-treated mice (online supplemental SFigure 21). We 
found that Zip18R enhanced C.TNC-CAR activity, with 
a significant difference in tumor flux values between 
C.TNC-CAR and C.TNC-CAR.Zip18R T-cell treated mice 
emerging after 3 weeks. However, in this model, 6/15 
C.TNC-CAR.Zip18R T-cell treated mice needed to be 
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Figure 5  Zip18R signaling alters the transcriptome of C.TNC-CAR T cells. (A) Schematic of experiment. C.TNC-CAR.Zip18R T 
cells were collected from culture in IL-7/IL-15 and frozen for analysis or freshly collected from a co-culture assay with LM7.GFP.
ffLuc (LM7.GL) tumor cells in the presence of IL-15 at 12, 24, and 48 hours post tumor cell stimulation. All four populations are 
present in the same culture. (B) Percentages of C.TNC-CAR+Zip18R+, C.TNC-CAR+, Zip18R+, and NT T cells at 12, 24, and 
48 hours post co-culture. (C,D) Gene Set Enrichment Analysis comparing C.TNC-CAR.Zip18R T cells to C.TNC-CAR T cells at 
(C) baseline or (D) 48 hours post stimulation with LM7.GFP.ffLuc cells. Top 10 activated or suppressed significant (p.adjust<0.1) 
KEGG pathways are shown. (E–I) 1×106 NT, Zip18R, C.TNC-CAR, and C.TNC-CAR.Zip18R T cells were cultured in media or 
against LM7 cells at a 2:1 effector to target ratio for 48 hours and then collected for flow cytometric analysis. (E) Transduction 
(TDX) percentage of NT, Zip18R, C.TNC-CAR, and C.TNC-CAR.Zip18R T cells alone and after 48 hours of stimulation. CD3+ 
expression is shown for NT samples. (n=3, mean+SEM), two-way ANOVA, ****p<0.0001. (F–I) Expression within pure isolated 
populations of T cells gated on CD3+ (NT), mClover+ (Zip18R+), (G4S)3+ (C.TNC-CAR+), and (G4S)3+ mClover+ (C.TNC-
CAR+Zip18R+) for (F) CD69, (G) CD28, (H) CD39, and (I) TIM3 (n=3, mean+SEM), two-way ANOVA, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. Only showing significance values for each cohort comparing Alone versus +LM7 and C.TNC-CAR 
versus C.TNC-CAR.Zip18R for both conditions. All p values are reported in online supplemental SFigure 16. ANOVA, analysis 
of variance; CAR, chimeric antigen receptor; C.TNC, tenascin C encoding the C domain; ffLuc, firefly luciferase; GFP, green 
fluorescent protein; GM-CSF, granulocyte-macrophage colony-stimulating factor; IL, interleukin; KEGG, Kyoto Encylopedia of 
Genes and Genomes; NT, non-transduced; TNF, tumor necrosis factor; Zip18R, interleukin-18 receptor-based leucine zipper 
receptor.

https://dx.doi.org/10.1136/jitc-2024-009743
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Figure 6  C.TNC-CAR.Zip18R T cells have superior antitumor activity in vivo. 1×106 LM7.GFP.ffLuc cells were injected into 
5–6-week-old female (Donor 1) or male (Donor 2) NSG mice. Seven days later, mice received an i.p. injection of 1×106 sorted 
T cells. (A,B) Tumor flux values measured by IVIS imaging. (A) Donor 1, (B) Donor 2 (n=5 per cohort per donor). (C) Combined 
tumor flux values from both donors at weeks 2 and 5 (n=10, mean+SEM), one-way analysis of variance, *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. (D) Kaplan-Meier survival curve, Mantel-Cox test. P values listed in the table. (E) Schematic of 
rechallenge experiment. 5–6-week-old male mice were used for tumor only cohort. 1×106 LM7.GFP.ffLuc cells were injected i.p. 
into naïve mice or C.TNC-CAR.Zip18R T-cell pretreated mice. (F) Tumor flux values measured by IVIS imaging (n=3–5). CAR, 
chimeric antigen receptor; C.TNC, tenascin C encoding the C domain; ffLuc, firefly luciferase; GFP, green fluorescent protein; 
i.p., intraperitoneal; NT, non-transduced; Zip18R, interleukin-18 receptor-based leucine zipper receptor.
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euthanized in the first week post T-cell injections despite 
having low tumor flux values.

DISCUSSION
Here, we show that the C domain of TNC is expressed by 
pediatric solid and brain tumor cells and is also present 
within the microenvironment of the bulky primary tumor 
samples. T cells expressing a CAR against C.TNC recog-
nized and killed tumor cell lines in an antigen-dependent 
fashion and had limited antitumor activity in vivo. 
While modification of the C.TNC-CAR design did not 
further improve C.TNC-CAR T-cell activity, expressing 
a novel constitutively active IL-18 receptor (Zip18R) in 
C.TNC-CAR T cells significantly improved their effector 
function, resulting in improved antitumor activity in vivo.

Identifying suitable antigens for solid tumor and brain 
tumors for CAR T-cell therapy remains a high priority. 
CAR T cells typically target surface proteins on tumor cells, 
but these antigens may be heterogeneously expressed or 
expressed at low levels.49 ECM proteins provide a unique 
class of target antigens for cell therapy because they are 
secreted and can bind back to cells within the micro-
environment, including bystander cells.50 Additionally, 
tumor and associated stromal cells can generate cancer-
specific ECMs by differentially expressing ECM proteins 
or secreting alternatively spliced isoforms.8 Indeed, inves-
tigators have leveraged tumor-specific ECM proteins 
as CAR T-cell therapy targets. CAR T cells directed to 
COL11A1, a collagen protein upregulated in breast 
cancer and pediatric OS, had robust antitumor activity 
in human xenograft models.8 51 The extra domains A 
and B of fibronectin have also been targeted with CAR 
T cells in preclinical models, demonstrating safety and 
efficacy.4–7 52 53

The long isoforms of TNC have been described in adult 
cancer and present alternatively spliced ECM protein 
targets.10 38 54 mAbs against the A1 domain (F16), A3/
A4/B domains (BC-2), A4/B domains (ST2485), and 
C/D domains (81C6) of oncofetal TNC conjugated 
to either IL-2 or radioisotopes have been evaluated in 
preclinical models, demonstrating tumor localization, 
safety, and antitumor activity.20 In clinical trials, admin-
istration of F16-IL-2, 131I-BC-2, or 131I-81C6 mAb conju-
gates was safe and associated with promising antitumor 
activity for metastatic breast cancer and glioblastoma.55–60 
We show here that pediatric solid and brain tumors also 
express the C domain of TNC, and that it is not expressed 
at the RNA level in non-neoplastic, non-diseased tissues.

We generated T cells expressing a C.TNC-CAR, that 
consisted of an antigen binding domain derived from 
the G11 mAb and included a CD28ζ signaling domain.38 
C.TNC-CAR T cells recognized and killed C.TNC-
expressing tumor cells. However, C.TNC-CAR T cells had 
limited antitumor activity in xenograft models, and we 
sought to optimize the CAR design, as the CAR structure 
is important to its function.61 62 However, none of the alter-
native CAR designs improved the antitumor activity of 

C.TNC-CAR T cells. In addition to CARs, several synthetic 
T-cell receptors (TCRs) have been developed, including 
synthetic TCRs and antigen receptor and human leuko-
cyte antigen (HLA)-independent T-cell receptors,63 64 
which have a higher sensitivity than standard CARs. These 
receptors could be explored in future studies to evaluate if 
they improve the effector function of C.TNC-CAR T cells. 
Here, we decided to focus on improving C.TNC-CAR 
T-cell effector function via strengthening signal 3.53

IL-18 is part of the IL-1 family of cytokines and activates 
MyD88 signaling.65 Several groups have demonstrated 
that transgenic expression of IL-18 or a Fab-based consti-
tutively active IL-18 receptor expression bolstered the anti-
tumor activity of CAR T cells, translating into increased 
survival in preclinical tumor models,34 36 66 and early 
phase clinical testing is in progress (NCT04684563).67 
However, safety concerns were raised due to weight loss 
and antigen-independent T-cell expansion in preclinical 
models.34 35 66 To remedy this potential toxicity concern, 
we and other investigators have explored activation-
dependent IL-18 expression either by using activation-
dependent promoters or through a GM18 chimeric 
cytokine receptor, which signals once GM-CSF is produced 
by activated T cells.33 35 68

We first investigated if our GM18 receptor could bolster 
the antitumor activity of C.TNC-CAR T cells. No signif-
icant benefit was observed, indicating that C.TNC-CAR.
GM18 T cells most likely do not produce enough GM-CSF 
to induce robust GM18 triggering. To overcome this 
limitation, we designed a constitutively active cytokine 
receptor for IL-18 based on our modular ZipR platform 
to create Zip18R. We created Zip18Rs with one (1X) or 
two (2X) pairs of leucine zippers, and both activated 
MyD88 signaling pathways and improved the antitumor 
activity of EphA2-CAR T cells. This is in contrast to JAK/
STAT ZipRs, which require two pairs of leucine zippers,37 
indicating the leucine zippers need to be tailored to their 
cytoplasmic signaling domain. In vitro, Zip18R overall 
did not improve or decrease the ability of C.TNC-CAR T 
cells to produce cytokines or chemokines after the first 
stimulation. However, there were two notable exceptions: 
C.TNC-CAR.Zip18R T cells produced lower amounts 
of IL-10 and increased amounts of IL-17A and IL-17F, 
the latter being consistent with Zip18R-induced MyD88 
signaling.34 69–71 After the fourth stimulation, type 1 cyto-
kine production was significantly reduced by C.TNC-CAR 
T cells whereas it was maintained by C.TNC-CAR.Zip18R 
T cells. Maintenance of the effector function by Zip18R 
was also evident by a significantly greater expansion of 
C.TNC-CAR.Zip18R T cells compared with C.TNC-CAR T 
cells in repeat stimulation assays.

We next evaluated the transcriptional changes that 
occur in C.TNC-CAR T cells when Zip18R is expressed. 
Zip18R signaling led to significant upregulation of IL-17 
and cytokine–cytokine receptor pathways at baseline 
and with antigen stimulation, validating our findings 
from our cytokine multiplex analysis. We noted that for 
one donor, there were several immune-related disease 
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pathways upregulated. Further evaluation of these disease 
types shows related pathways such as toll-like receptor 
signaling, Th17 cell differentiation, cytokine–cytokine 
receptor signaling, and leukocyte transendothelial 
migration, which are all hallmarks of T cell and MyD88 
signaling. Importantly, we found that Zip18R signaling 
may contribute to a more activated or more exhausted 
T-cell phenotype when compared with C.TNC-CAR T 
cells at baseline; however, differences are not sustained in 
the setting of antigen stimulation. Thus, our data suggests 
that Zip18R signaling changes type1/type2/type17 differ-
entiation, resulting in improved effector function.

We found that C.TNC-CAR.Zip18R T-cell safety in vivo 
was model-dependent. Against LM7.GFP.ffLuc tumors, 
mice treated with C.TNC-CAR.Zip18R T cells did not show 
overt toxicity as judged by clinical behavior and weight 
measurements, and only 1/10 mice died 5 weeks post 
C.TNC-CAR.Zip18R T-cell therapy without high tumor 
burden or clinical signs of graft versus host disease. With 
three mice showing tumor control after rechallenging, 
this data suggests that C.TNC-CAR.Zip18R T cells were 
able to persist long-term. Tumors harvested from mice 
who reached euthanasia requirement were still C.TNC-
positive (data not shown). Thus, additional studies are 
warranted to explore if further genetic modifications 
of C.TNC-CAR.Zip18R T cells could improve their effi-
cacy, including deleting epigenetic regulators such as 
DNMT3A or Suv39h1.72 73

In contrast to our LM7.GFP.ffLuc studies, C.TNC-CAR.
Zip18R T cells were toxic in a subset of animals after 
i.c. injection into DIPG007.YFP.ffLuc tumors. Based on 
the performed IHC analysis, which demonstrated TNC 
expression only at tumor sites within in the brain, on 
target/off cancer toxicity is unlikely. Side effects of T 
cell-induced inflammation within the brain is one likely 
explanation, which has been observed in mice as well 
as in humans after the locoregional delivery of CAR T 
cells.74 75 Clearly, future studies are needed to under-
stand the underlying mechanism and develop genetic 
engineering approaches to control Zip18R expression in 
C.TNC-CAR T cells or include safety switches to improve 
the safety of C.TNC-CAR.Zip18R T cells for the immuno-
therapy of brain tumors.

In summary, our study identifies the C domain of the 
ECM protein TNC as a promising CAR T-cell therapy for 
pediatric solid tumors and brain tumors. C.TNC-CAR T 
cells expressing a constitutively Zip18R had significant 
antitumor activity. Although our work focuses on devel-
oping CAR T-cell therapies for pediatric cancers, our 
work has relevance to a broad range of adult cancers, 
which express C.TNC.
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