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Abstract 

The recent outbreak of novel coronavirus disease -19 (COVID-19) calls for and welcomes possible 

treatment strategies using drugs on the market. It is very efficient to apply computer-aided drug 

design techniques to quickly identify promising drug repurposing candidates, especially after the 

detailed 3D-structures of key virous proteins are resolved. Taking the advantage of a recently 

released crystal structure of COVID-19 protease in complex with a covalently-bonded inhibitor, 

N3,1 I conducted virtual docking screening of approved drugs and drug candidates in clinical trials. 

For the top docking hits, I then performed molecular dynamics simulations followed by binding 

free energy calculations using an endpoint method called MM-PBSA-WSAS.2-4 Several promising 

known drugs stand out as potential inhibitors of COVID-19 protease, including Carfilzomib, 

Eravacycline, Valrubicin, Lopinavir and Elbasvir. Carfilzomib, an approved anti-cancer drug 

acting as a proteasome inhibitor, has the best MM-PBSA-WSAS binding free energy, -13.82 

kcal/mol. Streptomycin, an antibiotic and a charged molecule, also demonstrates some inhibitory 

effect, even though the predicted binding free energy of the charged form (-3.82 kcal/mol) is not 

nearly as low as that of the neutral form (-7.92 kcal/mol). One bioactive, PubChem 23727975, has 

a binding free energy of -12.86 kcal/mol. Detailed receptor-ligand interactions were analyzed and 

hot spots for the receptor-ligand binding were identified. I found that one hotspot residue HIS41, 

is a conserved residue across many viruses including COVID-19, SARS, MERS, and HCV. The 

findings of this study can facilitate rational drug design targeting the COVID-19 protease.  

  

    

  

 



1. Introduction 

A great application of drug repurposing is to identify drugs which were developed for treating 

other diseases to treat a new disease. Drug repurposing can be achieved by conducting systematic 

drug-drug target interaction (DTI) and drug-drug interaction (DDI) analyses. We have conducted 

a survey on DTIs collected by the DrugBank database5 and found that on average each drug has 3 

drug targets and each drug target has 4.7 drugs.6 The analysis demonstrates that polypharmacology 

is a common phenomenon. It is important to identify potential DTIs for both approved drugs and 

drug candidates, which serves as the basis of repurposing drugs and selection of drug targets 

without DTIs that may cause side-effects. Polypharmacology opens novel avenues to rationally 

design next generation of more effective but less toxic therapeutic agents. Computer-aided drug 

design (CADD) has been playing essential roles in modern drug discovery and development. To 

balance the computational efficiency and accuracy, a hieratical strategy employing different types 

of scoring functions are applied in both the drug lead identification and optimization phases. A 

docking scoring function, such as the one employed by the Glide docking program,7 is very 

efficient and thus can be utilized to screen a large library, but it is not very accurate. On the other 

hand, the molecular mechanical force field (MMFF)-based scoring functions, are physical and 

more accurate, but much less efficient. With the ever increasing computer power, MMFF-based 

free energy calculation methods, such as the endpoint MM-PB/GBSA (molecular mechanics-

Poisson Boltzmann/ Generalized Born Surface Area) methods2, 3, 8-21 and the alchemical 

thermodynamic integration (TI) and free energy perturbation (FEP) methods,22, 23 have been 

extensively applied in structure-based drug discovery projects. Recently we’ve developed a 

hierarchical virtual screening (HVS)to balance the efficiency and accuracy and improve the 

success rate of rational drug design.8, 24The newly released crystal structure of COVID-191 

provides a solid structural basis for identification of drugs that might interact with this protein 

target. In this work, I applied multiscale modeling techniques to identify drugs that may be 

repurposed to target COVID-19 protease Flexible docking and MM-PBSA-WSAS were applied 

as the 1st and 2nd filters, respectively, to improve the efficiency and accuracy of HVS to identify 

inhibitors of COVID-19. Compared to the experimental means, CADD-based approaches are more 

efficient in providing possible treatment solutions for epidemic disease outbreaks like COVID-19. 

The detailed ligand-residue interaction profile as well as the decomposition of binding free energy 



into different components provide insight into rationally designing potent and selective inhibitors 

targeting COVID-19 protease.  

 

2. Methodologies. 

 I conducted a hierarchical virtual screening (HVS) using the newly resolved crystal structure 

of COVID-19 protease (Resolution 2.16Å).1 Two types of HVS filters were employed: Glide7 

flexible docking followed by MM-PBSA-WSAS.2, 4 Detailed computational methods are described 

below. 

 

2.1 Docking Screening  

 The crystal structure was first treated using the protein structure preparation wizard provided 

by the Schrodinger software, followed by docking grid generation. Glide flexible docking was 

performed using the default settings except that the formation of intramolecular hydrogen bonds 

was rewarded and the enhancement of planarity of conjugated pi groups was turned on. The co-

crystal ligand, N3, was covalently bonded to CYS145. I generated a new version of N3, N3’ by 

breaking the covalent bond and filling in open valence. I then evaluated whether Glide flexible 

docking can reproduce the native binding pose. In addition, dataset of approved drugs was 

prepared using DrugBank,5 and a set of PubChem compounds which are structurally similar to 

Lopinavir were enriched for docking screenings. Lopinavir, a potent inhibitor of HIV-1 protease,25 

was found effective in treating COVID-19 patients. Top hits from the docking screenings were 

advanced to the next HVS filter – MM-PBSA-WSAS.   

 

2.2 System setup for molecular dynamics (MD) simulation and free energy calculation 

 MD simulations were first performed for a docking hit for two purposes: (1) studying the 

relative stability of the ligand residing in the binding pocket; (2) sampling a set of conformations 

for MM-PBSA-WSAS binding free energy calculations and MM-GBSA residue-ligand binding 

free energy decomposition analysis. A MD system consisted of one copy of COVID-19 protease, 

one copy of docked ligand, 17597 TIP3P26 water molecules, about 50 Na+ and Cl- ions depending 

on the charge state of the ligand. The whole system was neutralized. For the force field parameters, 

the partial atomic charges of ligands were derived using the RESP27 program to fit the HF/6-31G* 

electrostatic potentials generated using the GAUSSIAN 16 software package28. The other force 



field parameters were derived from GAFF29 and the AMBER FF14SB30 force field to model 

proteins. The residue topologies for ligands were prepared using the Antechamber module.31 For 

the covalently-bonded N3 ligand, I applied the residuegen program to generate non-standard amino 

acid residue topology.  

 

2.3 MD Simulation Protocols.  

For a protein-ligand complex, the MD system was first relaxed through a series of minimization 

procedures. The mainchain atoms of the receptor and the bound ligand were restrained using a 

harmonic potential and its force constant decreased from 20 to 10, 5, 1 and 0 kcal/mol/Å2, 

progressively in five 10,000-step minimizations. Note that the last step applied no restraint at all 

as the force constant is 0. The system was further relaxed by a set of 100-picosecond atomistic 

MD simulations with the same restrain setting of minimizations.  

 There were three phases for a MD simulation: the relaxation phase, the equilibrium phase, and 

the sampling phase. In the relaxation phase, the simulation system was heated up progressively 

from 50 K to 250 K at steps of 50 K. At each temperature, a 1-nanosecond MD simulation was 

performed without any restraints or constraints. In the next equilibrium phase, the system was 

equilibrated at 298 K, 1 bar for 20 ns. Finally, a 100-nanosecond MD simulation was performed 

at 298 K, 1 bar to produce NTP (constant temperature and pressure) ensembles. In total, 10,000 

snapshots were recorded from the last simulation. 200 snapshots were evenly selected for the MM-

PBSA-WSAS binding free energy calculation and 5000 were selected for the MM-GBSA ligand-

protein binding free energy decomposition analysis. Additional settings for constant pressure MD 

simulations performed in this work are listed as follows: temperature was regulated using Langevin 

dynamics32  with a collision frequency of 5 ps-1; pressure was regulated using the isotropic position 

scaling algorithm with the pressure relaxation time set to 1.0 ps; integration of the equations of 

motion was conducted at a time step of 1 fs for the two relaxation phases and 2 fs for the 

equilibrium and sampling phases. The Particle Mesh Ewald (PME) method33 was used to calculate 

the full electrostatic energy of a unit cell in a macroscopic lattice of repeating images. All bonds 

were constrained using the SHAKE algorithm34 in both the minimization and MD simulation 

stages. All MD simulations were performed using the pmemd program in AMBER 18.35 

 

2.4 MM-PBSA-WSAS Binding Free Energy Calculation  



200 MD snapshots were evenly selected for the binding free energy calculations. For each selected 

MD snapshot, the molecular mechanical (MM) energy (EMM) and the MM-PBSA solvation free 

energy were calculated without further minimization.8, 10, 11, 36-38 Key parameters controlling the 

MM-PBSA-WSAS analyses are listed as follows: external dielectric constant: 80; internal 

dielectric constant: 4; and the surface tension for estimating the nonpolar solvation energy by using 

solvent assessible surface area: 0.054. The Parse radii39 were used in the MM-PBSA solvation 

calculation using the Delphi package (http://compbio.clemson.edu/delphi). The entropic term was 

estimated using a method coined WSAS (weighted solvent accessible surface area) described 

elsewhere.4  It is noted that the entropic contribution cannot be neglected for this protein target as 

most ligands are large and have many rotatable bonds. 

 

2.5 MM-GBSA Ligand-Residue Free Energy Decomposition Analysis  

I conducted ligand-residue free energy decomposition analysis for 5000 snapshots evenly selected 

from the sampled snapshots. Besides the electrostatic and van der Waals interactions, the solvation 

effect was taken into account using a Generalized GB model developed by Onufriev et al.40 The 

ligand-residue MM-GBSA interaction energies were calculated using the Sander program in 

AMBER18.35 Data analysis was performed using an internal program developed by us. A hotspot 

residue is recognized when its ligand-residue MM-GBSA interaction is stronger than -1.0 kcal/mol.   

 

3. Results  

 In this work, I have performed two-step hierarchical virtual screenings to identify repurposing 

drugs targeting COVID-19 protease. 

 

3.1 Docking Screenings.  

After downloading the crystal structure of COVID-19, I performed Glide docking screenings for 

a set of datasets (approved drugs, investigational drugs, and experimental drugs) downloaded from 

DrugBank.5 I first evaluated the docking power of Glide for the co-crystal ligand of COVID-19, 

N3. The ligand RMSD of the best docking pose based on docking score (-9.398), 3.32 Å, was 

acceptable for a big ligand of about 100 atoms in flexible docking. I then applied the docking 

setting to conduct docking screenings. All the drug molecules that had docking scores better than 



-8.5 kcal/mol, which accounted for about 1% of total screening compounds, were selected as hits 

and advanced to the next filter – MM-PBSA-WSAS.  

    

3.2 MD Simulations 

For the promising docking hits, I conducted molecular dynamics (MD) simulations using the 

AMBER software package.35  In total 39 ligands including the co-crystal N3 ligand, were studied 

in the second phase of HVS. The Top 5 approved neutral drugs that have excellent MM-PBSA-

WSAS binding free energies (Gbind <=-5.0 kcal/mol) are shown in Figure 1. The 2D structures of 

charged drugs with at least one form achieved Gbind <=-5.0 kcal/mol are shown in Figure 2. I also 

found two bio-actives (Figure 3), which are structurally similar to Lopinavir, have excellent 

binding free energies (Section 3.3). It is noted that Lopinavir was observed to be effective in 

treating COVID-19.  

 

Figure 1. 2D-Structures of promising repurpose drugs. All five approved drugs are in neural form 

under physiological conditions. 



 

 

Figure 2. 2D-Structures of promising repurposing drugs. All three approved drugs are in charged 

form under physiological conditions.  

 

 

Figure 3. 2D-Structures of promising bio-actives which are structurally similar to Lopinavir. 

PubChem 88143175, although studied in neutral form, bears -3 charges under physiological 

conditions.  

 



 

Figure 4. Plots of Root-mean-square deviations of receptor main chain atoms and ligand heavy 

atoms along the MD simulation time for (A) co-crystal ligand N3, (B) DB08889, (C) DB12329, 

(D) DB00385, (E) DB01601 and (F) DB11574.   

 

 I explored the MD stability of each MD system. Figure 4 showed the RMSD fluctuations along 

the MD simulation time. It is shown that the mainchain atoms of the receptor (black curves) and 

the secondary structures (red curves) reached equilibrium after 20 nanoseconds. The least-square 

(LS) fitted RMSDs of the ligands (green curves) are around 2 Å, which is reasonable for large 

ligands like COVID-19 protease inhibitors. A ligand’s No-Fit RMSD was calculated by first 

performing LS-fitting for the main chain atoms of the receptor and the resulting translation-rotation 

matrix was applied to the ligand, and then the RMSD was calculated directly. Evidently, the ligand 

No-Fit RMSDs measures not only the conformational changes, but also its translational and 

rotational movements inside the binding pocket. The ligand No-Fit RMSDs (blue curves) are larger 

than the LS-Fit values, however, those values around 3-4 Å are still acceptable for large ligands. 

In summary, the RMSD fluctuation analysis suggests that the MD trajectories are overall stable 

during the sampling phase for all the studied MD systems.   

     I first generated the average structure of the collected snapshots, and then the MD snapshot that 

had the smallest main chain atom RMSD against the average structure was chosen as the 

representative conformation. The comparisons between the crystal structure and the representative 

MD conformations are shown in Figure 5 for the native ligand N3, and Figures 6-8 for the other 



ligands.  As shown in Figure 5, the benzene motif located in the dashed red cycle was inserted 

between two hotspot residues (HIS41 and MET49) for the MD structure, which is quite distinct 

from the crystal structure, which shows that the benzene motif has no direct interactions with HIS4 

and MET49. I believe that under physiological conditions, the benzene motif becomes less solvent 

exposed and has more favorable interactions with HIS4 and MET49 by inserting itself between 

the side chains of the two residues. As shown below, both HIS4 and MET49 were hotspot residues 

in our MM-GBSA free energy decomposition analysis.  

 

3.3 MM-PBSA-WSAS Binding Free Energy Calculations 

   I measured the ligand binding affinity using the endpoint MM-PBSA method. Considering the 

ligands of COVID-19 protease are flexible molecules with large sizes, the contribution from 

conformational entropy cannot be neglected. Instead of applying normal mode analysis to estimate 

the entropic effect, I applied an efficient method called WSAS4 to calculate this energy term. This 

scoring function is therefore called MM-PBSA-WSAS. The calculated binding free energies and 

the Glide docking scores are summarized in Table 1. The calculated entropic term, TS, is quite 

different for different ligands as shown in Table 1, suggesting the necessity of including this term 

in binding free energy calculations. The structures of the promising drug repurposing candidates, 

which have both excellent docking scores and MM-PBSA-WSAS binding affinities are shown in 

Figures 1-3. All the known drugs shown in Figure 1 are neutral and have a better MM-PBSA-

WSAS affinity than -5.0 kcal/mol. It should be noted that the cocrystal ligand, N3 is covalently 

bonded to the receptor, therefore its binding free energy is not directly comparable to those non-

covalent ligands. The individual terms of MM-PBSA-WSAS binding free energies of other less 

potent ligands were summarized in Table S1.   

 The values of each energy term, van der Waals (EVDW), electrostatics (EVDW + GPB), 

nonpolar solvation term (GSA), and entropy (TS), vary significantly from one system to another 

(Table 1 and Table S1), suggesting there is no single energy term that dominates the protein-ligand 

interaction.   

 For the charged drug molecules, caution should be taken in result interpretation. For example, 

the neural form of Streptomycin (DB01082) has a MM-PBSA-WSAS binding free energy of -7.92 

kcal/mol, much better than the charged form (-3.82 kcal/mol). However, the latter is dominant 



under physiological conditions. We therefore should use the result of the charged form or take the 

penalty of protonation into consideration when using the result of the neutral form.   

 

Table 1. List of Glide docking scores and MM-PBSA-WSAS binding free energies for 

potential inhibitors binding to COVID-19 protease (in kcal/mol). PubChem IDs are listed for 

the two bio-actives. The entropic contribution was estimated using T of 298.15 K. 

Compound Name Docking Score EEEL EVDW GPB GSA TS Gbind 

Co-crystal ligand covalently 

bonds to sulfur of CYS145 

- -75.13  0.27 -81.97  0.39 84.01  0.23 -6.47  0.02 -29.75  0.14 -38.79  0.64 

Co-crystal ligand 

(no covalent bond formed) 

-9.40 -52.28  0.27 -26.90  0.30 56.32  0.15 -4.82  0.04 -24.14  0.05 -3.55  0.36 

Neutral Approved Drugs 

DB08889 -8.56 -75.66  0.41 -40.93  0.09 78.31  0.42 -5.97  0.02 -30.43  0.07 -13.82  0.20 

DB12329 -8.75 -45.70  0.39 -25.46  0.55 45.00  0.28 -3.40  0.01 -21.82  0.04 -7.73  0.52 

DB00385 -9.19 -59.84  0.23 -21.49  0.21 52.85  0.41 -4.55  0.01 -25.86  0.07 -7.16  0.13 

DB01601 (Lopinavir) -9.77 -52.46  0.33 -20.09  0.63 46.58  0.56 -4.59  0.02 -23.93  0.01 -6.63  0.28 

DB11574 -9.89 -70.57  0.36 -21.78  0.41 65.64  0.64 -6.38  0.01 -26.57  0.17 -6.53  0.31 

Charged Approved Drugs 

DB01082 (NC=0) -8.61 -45.99  0.35 -71.69  0.95 89.35  0.88 -3.78  0.02 -24.19  0.04 -7.92  0.41 

DB01082 (NC=2) -6.88 -33.35  0.56 -279.99  1.55 291.70  1.28 -3.41  0.03 -21.24  0.09 -3.82  0.52 

DB03147 (NC=0) -10.22 -67.82  0.26 -67.58  0.92 106.61  0.62 -5.00  0.01 -26.31  0.06 -7.48  0.53 

DB03147 (NC=-2) -8.30 -52.86  0.05 123.04  0.26 -74.27  0.51 -4.49  0.01 -23.22  0.06 14.65  0.29 

DB11184 (NC=0) -8.64 -57.38  0.82 -52.20  0.36 82.23  0.29 -4.86  0.01 -25.38  0.06 -6.82  0.26 

DB11184 (NC=-4) -7.44 -50.10  0.35 175.38  1.59 -148.74  0.82 -4.45  0.02 -22.90  0.06 -5.00  0.52 

Bio-actives Structurally Similar to Lopinavir 

23727975 -8.84 -63.78  0.10 -50.11  0.66 77.91  0.10 -5.16  0.01 -28.28  0.09 -12.86  0.51 

88143175 (NC = 0) -10.05 -73.93  0.24 -104.49  1.29 148.93  0.86 -6.64  0.02 -30.48  0.04 -5.65  0.62 

 

3.4 MM-GBSA Free Energy Decomposition.  

 I performed MM-GBSA binding free energy decomposition to identify the hotspot residues 

which make substantial contributions to the protein-ligand binding. The identified hotspots could 

enable us to rationally design potent and selective inhibitors of this drug target. To obtain 

statistically meaningful results, I studied 5000 MD snapshots for each system, and both the average 

ligand-residue interaction energies (Glig-res) and their RMSD values were calculated. 

 A hotspot residue is defined as a residue with Glig-res equal to or smaller than -1.0 kcal/mol. 

The identified hotspots of each ligand are summarized in Table 2. The most significant hotspot 

residues (Glig-res<-3.0) are illustrated in Figures 5-8. The common significant hotspot residues for 



most ligands (in bold in Table 2) are as follows:  HIS41, MET49, ASN142, HIS164, MET165, 

GLU166, and GLN189.  

 

Figure 5. Structural comparison between the crystal structure and a representative MD structureof 

COVID-19 protease bound to the known ligand, N3 . The crystal structure is shown as blue cartoon 

with the co-crystal ligand shown as brown sticks, while the representative MD structure is shown 

in grey cartoon and the ligand as green sticks (Panel A). The hotspot residues (GLig-Res < -3.0 

kcal/mol) revealed by MM-GBSA analysis are shown in Panel B; the more bluish a residue is 

colored, the stronger the interaction between the residue and the ligand.   

 

Figure 6. Structural comparison between the crystal structure and a representative MD structure 

of COVID-19 protease bound to three neutral ligands DB08889, DB12329, and DB00385. The 

crystal structure is shown as blue cartoon with the docked ligand shown as brown sticks, while the 

representative MD structure is shown in grey cartoon and the ligand as green sticks. A:  DB08889, 



B: DB12329, and C: DB00385. The detailed ligand-receptor interactions are shown in the bottom 

panel (D-F). All the hotspot residues (GLig-Res < -3.0) revealed by MM-GBSA analyses are labeled 

and colored by a blue to red spectrum, the more bluish a residue is colored, the stronger the 

interaction between the residue and the ligand. D:  DB08889, E: DB12329, and F: DB00385. 

 

 

Figure 7. Structural comparison between the crystal and a representative MD structure of COVID-

19 protease bound to two neutral ligands DB01601 and DB11574. The crystal structure is shown 

as blue cartoon with the docked ligand shown as brown sticks, while the representative MD 

structure is shown in grey cartoon and the ligand as green sticks. A: DB01601 and B: DB11574. 

The detailed ligand-receptor interactions are shown in the bottom panel (C-D). All the hotspot 

residues (GLig-Res < -3.0) revealed by MM-GBSA analyses are labeled and colored by a blue to 

red spectrum, the more bluish a residue is colored, the stronger interaction between the residue and 

the ligand. C: DB01601 and D: DB11574.  

 



 

Figure 8. Structural comparison between the crystal structure and a representative MD structure 

of COVID-19 protease bound to three charged ligands DB01082, DB03147, and DB11184. The 

crystal structure is shown as blue cartoon with the docked ligand shown as brown sticks, while the 

representative MD structure is shown in grey cartoon and the ligand as green sticks. A:  DB01082, 

B: DB03147, and C: DB11184. The detailed ligand-receptor interactions are shown in the bottom 

panel (D-F). All the hotspot residues (GLig-Res < -3.0) revealed by MM-GBSA analyses are labeled 

and colored by a blue to red spectrum, the more bluish a residue is colored, the stronger the 

interaction between the residue and the ligand. D:  DB01082, E: DB03147, and F: DB11184. 

 

Table 2: Ligand-residue MM-GBSA interaction energies (kcal/mol). PubChem IDs are listed 

for the two bio-actives. The common hotspots for all the ligands are: HIS41, MET49, ASN142, 

HIS164, MET165, GLU166, and GLN189.   

Resid

ue 

ID 

Resid

ue 

Type 

Co-

crystal 

Ligand 

Neutral Approved Drug Charged Approved Drug Bioactive 

DB088

89 

DB123

29 

DB003

85 

DB016

01 

DB115

74 

DB010

82 

DB031

47 

DB111

84 

237279

75 

881431

75 

24 THR -0.09 -0.15 -0.04 -0.04 -0.06 -0.93 -0.01 -0.10 -0.28 -0.08 -1.40 

25 THR -1.51 -1.50 -0.15 -0.55 -1.56 -4.04 -0.10 -1.60 -3.18 -0.64 -3.68 

26 THR -0.61 -0.90 -0.17 -0.21 -0.27 -6.19 -0.07 -3.08 -4.51 -0.17 -4.33 

27 LEU -3.74 -1.24 -0.52 -1.03 -1.26 -2.20 -0.71 -2.60 -2.48 -0.25 -1.64 

28 ASN -4.78 -0.09 -0.03 -0.06 -0.05 -0.19 -0.10 -0.22 -0.07 -0.08 -0.14 

39 PRO -0.84 -0.19 -0.09 -0.13 -0.24 -0.20 -0.31 -0.32 -0.11 -0.13 -0.17 

41 HIS -6.74 -6.56 -2.93 -5.41 -3.58 -3.79 -5.38 -7.78 -4.18 -3.02 -2.99 

44 CYS -1.02 -0.13 -0.09 -0.07 -1.37 -0.67 -0.05 -2.50 -0.37 -0.09 -0.43 

45 THR -0.60 -0.32 -0.24 -0.06 -1.10 -0.59 -0.02 -1.76 -0.26 -0.17 -0.47 



46 SER -0.91 -1.79 -1.54 -0.62 -4.26 -1.45 -0.07 -3.53 -1.28 -1.79 -2.70 

49 MET -4.39 -2.37 -3.14 -2.14 -5.57 -4.18 -1.07 -5.46 -2.23 -2.17 -3.93 

52 PRO -0.76 -0.06 -0.08 -0.08 -0.03 -0.19 -0.01 -0.07 -0.02 -0.06 -0.04 

54 TYR -0.65 -0.12 -0.45 -0.22 -0.14 -0.54 -0.15 -0.17 -0.11 -0.09 -0.05 

119 ASN -0.16 -0.02 -0.07 -0.09 -0.02 -1.41 -0.02 -0.44 -0.05 -0.02 -0.05 

140 PHE -0.19 -0.98 -0.04 -0.09 -0.02 -0.06 -0.80 -0.08 -0.17 -0.35 -1.81 

141 LEU -0.28 -1.16 -0.10 -0.23 -0.03 -0.09 -1.00 -0.05 -0.27 0.49 -2.64 

142 ASN -3.50 -4.39 -3.46 -3.66 -0.59 -2.89 -6.70 -4.56 -4.58 -5.50 -6.82 

143 GLY -2.23 -0.75 -0.96 -0.36 -0.37 -2.34 -1.87 -3.77 -1.50 -2.48 -2.11 

144 SER -13.05 -1.42 -0.12 -0.17 -0.10 -0.31 -2.09 -1.19 -0.60 -5.29 -2.33 

145 CYS -66.34 -3.22 -0.71 -1.53 -1.59 -2.09 -3.95 -4.27 -1.50 -2.96 -3.83 

146 GLY -10.20 -0.02 -0.01 -0.03 -0.03 -0.02 -0.06 -0.04 -0.03 -0.06 -0.06 

147 SER -0.64 -0.05 -0.01 -0.02 -0.01 -0.02 -0.06 -0.05 -0.02 -0.02 -0.10 

163 HIS -3.88 -1.65 -0.13 -0.38 -0.14 -0.17 -2.82 -0.40 -0.63 -1.22 -1.18 

164 HIS -3.92 -4.89 -1.41 -3.65 -1.80 -1.56 -5.26 -5.44 -1.30 -2.51 -2.53 

165 MET -5.49 -7.83 -4.16 -4.63 -3.46 -3.65 -5.27 -4.91 -4.74 -6.50 -4.43 

166 GLU -7.31 -6.67 -6.05 -6.76 -0.82 -1.77 -17.06 -6.44 -4.91 -14.38 -23.80 

167 LEU -1.67 -1.36 -1.26 -2.11 -0.63 -1.28 -1.92 -0.78 -1.31 -2.06 -1.16 

168 PRO -2.73 -1.17 -1.11 -2.50 -1.26 -2.66 -2.55 -0.35 -1.18 -2.15 -0.91 

170 GLY -0.05 -0.08 -0.01 -0.03 -0.02 -0.07 -0.54 -0.01 -0.03 -0.11 -0.17 

172 HIS -0.17 -1.15 -0.09 -0.18 -0.07 -0.10 -0.70 -0.09 -0.33 -1.07 -1.07 

186 VAL -0.31 -0.61 -0.28 -0.18 -0.33 -0.37 -0.09 -0.60 -0.27 -0.28 -0.29 

187 ASP -1.49 -1.29 -2.24 -1.36 -3.74 -1.90 -2.85 -2.05 -1.64 -1.34 -1.17 

188 ARG -1.60 -2.04 -1.94 -1.74 -1.68 -2.34 -0.57 -1.75 -1.85 -1.82 -1.17 

189 GLN -5.25 -13.79 -5.90 -11.52 -8.10 -7.69 -2.27 -6.11 -8.78 -10.07 -6.93 

190 THR -1.42 -1.56 -3.94 -2.43 -1.55 -3.84 -0.05 -1.08 -3.22 -0.99 -0.60 

191 ALA -1.65 -2.48 -0.23 -0.68 -1.52 -1.56 -0.03 -0.16 -0.81 -0.46 -0.13 

192 GLN -2.24 -3.48 -3.96 -2.28 -1.13 -1.80 -0.16 -1.23 -6.28 -1.72 -0.75 

 

4. Discussion 

The outbreak of highly infectious diseases such as COVID-19 demands to work out multiple 

treatment plans as soon as possible. Computational drug repurposing study can provide treatment 

options in a short period of time. For this study, amounts of computational time used for individual 

tasks are as follows. Docking screenings of all the 2201 approved drugs with a single CPU core 

(Intel Xeon CPU E5-2683) took 11 hours. For each docking hit, we need to perform ab initio 

calculations to derive point charges. The ab initio calculations using wB97XD/6-31G*//HF/6-

31G* consumed about 1 day using four CPU cores; then it took us about 1.2 days to sample 120 

nanoseconds using one GTX-1080 ti GPU; the following MM-PBSA-WSAS calculation 

consumed one day. Therefore, equipped with sufficient numbers of CPUs and GPUs and the 



current hardware, we can finish the drug repurposing screenings within four to five days using a 

reliable HVS strategy. Given that the inhibitors of COVID-19 protease have relatively large sizes, 

the screening time can be even shorter for other drug targets with smaller ligands.  

  Another consideration is the availability of high-quality drug target structures. Luckily, a high-

resolution crystal structure of COVID-19 protease in complex with a ligand was resolved timely, 

allowing us to conduct this drug repurpose screening. If no high-quality structure is available, one 

can rely on homology modeling technique, probably with a reduced success rate of identifying 

repurposing drugs. Take COVID-19 protease as an example, I performed structural alignments 

using an internal program which takes a multiple-sequence-alignment (MSA) as an input. The 

MSA was generated by using the Promals3D web server.41 The structure of COVID-19 protease 

is found to be most similar to those of SARS protease (PDB Code 3TNT42) and less similar to 

MERS protease (PDB Code 5WKK43) (Figure 9A). In comparison, the structure of HCV NS3/4A 

(PDB Code 3M5L44) is quite different: the RMSD of 2.26 Å between HCV and COVID-19 is 

much larger and with only 108 residues participating the least-square fitting (Figure 9B). I also 

compared the sequences of the four proteases around the seven hotspot residues, which are colored 

in red in Table 3. It is shown that COVID-19 and SARS share all the seven hotspot residues. MERS 

and COVID-19 have four of the seven common hotspot residues, while HCV NS3/4A and COVID-

19 have only one common hotspot residue (H41). Even though the sequence identity is low 

between COVID-19 and HCV NS3/4A, as shown in Figure 9B, the co-crystal ligands, N3 (green 

sticks) for COVID-19 and ITMN-191 (brown sticks) for HCV NS3/4A, largely overlap. This 

suggests that homology models can be constructed using Modeller45 with SARS, MERS and even 

HCV NS3/4A as templates.  

   

Table 3. Sequence comparison around hotspot residues for proteases of four types of 

viruses. 
Virus 

Protease 

PDB 

Code 

Residue ID of Hot Spots (colored in red) 

     41        49       142      164-166      189 

COVID-19 6LU7 ...CPRHVIC...SEDMLNP...FLNGSC...CYMHHMELP...VDRQTAQ... 

SARS 3TNT ...CPRHVIC...AEDMLNP...FLNGSC...CYMHHMELP...VDRQTAQ... 

MERS 5WKK ...CPRHVMC...ADQLSDP...FLCGSC...CYMHQMELA...MDKQVHQ... 

HCV NS3/4A 3M5L ...TVYHGAG...-------...YLKGSA...VGIFRAAVS...-------... 

 



 

Figure 9. Structural comparison of proteases among three coronavirus viruses (COVID-19, SARS 

and MERS) (A), and between COVID-19 and hepatitis C NS3/4A proteases (B). The COVID-19 

protease is colored in grey and its ligands are shown as green sticks. The following are the color 

codes for the other proteases: SARS protease and its co-crystal ligand – brown, MERS protease 

and its co-crystal ligand – blue, HCV NS3/4A – blue, co-crystal ligand of HCV NS3/4A – brown. 

Backbone RMSD between SARS and COVID-19 is 0.4711 Å, with 284 residues participating in 

the least-square fitting and 22 omitted, and the backbone RMSD between MERS and COVID-19 

is 0.41 Å, but with 195 residues participating in the least-square fitting and 104 omitted. In contrast, 

the backbone RMSD between COVID-19 protease and HCV NS3/4A is 2.2632 Å, with 108 

residues participating in the least-square fitting and 43 omitted.    

 

5. Conclusion 

In this study, I took advantage of the recently released crystal structure of COVID-19 protease and 

conducted multiscale drug repurposing screenings. Five neutral drugs, namely, Carfilzomib, 

Eravacycline, Valrubicin, Lopinavir and Elbasvir, are identified to have inhibitory activities 

against COVID-19 protease. Streptomycin, a charged molecule may also be an inhibitor of this 

COVID-19 protease. Our study suggests that computational drug repurposing screening is very 

efficient and it can provide potential repurposing drug candidates in less than five days. A set of 

hotspot residues which make substantial contributions to the protein-ligand binding are also 

identified, which can facilitate us to rationally design novel selective inhibitors targeting COVID-

19.  
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The MM-PBSA-WSAS binding free energies for other less promising docking hits (Glig-res worse 

than -5.0 kcal/mol) are listed in Table S1.   
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SUPPORTING INFORMATION 

Table S1. List of Glide docking scores and MM-PBSA-WSAS binding free energies for 

potential inhibitors binding to COVID-19 protease (in kcal/mol). The net charge (NC) of 

charged molecules is shown in the parentheses.  

Compound Name Docking Score EEEL EVDW GPB GSA TS Gbind 

DB01601 

Docking Pose 2 

-9.41 -51.59  0.19 -18.20  0.30 47.37  0.25 -4.75  0.02 -23.40  0.06 -3.76  0.24 

10011418 -8.88 -46.92  0.35 -69.66  0.68 95.64  0.69 -4.76  0.02 -22.70  0.13 -3.01  0.30 

6102717 -9.95 -47.25  0.18 -22.44  0.48 51.55  0.60 -4.34  0.02 -22.84  0.06 0.36  0.31 

DB00183 -10.39 -43.26  0.19 -27.36  0.64 54.68  1.23 -4.36  0.02 -21.57  0.11 1.27  0.60 

DB01072 -9.08 -46.84  0.17 -16.77  0.51 47.33  0.46 -4.74  0.01 -22.81  0.15 1.80  0.62 



DB01204 -10.10 -51.07  0.20 -31.24  0.17 58.54  0.58 -4.07  0.03 -23.35  0.03 -4.49  0.43 

DB01232 -9.05 -44.17  0.40 -8.55  0.45 34.73  0.35 -4.43  0.03 -20.98  0.13 -1.42  0.31 

DB01264 -9.86 -37.23  0.11 -31.21  0.57 47.83  0.64 -2.91  0.01 -20.33  0.07 -3.19  0.20 

DB01282 -8.68 -49.14  0.52 -66.51  0.39 91.76  0.20 -4.39  0.04 -23.79  0.04 -4.50  0.33 

DB01328 (NC = 0) -8.52 -37.19  0.14 -23.92  0.67 49.46  0.56 -3.20  0.02 -19.82  0.06 4.96  0.07 

DB01328 (NC = -2) -6.12 -44.85  0.33 114.98  0.81 -80.85  0.74 -3.72  0.01 -21.93  0.06 7.49  0.84 

DB01698 -8.55 -48.39  0.15 -46.01  0.39 73.67  0.44 -3.91  0.02 -22.73  0.08 -1.91  0.77 

DB03141 (NC = 0) -9.85 -53.00  0.27 -27.43  0.42 62.85  0.31 -4.63  0.01 -22.45  0.03 0.24  0.24 

DB03247 (NC = -2) -7.38 -47.63  0.48 73.97  1.86 -39.54  1.98 -3.64  0.01 -21.75  0.14 4.91  0.33 

DB03310 (NC = 0) -8.67 -54.38  0.40 -76.02  0.92 107.76  1.01 -4.24  0.03 -26.13  0.04 -0.75  0.34 

DB03310 (NC = -2) -6.93 -39.48  0.22 45.88  2.57 -20.92  2.79 -3.26  0.03 -21.76  0.05 3.99  0.26 

DB06441 (NC = -4) -6.93 -52.54  0.39 194.37  2.84 -141.28  2.09 -4.34  0.01 -24.44  0.04 20.66  0.85 

DB06717 (NC = -2) -8.54 -34.85  0.68 177.39  4.93 -136.79  2.22 -3.43  0.01 -21.06  0.08 23.38  2.09 

DB08818 (NC = 0) -9.06 -44.07  0.31 -80.21  0.27 105.43  0.52 -4.63  0.02 -23.85  0.08 0.38  0.44 

DB08818 (NC = -2) -9.33 -44.91  0.13 75.93  1.54 -49.16  1.31 -4.26  0.01 -22.78  0.04 0.37  0.61 

DB09059 -9.02 -61.28  0.16 -33.85  0.68 75.13  0.81 -5.00  0.03 -25.76  0.06 0.77  0.63 

DB09065 -9.01 -58.19  0.12 -14.29  0.11 48.25  0.39 -5.29  0.02 -25.38  0.08 -4.14  0.29 

DB11602 -8.88 -52.58  0.45 -33.10  0.43 73.03  0.19 -5.07  0.03 -24.74  0.11 7.02  0.19 

DB13074 -9.22 -40.00  0.31 -22.68  0.80 45.24  0.44 -3.27  0.04 -19.97  0.12 -0.74  0.08 
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