
The Wnt pathway regulator DKK1 is preferentially expressed in
hormone-resistant breast tumours and in some common cancer
types
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In addition to new tumour antigens, new prognostic and diagnostic markers are needed for common cancers. In this study, we report
the expression of Dickkopf-1 (DKK1) in multiple common cancers. This constitutes a comprehensive analysis of the DKK1 expression
profile. Dickkopf-1 expression was evaluated by classical and quantitative reverse transcriptase–polymerase chain reaction (RT–
PCR) and enzyme-linked immunosorbant assay for protein determination, in cancer lines and clinical specimens of several cancer
origins. For breast cancer, expression was correlated with clinicopathological parameters. Dickkopf-1 expression was confirmed in
several cancer cell lines derived from breast and other common cancers. Dickkopf-1 protein secretion was documented in breast,
prostate and lung cancer lines, but was negligible in melanoma. Analysis of DKK1 expression in human cancer specimens revealed
DKK1 expression in breast (21 out of 73), lung (11 out of 23) and kidney cancers (six out of 20). Interestingly, DKK1 was
preferentially expressed in oestrogen and progesterone receptor-negative tumours (ER�/PR�; P¼ 0.005) and in tumours from
women with a family history of breast cancer (P¼ 0.024). Importantly, DKK1 protein production was confirmed in multiple breast
cancer specimens that were positive by RT–PCR. This work establishes DKK1 as a potential prognostic and diagnostic marker for
cohorts of breast cancer patients with poor prognosis. Dickkopf-1 may also become a relevant candidate target for immunotherapy
of different cancers.
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Neoplasia frequently results in an aberrant protein expression
profile, including proteins involved in embryogenesis. For
example, a-fetoprotein, which is a fetal serum protein (Taketa,
1990), is also expressed in hepatocellular carcinoma. Frequently,
such genes involved in embryogenesis and fetal development are
re-activated in tumours and may be implicated in the neoplasia
process. The expression of some of these proteins can be exploited
as tumour markers (Gorog et al, 2005), serves in diagnosis,
prognosis and in monitoring of relapse or treatment effectiveness.
Specifically, very few secreted tumour markers are available for the
management of common cancers. In addition, such highly specific
secreted proteins could be targeted as tumour antigens (TA) for
tumour immunotherapy.

Here, we report the expression of Dickkopf-1 (DKK1) in breast
cancer and other tumours. Dickkopf-1 is a secreted protein
involved in embryonic development. Specifically, Wnt-1 protein
binds to the frizzled receptor (Fz) and the low-density lipoprotein

receptor-related protein-5/6 (LRP5/6), triggering signals important
for proliferation via b-catenin. Dickkopf-1 binds to LRP5/6
(Semenov et al, 2001) and blocks interaction with Wnt-1 resulting
in b-catenin degradation and effects on proliferation (Mao et al,
2002). Interestingly, DKK1 expression in cancer has been
described previously, mainly in multiple myeloma (Tian et al,
2003), hepatoblastomas and Wilms’ tumours (Wirths et al, 2003).

In the present work, we exploited publicly available expression
tissue libraries with digital differential display bioinformatic tools
to highlight genes specifically expressed in breast cancer but
absent from normal tissues critical for body functions. Among the
different genes listed, we confirmed that DKK1 was expressed in
breast cancer cells, with restricted expression in the placenta.
Dickkopf-1 appears to be preferentially expressed in hormone-
independent tumours and in tumours from women with a family
history of breast cancer. Interestingly, the expression of this gene
has been confirmed in cancers of other origins, such as the lung,
kidney and melanoma. This work establishes DKK1 as a potential
prognostic and diagnostic marker of aggressive breast cancer
types. In addition, DKK1 could be valuable for detecting lung
and kidney cancers, for which no reliable secreted marker is
available. Finally, DKK1 has become a relevant candidate target for
immunotherapeutic approaches to different cancers, and it may
also have potential in a preventive vaccination strategy for women
at high risk of developing breast cancer.
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MATERIALS AND METHODS

Bioinformatic tools for differential gene expression in
breast cancer compared to normal tissues

To find candidate genes, we exploited the Digital Gene Expression
Displayer (DGED), a bioinformatic tool freely available from the
Cancer Genome Anatomy Project server (http://www.ncbi.nlm.
nih.gov/ncicgap/) (Strausberg et al, 2000), probing two different
complementary DNA (cDNA) expression libraries, expressed
sequence tag (EST; http://cgap.nci.nih.gov/Tissues/GXS) and serial
analysis of gene expression (SAGE; http://cgap.nci.nih.gov/SAGE/
SDGED?METHOD¼ SS10,LS10&ORG¼Hs). These bioinformatic
tools allowed the analysis of expression profiles from the EST and
SAGE databases by the clustering of libraries by origin. All the
available libraries prepared from normal tissues were clustered in
one group, and all available libraries prepared from breast cancers
were clustered in a second distinct group. Candidate genes were
selected on the basis of high expression levels in available human
breast cancer libraries, and absent or low levels in normal human
tissues from important organs.

Cell culture

The breast cancer cell lines MCF-7, MDA231, BT-20, HCC1428
BRCA and HCC2218 BRCA were obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). B lymphocytes
immortalised with Epstein–Barr virus (EBV) HCC1428 and
HCC2218, as well as the lung cancer lines Calu6, H1299, A549,
H460 and H596, the prostate cancer lines DU145, PC-3 and LNCaP,
and the human embryonic kidney (HEK) line 293T were obtained
from the ATCC. The melanoma lines 397mel, 537mel, 586mel,
888mel, 1087mel, 1088mel, 1278mel, 1300mel, 1337mel and MelS-
FB and the kidney cancer line RCC-W were all established at the
Surgery Branch of the National Cancer Institute/National institute
of health, and the SK23 line was acquired from the ATCC. The
ovarian cancer line SKOV3 was also kindly provided by the
Surgery Branch. Most of the cell lines were cultured in RPMI 1640
(Invitrogen; Carlsbad, CA, USA; and Wisent, St-Bruno, Québec,
Canada) supplemented with 10% heat-inactivated foetal bovine
serum (Invitrogen and Wisent), 2 mM L-glutamine, 100 U ml�1

penicillin/streptomycin (Invitrogen) and 10mg ml�1 gentamicin
(Invitrogen). For the HCC breast cancer lines and their
corresponding EBV-B lines, 10 mM HEPES solution (Invitrogen)
and 1 mM sodium pyruvate (Invitrogen) were added to the culture
medium.

Peripheral blood mononuclear cells (PBMC) were collected from
healthy donors recruited by Dr Jean-Pierre Routy at the McGill
University Health Centre (MUHC, Royal Victoria Hospital,
Montréal, Québec, Canada). The PBMC were prepared from blood
by centrifugation on a lymphocyte separation medium (Cellgro,
Herndon, VA and Wisent). To generate CD40-activated B cell
cultures (CD40-B), B cells from bulk PBMC were cultured with
500 ng ml�1 soluble trimeric CD40L (Immunex Corporation,
Seattle, WA, USA) and 250 U ml�1 recombinant human IL-4
(Peprotech, Rocky Hill, NJ, USA) in Iscove’s modified Dulbecco’s
medium (Invitrogen) supplemented with 7.5% human serum
(heat-inactivated, prepared from normal donors), 2 mM L-gluta-
mine, 100 U ml�1 penicillin/streptomycin and 10mg ml�1 gentamicin.
Fresh Iscove medium was added on day 3 with 250 U ml�1 IL-4
and 250 ng ml�1 CD40L as described previously (Lapointe et al,
2003). For T lymphocyte cultures, PBMC were incubated in
complete medium consisting of AIM-V medium (Invitrogen)
supplemented with 5% human AB serum (heat-inactivated; Gemini
Bio-Products, Calabasas, CA, USA), 2 mM L-glutamine, 100 U ml�1

penicillin/streptomycin and 10 mg ml�1 gentamicin (all from
Invitrogen), and supplemented with 300 IU ml�1 recombinant
human IL-2 (Chiron, Emeryville, CA, USA) and 30 ng ml�1 of

agonistic anti-CD3 (OKT3, eBiosciences, San Diego, CA, USA) or
5 mg ml�1 of phytohemagglutinin (PHA; Sigma, Oakville Ontario,
Canada).

Clinical specimens

Breast cancer specimens of 1.5 cm or higher were provided by the
Fonds de la recherche en santé du Québec (FRSQ) Cancer Network
breast tissue library of CHUM – Hôpital Notre-Dame and Hôpital
Hôtel-Dieu (specimens stabilised in RNAlatert, Sigma; for reverse
transcriptase –polymerase chain reaction (RT– PCR) analyses).
Lung cancer specimens were obtained after resection in the
Thoracic Surgery Department of CHUM – Hôpital Notre-Dame
(five samples; stabilised in RNAlater), and all others were acquired
from the Lung Cancer Tissue Library of the FRSQ Respiratory
Health Network of Hôpital Laval (Québec, Québec, Canada; snap-
frozen tumour pieces). Kidney cancer specimens were collected
after partial or total kidney resection at the Montreal General
Hospital (MUHC).

Snap-frozen and RNAlater-stabilised cancer samples were
homogenised with a Medimachinet (Dako Cytomation, Glostrup,
Denmark) according to the manufacturer’s instructions. RNA was
prepared with Qiazol reagent (QIAGEN GmbH, Hilden, Germany),
followed by a cleanup and concentration procedure using the
RNeasyt Mini or Micro Kit (QIAGEN) according to the
manufacturer’s instructions.

The status of the oestrogen and progesterone receptors in the
breast cancer specimens was determined by the clinical pathology
services of CHUM – Hôpital Notre-Dame and Hôpital Hôtel-Dieu.

Reverse transcriptase – polymerase chain reaction

RNA from cell lines and lymphocytes was prepared with Rneasyt
Mini or Micro Kits (QIAGEN) according to the manufacturer’s
instructions. Intron-spanning PCR primers were designed from
genes selected by the bioinformatic approach. To perform classical
and quantitative RT– PCR analyses, cDNA was first synthesised
from mRNA (1 mg) with oligo-dt (Invitrogen) using an Omniscript
Reverse Transcriptase Kit (QIAGEN). Classical RT–PCR amplifi-
cation was undertaken with the HotStartTaq DNA Polymerase
(QIAGEN). The cycling conditions were 15 min at 951C, 24 (b-
actin) or 32 (DKK1 and other genes) cycles of 45 s at 941C, 45 s at
551C, 1 min at 721C, with a final extension of 10 min at 721C, in a
T3 Thermocyclert system (Biometra, Goettingen, Germany). The
primer sequences for b-actin were: 50: GGAAGGCTGGAAGAG
TGCC; and 30: GTGATGGTGGGCATGGGTC, resulting in a 700-bp
amplicon. Amplification was detected by ethidium bromide
staining after electrophoresis migration in agarose gel (1.5 or
2%; with apparatus from Bio-Rad, Hercules, CA, USA). The primer
sequences were as follows: DKK1 (50 primer: ATTCCAACGCTAT
CAAGAACC; 30 primer: CCAAGGTGCTATGATCATTACC,
amplicon 383 bp).

For quantitative real-time RT–PCR, amplification was per-
formed in a LightCyclert system (Roche, Mannheim, Germany)
and revealed with an SYBR Greent kit (Quantitectt SYBR Green
PCR, QIAGEN). Standard curves for each gene were established to
quantify the number of copies for each sample, and expression was
considered only when the sample Ct was within the limit of each
standard curve. The cycling conditions were 15 min at 951C, 40
cycles of 15 s at 941C, 30 s at 551C, 30 s at 721C and 5 s at 821C
(b-actin) or 841C (DKK1). The primer sequences for real-time PCR
were b-actin 50: AAGGCCAACCGCGAG; 30: TAATGTCACGCACGA
TTCCCG; DKK1 50: CTCGGTTCTCAATTCCAACG; 30: GCACTCCT
CGTCCTCTG. Finally, amplification of the relevant amplicon
was confirmed by separation on agarose (2%) gel, revealed as
mentioned earlier. b-actin was exploited as a housekeeping gene. A
sample was considered positive for DKK1 when amplification was
4200 copies of DKK1 per 105 copies of b-actin. This threshold
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value was established considering that the expression levels in
normal tissues were less than 200 copies, with the exception of the
placenta.

Enzyme-linked immunosorbent assay

Cancer cell lines and lymphocytes culture medium were tested
for the presence of secreted DKK1 protein by enzyme-linked
immunosorbent assay (ELISA). Cells were seeded at 1� 105

cells well�1 in flat-bottom 96-well plates (Corning Inc., Corning,
NY, USA). Supernatants were harvested after 24 h and assayed
for DKK1 with the commercial DuoSet Human DKK1 ELISA Kit,
as recommended by the manufacturer (R&D Systems, Minneapo-
lis, MN, USA). The lowest standard point for the ELISA assay was
62 pg ml�1.

Dickkopf-1 protein production was also quantified in breast
cancer lysates. Freshly resected breast cancer specimens provided
by the FRSQ Cancer Network (as mentioned earlier) were
mechanically homogenised in complete AIM-V medium with the
Medimachine (Dako Cytomation) to obtain a single-cell suspen-
sion. Lysates were prepared by five rapid subsequent freeze/thaw
cycles (Lapointe et al, 2003). Cell debris were sedimented, and
supernatants were assayed for DKK1 as described above. Cell line
lysates used as controls were prepared by the same technique, from
1� 107 cells ml�1 suspension.

Statistical analyses

Mean values of DKK1 expression were compared by clinico-
pathological clusters with the two-tailed t-test for independent
samples. Dickkopf-1-positive tumours were compared to DKK1-
negative tumours for the same clusters, using the two-sided
Pearson w2 test. Differences were considered significant at Po0.05.
Statistics were performed with SPSS 13.0 software for Windows
(LEAD Technologies, Chicago, IL, USA).

RESULTS

DKK1 expression in breast cancer cell lines

We originally intended to find new TA for potential applications in
immunotherapy, by exploiting the DGED. This bioinformatic
approach was used as a screening tool to highlight potential
overexpressed genes in breast cancer. This list of genes predicted
by these banks (Supplementary data; Supplementary Table 1) was
considered as preliminary data needing to be further investigated.
By using these mining tools, some genes predicted to be practically
absent from normal tissues later showed expression in various
normal tissues by RT–PCR analyses (e.g. Myl5 and S100A7
Supplementary data, Figure 1A and B). This demonstrates the
importance of confirming the expression profile of genes predicted
with the DGED.

Dickkopf-1, a modulator of the Wnt pathway, emerged as a
candidate overexpressed gene; however, to validate the SAGE
database information, the expression profile was further analysed
and confirmed by RT–PCR. RNA was first prepared from the
different cell lines of breast cancer and other origins. Negative
control cells included PBMC and cultured, activated lymphocytes
to eliminate the possibility of this gene being expressed in
proliferative cells. Intron-spanning PCR primers were designed for
the RT–PCR analysis. Dickkopf-1 expression was confirmed in
breast cancer lines but not in activated lymphocytes (Figure 1A).
High DKK1 protein secretion was confirmed in culture super-
natants harvested from three breast cell lines (MDA231, MCF-7
and HCC1428; Figure 1B). Interestingly, no DKK1 was detected in
the HCC1428 EBV-B cell lines, and a very low amount was found in
BT-20, which reflects the faint band in RT–PCR (Figure 1A).

In summary, we have validated the expression, in breast cancer
lines, of a gene previously selected by the bio-informatic approach.
Although TA are frequently expressed in both fresh tumour
samples and tumour cell lines, confirmation of expression in fresh
breast cancer specimens is essential. Also, limited expression in
normal tissues needed to be evaluated.

DKK1 is expressed in the placenta

Classical and quantitative real-time RT–PCR approaches were
next adopted to evaluate DKK1 expression in normal tissues.
Dickkopf-1 was found exclusively in the placenta (Figure 2A) as
reported previously (Fedi et al, 1999). His restricted expression to
the placenta was further confirmed in a second cDNA panel
prepared from normal tissues (Figure 2B). We also exploited
quantitative real-time RT–PCR to further validate this observation
(Figure 2C). Critically, we confirmed DKK1 expression in the
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Figure 1 Expression profile of genes selected by the bioinformatic
approach in tumour cell lines and PBMC. (A) Messenger RNA was
prepared from the indicated cell lines, and RT–PCR analyses were
performed with the specific primers indicated. Normal primary cell lines
were prepared by stimulation of PBMC with anti-CD3 and IL-2 (T cells), or
with soluble CD40L and IL-4, which stimulate B lymphocytes to proliferate
(B cells). Reverse transcriptase was omitted in the MDA231-RT group and
HCC2218 EBV-B cells (EBV-B�RT). HCC2218 EBV-B and HCC1428
EBV-B are EBV-immortalised B lymphocytes prepared from breast cancer
patient HCC2218 and HCC1428, respectively. Amplification was detected
by ethidium bromide staining after electrophoresis migration in agarose gel.
The results presented are representative of at least three independent
experiments. (B) Indicated tumour cell lines were plated for 24 h in 96-well
plates as described in Materials and Methods. Supernatants were harvested,
and DKK1 secretion was determined by ELISA. The results presented are
an average of at least two independent experiments.
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placenta with two distinct, commercially available mRNAs
prepared from normal tissues (Origene, Rockville, MD, USA and
BD-Clontech, Mountain View, CA, USA), and a weak detection in
some normal tissues. Minimal DKK1 expression was further
confirmed from normal breast tissues prepared from five different
donors (Figure 2D).

Preferential expression of DKK1 in hormone-resistant
breast cancer, in familial cases and in primary tumours
from patients with invaded axillary nodes

To further characterise DKK1 expression in breast cancer tumours,
we next assessed DKK1 expression profiles in clinical breast cancer
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specimens. Globally, DKK1 was detected in 21 out of 73 patient
specimens evaluated (Figure 3A). The expression profile was
clustered based on clinicopathological parameters characterising
breast cancer. Dickkopf-1 expression profile was first analysed
according to hormone receptors status (oestrogen and progester-
one receptors; Figure 3A). Precisely, in DKK1þ tumours, the
mRNA level was significantly higher in ER�/PR� compared to
other tumours (respectively 818 vs 213 DKK1 mRNA copies/105

b-actin copies, P¼ 0.009; Figure 3B). Also, as shown in Figure 3C, a
statistical difference was demonstrated in the preferential DKK1
expression of hormone-independent tumours (P¼ 0.005). This

preferential expression was observed mainly in the absence of both
hormone receptors. Specifically, only one out of the five ER�/PRþ

tumours evaluated was DKK1þ (data not shown). Similar results
were obtained with the ERþ /PR� group (one DKK1þ specimen of
eight tested; data not shown).

We also evaluated expression depending on familial history, and
48% of DKK1þ tumours arose from women reporting familial
cases of breast cancer (Figure 3D). When we compared the cohort
tested, DKK1 expression was preferentially and significantly
expressed in women with familial cases of breast cancer
(P¼ 0.024). Dickkopf-1 was also preferentially detected in primary
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pathology clinical department (score: �: negative, þ : positive, w: weakly positive, NA: not available). Dickkopf-1 levels from mRNA-positive tumours were
clustered according to ER/PR status; statistical significance was evaluated by t-test (B). DKK1þ and DKK1� samples were clustered according to ER/PR
status; statistical significance was evaluated by the w2 test (C). (D) DKK1þ and DKK1� samples were clustered according to the reported familial history of
breast cancer; statistical significance was evaluated by the w2 test. (E) DKK1þ and DKK1� samples were clustered according to the number of metastastic
axillary nodes; statistical significance was evaluated by the w2 test. (F) DKK1þ and DKK1� samples were clustered according to the tumour stage grouping
(AJCC); statistical significance was evaluated by the w2 test. (G) A crude protein extract was prepared from available tumour samples as described in
Materials and Methods. Dickkopf-1 secretion was determined by ELISA. The results presented are the average of at least two independent experiments.
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tumours of patients with a higher number of metastatic axilliary
lymph nodes, specifically with 10 or more invaded nodes
(Figure 3E, P¼ 0.002). Additionally, a higher proportion of
DKK1 positive tumours was found in advanced breast cancer
stages (American Joint Committee on Cancer, TNM stage group-
ing; Figure 3F). All tumours from patients with stage IIIC were
DKK1þ (P¼ 0.04), which includes tumours of any size presenting
10 or more metastatic axillary nodes. Finally, although it did not
reach statistical significance, DKK1 expression was also documen-
ted in some of the most aggressive tumours, namely, in 39% of
poorly differentiated histopathological grade 3 tumours and in
31% of tumours wider than 2 cm in their greatest diameter (data
not presented). Furthermore, HER-2/neu overexpression was
observed in only one DKK1-positive tumour. Dickkopf-1 expres-
sion was found in lobular as well as in ductal carcinomas and
was not associated with recurrence. Altogether, cluster analysis
revealed significant preferential DKK1 expression in familial and
hormone-resistant breast cancers, which also encompassed the
most aggressive tumours.

Importantly, DKK1 protein production was evaluated by ELISA
in crude extracts prepared from breast cancer clinical specimens.
As shown in Figure 3G, we detected DKK1 protein in four out of
the six RT–PCR/DKK1þ samples. The two samples in which no
DKK1 protein was detected had the lowest level of mRNA (o260
copies). Interestingly, when we evaluated 12 samples that were
originally categorised as DKK1� by RT–PCR, 11 were negative for
the DKK1 protein and one was positive (the mRNA for this sample
was prepared from an ER�/PR� specimen).

Altogether, these data demonstrate DKK1 production (mRNA
and protein) from breast cancer specimens, with a preferential
expression pattern in tumours with poor outcomes.

DKK1 is expressed in multiple tumour types

We next evaluated if DKK1 was expressed in tumours of other
origins. Interestingly, as seen in Figure 4A and B, DKK1 expression

was revealed in cell lines derived from lung cancer (five out
of five), melanomas (nine out of 11), ovarian cancer (SKOV3)
and colon cancer (HCT116). Dickkopf-1 was detected in two
prostate cancer lines known to be hormone-independent (DU145
and PC3), but not in LNCaP, which is hormone-dependent
(Figure 4B). The latter observation further corroborated previous
findings on breast cancers, where DKK1 was preferentially
expressed in hormone receptor-negative tumours (Figure 3C).
Expression of DKK1 in some cancer cell lines was also confirmed
by real time RT– PCR (Supplementary data, Figure 2). Dickkopf-1
protein secretion was evaluated in culture supernatants. As
presented in Figure 4C, secretion was confirmed in cancer cell
lines derived from the prostate (PC3), colon (HCT116), lung
(H460) and one melanoma (586mel). Surprisingly, DKK1 was
barely detected in two other melanoma lines that were positive for
mRNA. We further evaluated DKK1 in cell extracts from these
two melanoma lines, but no protein was detected, excluding
the possibility that DKK1 is sequestered inside the cell (data
not shown).

Finally, as depicted in Figure 4D, expression was evaluated in
clinical samples prepared from kidney cancer, and we detected
DKK1 at 4200 copies/1� 105 copies of b-actin in six specimens
(n¼ 20). In addition, DKK1 was found in 11 out of 23 lung cancer
specimens (Figure 4E). Altogether, these data suggest that DKK1 is
a shared antigen expressed in multiple cancer types.

DISCUSSION

Tumours have an aberrant protein expression profile as a
consequence of genomic and proteomic alterations. Frequently,
genes specialised in embryonic development are abnormally
expressed in tumours. We describe here DKK1 expression in
human tumours of various origins, including breasts, lungs and
kidneys. Dickkopf-1, which is involved in some aspects of
embryonic development, was detected in mature human tissues,
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Figure 4 Dickkopf-1 expression in tumours derived from multiple sites. (A and B) Messenger RNA was prepared from the cancer cell lines indicated and
RT–PCR analyses were performed with specific primers. Amplification was detected by ethidium bromide staining after electrophoresis migration in agarose
gel. (C) The tumour cell lines indicated were plated for 24 h in 96-well plates as described in Materials and Methods. Supernatants were harvested, and
DKK1 secretion was determined by ELISA. An average of at least two independent experiments is presented for each sample. (D and E) Complementary
DNAs were prepared from the indicated controls and clinical samples of kidney (D) or lung (E) cancers. Amplification was undertaken by real-time PCR and
revealed by SYBR green staining. Amplification of the relevant amplicon was further confirmed by separation on agarose gel and ethidium bromide staining.
Legend: 293 are HEK-293 T HEK cells.
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mainly in the placenta, an observation reported by Fedi et al
(1999). Interestingly, by analysing its expression profile in breast
cancer patients, DKK1 appears in tumours with a poor outcome,
specifically hormone-independent cases. Also, we reported pre-
ferential tumour expression in women with familial cases of the
disease. Finally, we observed substantial DKK1 protein secretion in
breast cancer lines, which was further confirmed in crude extracts
prepared from breast cancer specimens.

In the embryo, DKK1 functions as a secreted protein interfering
with the canonical Wnt pathway (Mao et al, 2002). In the absence
of DKK1, Wnt interacts with two co-receptors, namely, LRP5/6 and
Fz, which results in b-catenin accumulation and migration to the
nucleus. Consequently, interaction with the transcription factor
TCF delivers positive signals for cell proliferation (reviewed in
Rothbacher and Lemaire, 2002; Brennan and Brown, 2004).
Interestingly, in 1982, Nusse and Varmus (1982) identified the
first Wnt gene as being a mammary oncogene, and several
members of the Wnt family have been linked to cancer
development, especially of the breast (reviewed in Li et al, 2000).
Surprisingly, low levels of membranous b-catenin expression have
been associated with significantly worse outcomes (Dolled-Filhart
et al, 2006), which contradicts other studies (Lin et al, 2000; Chung
et al, 2004). As such, there is still much debate about the link
between tumour aggressiveness and b-catenin expression. Inter-
estingly, DKK1 negatively affects the Wnt pathway. At the
adequate time during embryogenesis, DKK1 is secreted and binds
to the LRP5/6 co-receptor (Semenov et al, 2001), blocking
interaction with secreted Wnt protein, causing b-catenin degrada-
tion and stopping TCF-regulated gene expression in the nucleus.
This mechanism of DKK1 action is important in limb and head
development (Glinka et al, 1998; Mukhopadhyay et al, 2001).
Conversely, inhibition of the Wnt pathway by DKK1 initiates
cardiogenesis early in vertebrate embryos (Marvin et al, 2001;
Foley and Mercola, 2005).

Dickkopf-1 has been studied in the context of colon and gastric
cancers. In colon cancer, Gonzalez-Sancho et al (2005) reported
that the loss of DKK1 expression may open the door to cancer by
removing the inhibitory effect on the Wnt/b-catenin pathway.
Dickkopf-1 epigenetic inactivation may be a consequence of CpG
methylation (Aguilera et al, 2006; Mikata et al, 2006). However,
hypermethylation has been observed in only 17% of colon cancer
clinical specimens, which indicates that this phenomenon is real
but cannot be generalised (Aguilera et al, 2006). Also, the
convincing mechanistic demonstration was performed mostly with
cancer cell lines treated with the demethylating agent 5-aza-20-
deoxycytidine (DAC) and contradicts the fact that DKK1 is
secreted by many highly proliferative cancer cell lines (Figures
1B, 3G and 4C) and is detected in many breast, kidney and lung
cancer specimens.

Consequently, DKK1 may have either negative or positive
consequences on development, depending on time and tissue
distribution during embryogenesis. In cancer, DKK1 expression
does not apparently alter cell growth, especially since we noted its
expression in tumours with poor prognosis. The link between
DKK1 and Wnt in the context of cancer progression is plausible
and currently under investigation. Previous studies have shown
that artificial DKK1 expression in some tumour lines with
constitutive activation of the b-catenin pathways resulted in some
decrease of cell viability but only in the presence of an oxidative
stress inducer (Bafico et al, 2004). In cancer cell lines such as
MDA231 and HCT116 where b-catenin is upregulated, the addition
of inhibitors of the canonical Wnt pathway (other than DKK1) led
to a marked reduction of free b-catenin (Bafico et al, 2004;
Gregorieff and Clevers, 2005). However, according to our findings,
these two cell lines already secrete high levels of DKK1 protein,
which is known to be an inhibitor of the canonical Wnt pathway.
Consequently, none of these in vitro studies correlate with the
clinical observation we report here, about the presence of DKK1

protein in growing tumours from breast cancer patients. It is too
early to speculate as to whether DKK1 plays a role in cancer similar
to its known function in normal cells and in embryogenesis. It may
be possible that DKK1 overexpression in in vitro systems may be
masked by its other features when expressed at a physiological
level. Still, a high cytoplasmic b-catenin level was found in patients
with poor prognosis (Lin et al, 2000). DKK1 has been linked to
other attributes specific to cancer cells. For example, Hall et al
(2005) have recently reported that prostate cancer-derived DKK1 is
involved in osteoblastic activity in bone metastases.

Dickkopf-1 could also be involved in particular phenotypes of
hormone responsive tumours. We observed statistically significant
preferential DKK1 expression in hormone receptor-negative
(ER�/PR�) breast tumours (Figure 3B and C). Dickkopf-1 is regulated
by progesterone in normal endometrial stroma cells (Tulac et al,
2006), but there is insufficient topical DKK1 expression in normal
tissue for it to be linked to the expression profile reported here
in breast cancer. Interestingly, Faivre and co-workers recently
reported that the Wnt pathway can be upregulated by the
progesterone receptor in breast cancer (Faivre and Lange, 2007).
However, it is too soon to establish a link between DKK1
expression and the absence of hormone receptors. In fact, we
observed DKK1 in two hormone-independent prostate cancer
lines (DU45 and PC3; Figure 4B) but not in a hormone-dependent
tumour (LNCaP). This expression profile is similar to that
observed in breast cancer. Finally, we observed coexpression of
DKK1 and HER-2/neu in breast cancer cells in only one out of the
21 DKK1þ tumours (data not shown). Consequently, only one of
those tumours would be eligible for treatment with HerceptinTM,
an antibody interfering with tumour progression. This further
emphasises the necessity of finding additional targets for
immunotherapy.

Interestingly, DKK1 could have potential applications as a
secreted tumour marker for cancer diagnosis, staging and
monitoring of relapse. Additional investigations are required to
establish the feasibility of DKK1 protein detection in different
body specimens or fluids.

In conclusion, as DKK1 is specifically expressed in common
cancers, and absent from essential normal tissues, this protein is
a potential TA for cancer immunotherapy. Its role as an inhibitor
of the Wnt canonical pathway in normal cells aside, it may be
possible to target DKK1 for a cytotoxic response through CD8þ

T-cell recognition as a consequence of internal antigen processing
leading to MHC class I presentation. In addition, a humoral
response may be involved, as antigen-presenting cells can take
up secreted tumour-derived DKK1 and elicit a CD4þ helper
T-lymphocyte response. Importantly, considering that DKK1 is
preferentially expressed in tumours from women with a family
history, but absent from important normal tissues, the protein
could be targeted in a preventive vaccine for women at risk of
developing the condition. Actually, about 70–80% of women at
high risk for breast cancer are predicted to develop the disease
and, presently, with the exception of radical mastectomy, no
effective prevention strategies are available.
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