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Abstract: A novel, successful method of bactericidal treatment of pathogenic bacterial biofilms
in vitro by laser-induced forward transfer of metallic nanoparticles from a polyethylene
terephthalate polymeric substrate was suggested. Transferred nanoparticles were characterized by
scanning and transmission electron microscopy, energy-dispersive X-ray and Raman spectroscopy.
The antibacterial modality of the method was tested on Gram-positive (Staphylococcus aureus)
and Gram-negative (Pseudomonas Aeruginosa) bacterial biofilms in vitro, revealing their complete
destruction. The proposed simple, cost-effective and potentially mobile biofilm treatment method
demonstrated its high and broad bactericidal efficiency.

Keywords: laser-induced forward transfer; metal nanoparticles; Staphylococcus aureus and Pseudomonas
Aeruginosa bacterial biofilm; bactericidal effect

1. Introduction

Antibiotics, being the most widely used drugs in the fight against pathogenic microorganisms,
are eventually losing their activity [1,2], resulting in chronic infections, serious health problems and fatal
diseases. Such resistance of pathogenic microorganisms to antibiotics is related to self-organization
into structurally complex communities termed biofilms on diverse surfaces in natural, medical,
and industrial settings. Biofilms cells are encased in a protective extracellular polysaccharide matrix
produced by the bacteria themselves. The biofilm formation process consists of different stages:
adherence/adhesion/attachment, aggregation/maturation/accumulation, and detachment/dispersal
phase. The last step is the dispersal of mature biofilm-embedded bacteria out of the biofilm [3],
infecting medical devices such as catheters or implants [4–6], human organs such as teeth, skin, and the
urinary tract [6,7].

Bacterial biofilms, due to their complex structure and dangerous resistance to antibiotics, are
in focus of the scientific community and require always novel approaches in their treatment [8,9].
To date, various methods were proposed to treat bacterial biofilms, or to prevent their appearance.
Quite successful is the use of chemical and photodynamic treatment methods [10–12], hydrophobic
and topographic pre-treatment of substrates [13–15], antibacterial metal and semiconductor
nanoparticles (NPs) [16–21], which are also promising as metal-polymer nanoparticle-based composites
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(nanomaterials) in a variety of biomedical applications, including drug delivery, microfluidic valve
control, and cancer therapy [22–25]. Metal and metal oxide nanoparticles represent a group of
materials, which were investigated in respect to their antimicrobial effects [26]. Ag NPs are the
most popular inorganic nanoparticles used as antimicrobial agents [27,28]. CuO nanoparticles also
exhibited inhibitory effects against Gram-positive and Gram-negative bacteria [29,30]. Carbon-based
nanoparticles were reported to exhibit high antimicrobial activity as well, causing membrane damage in
bacteria due to an oxidative stress [31]. In addition, the nanoparticles can be accumulated on the bacterial
surface occurs due to electrostatic force. The nanoparticles can bind and penetrate the negative charged
bacterial cell membrane to enter cell [32]. Furthermore, polymers and their composites were actively
studied as antimicrobial and biodegradable biomaterials, e.g., chitosan [33]. The proposed mechanism
for its antimicrobial action is binding to the negatively charged bacterial cell wall, with consequent
destabilization of the cell envelope and altered permeability, followed by attachment to DNA with
inhibition of its replication [33–35]. Metal nanoparticles can additionally improve the mechanical
properties of polymers, due to the intrinsic characteristics of nanosized metals such as large surface area
and high modulus [36]. For example, silver nanoparticles coated onto polyurethane foams demonstrated
antibacterial activity as water filters [37]. Kim and co-authors [38] demonstrate enhancement of Raman
and photoluminescence of core-shell hybrid Ag/polymer nanoparticles, consisting of Ag (core) and
polydiacetylene (shell) through the assistance of localized surface plasmon effect for the effective
biosensor. Meanwhile, extensive studies are still devoted to increase efficiency of bactericidal treatments
and expand their spectra of bactericidal activity, make them robust, cost-effective and mobile.

In this article, a new method for treating pathogenic bacterial biofilms is publicly described [39],
which invokes direct laser-induced forward transfer (LIFT) [40–42] of metal-polymer nanoparticles
from a donor polymer substrate in a scanning mode onto acceptor pre-formed Gram-positive or
Gram-negative bacterial biofilms. Similar studies carried out for metallic films deposited on donor
silica glass substrates, were performed for comparison. This method is widely used for additive
micropatterning [43,44]. LIFT has shown the ability to direct write different metals for interconnects
and mask repair and also simple dielectric materials such as metal oxides [44,45]. Addition it is known
that this technique adequate for the production of biosensors, since it permits to deposit patterns of
biomolecules with high spatial resolution [46].

2. Materials and Methods

Bacterial biofilms were prepared, using an overnight broth culture of bacteria diluted 1:100 in
Luria–Bertani (LB) culture medium by Miller, AppliChem, Germany. The diluted culture was added to
test tubes with glass plates–1-cm × 1 cm wide pieces of glass slides. Incubated in a thermostat at 37 ◦C
for 24 h with shaking 10 times per minute, with a tilt angle of 4◦. Gram-positive (Staphylococcus aureus)
and Gram-negative (Pseudomonas aeruginosa) cultures were taken for this research.

During biofilm treatment, the glass plates with biofilms were fixed on glass slides and subjected
to laser-induced forward transfer of silver, copper and gold metallic (Au, Ag, Cu) films as sputtered
nanoparticles (Figure 1). 100-nm thick metallic films were obtained by magnetron sputtering of pure
Au (99.99%), Ag (99.99%) and Cu (99.99%) targets in argon atmosphere onto 1-mm thick silica glass
slides and 0.5-mm thick polymer (polyethylene terephthalate, PET) film substrates; film thicknesses
were measured using a scanning probe microscope Certus Standard V (NanoScanTechnology). Air gap
of ≈2 mm was established between the metal film and the glass substrate with a bacterial biofilm by
means of a micro-positioning stage. 1064 nm nanosecond laser radiation (Yb3+–doped nanosecond
fiber laser HTF MARK (Bulat), pulse width at half-height–120 ns) was focused by a f-theta objective
lens (focal length–160 mm) into a spot with a 1/e-diameter ≈50 µm onto the metallic films on rear side
of the polymer or silica glass substrates through these substrates, using a pulse energy of 0.2 mJ and
repetition rate of 20 kHz, and scanned across the films at the speed of 1500 mm/s by a galvano-scanner
(Figure 1). In each test, 1-cm × 1 cm wide spots of metallic films were transferred onto the biofilm in the
scanning mode, in order to cover the entire front and rear surfaces of the biofilm sample. In addition to
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transferring nanoparticles onto the bacterial biofilms, another option was also considered, when the
biofilm was grown on the silica glass substrates, pre-coated by silver, copper, or gold nanoparticles
laser-transferred from the PET polymer substrate under the same conditions.

Surface topography and chemical composition of the transferred nanoparticles were characterized
by their deposition onto a Si wafer surface, using a scanning electron microscope (SEM) JEOL 7001F,
equipped by an energy-dispersion X-ray spectroscopy (EDX) module INCA (Oxford Instruments) for
chemical micro-analysis. For transmission electron microscopy (TEM) studies, nanoparticles were
deposited on a carbon mesh (TEM, JEOL JEM-2100F). Raman analysis was performed in range of
300–2100 cm−1, using a confocal Raman microscope Confotec MR 350 at the excitation wavelength of
532 nm.
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Figure 1. Experimental layout of laser-induced forward transfer of nanoparticles from a transparent
substrate (polymer PET or silica glass) onto biofilms of pathogenic microorganisms.

The Live/Dead visualization tests on the treated bacterial biofilms were performed, using their
subsequent coloration by “Live/Dead Biofilm Viability Kit” and a fluorescence microscope Nikon
H600L with its 40× fluorescence objective lens (instrumental magnification–600×).

3. Results and Discussions

3.1. Nanoparticle Characterization

First, the metallic nanoparticles transferred by laser ablation of a metal film off the PET or glass
substrates in air were characterized on Si wafer substrates by scanning and transmission electron
microscopy. The spherical-shaped nanoparticles transferred from the PET substrate are characterized
by the presence of “peculiar” fluffy caps on their surface (Figure 2a). In the case of the laser-induced
forward transfer from the silica glass substrate, the metallic nanoparticles were also spherical, but at
the same time very smooth (Figure 2b). The particle size in both cases varied in the range from 10 to
300 nm (the most probable size ≈ 100–150 nm); their almost perfect spherical shapes indicated the
melting of their precursor ablation products from the island-like metallic films prior the transfer and
their hydrodynamic relaxation during the transfer to the minimal surface energy.

Transmission electron microscopy has also revealed the presence of the carbonaceous shell on
the surface of the metallic nanoparticles transferred from the polymer substrate (Figure 3a), while the
accompanying energy dispersive x-ray analysis demonstrated the presence of the sufficiently large
(about 23 atomic percent) content of carbon (Figure 3b).
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Figure 3. (a) TEM visualization of single Ag nanoparticle laser-transferred from the PET substrate;
(b) Data (spectrum and datasheet) of its energy dispersive X-ray spectroscopy analysis on the acceptor
Si substrate, which also appears in the spectrum.

The incident ns-laser intensities, required to lift-off Ag NPs from the PET and glass substrates,
are rather low and very different- ~10 MW/cm2 and ~102 MW/cm2, respectively. Simultaneously,
the optical density of the initial precursor films at the pump laser wavelength of 1064 nm varies by a few
time much higher for the glass-supported nanoparticles due to aggregation peculiarities on the glass
surface) (Figure 4a) for the same film deposition conditions. Meanwhile, despite the laser wavelength
is far from the spectral position of localized plasmon resonance for Ag NPs (≈400 nm), the resulting
transferred and deposited nanoparticles exhibit in this figure the almost same optical density spectra
in both these cases, indicating the same LIFT efficiency for the same initial film thicknesses and the
same final state of nanoparticles in the deposits.

To provide insight into the underlying laser physics, in this work a numerical simulation based
on a finite element method (FEM) was carried out to characterize the spatial electric field distribution.
We used linearly polarized plane wave with the wavelength 1064 nm for illuminating an Ag nanosphere
located on a semi-infinite dielectric substrate (either PET, or silica glass). The radius of the nanosphere
was 100 nm and the vertical length of the computational cell was 1 µm. A perfectly matched layer (PML)
boundary condition was applied for the computational domain. Our FEM simulations demonstrate
considerable near-field enhancement of the incident plane 1064 nm wave in the plasmonic dipolar mode
of the nanoparticles by 19 (glass) and 14 (PET) times for the field amplitude (Figure 4b,c). This yields
in rather strong heating and thermal expansion of the 200-nm sized nanoparticles, driving their
center-of-mass “hopping” lift-off [47]. Moreover, the observed carbonaceous debris indicates that
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ablation of the substrates (more strongly-PET one) apparently occurs in the contact region underneath
the nanoparticles, driving another, “trampoline” NP-removal mechanism [47].

Chemical composition of the carbonaceous residue around the Ag nanoparticles transferred onto
monocrystalline silicon substrates either from the glass, or the polymer substrates was analyzed by
Raman micro-spectroscopy in the range of 300–2100 cm−1 (Figure 5), using as a reference the Raman
spectrum of PET with its main bands at 1625 cm−1 (C=C stretching) and 1736 cm−1 (carbonyl (C=O)
stretching) (see also Table 1) [48,49].Nanomaterials 2020, 10, x FOR PEER REVIEW 5 of 11 
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Figure 4. (a) Optical density spectra of Ag nanoislands on donor PET and glass substrates and of
their corresponding deposits on acceptor glass slides; (b,c) Normalized field distributions around
200-nm sized Ag NPs, supported on PET and glass substrates, in the field of the 1064-nm plane wave.
Right-hand color scales show the field enhancement magnitude.

Table 1. PET Raman bands and their assignment.

Raman (cm−1) Assignment

639 C–C–C in plane bending

870 C–C stretching (ring breathing), C–O stretching

1115 CH in plane bending (ring), C–O stretching

1290 C–C stretching (ring), C–O stretching

1625 C=C stretching (ring)

1736 C=O stretching

Regarding Ag nanoparticles, in agreement with SEM and TEM visualization such nanoparticles
transferred from the PET substrate, exhibit in Figure 5 much stronger carbonaceous contamination,
comparing to nanoparticles transferred from the silica glass substrate. Specifically, both types of
nanoparticle deposits give rise to two main bands in the spectra, which are typical for glassy carbon
with the characteristic D-band at 1340 cm−1 (vibrations of carbon atoms with dangling bonds for the
in-plane terminated disordered graphite) and G-band at 1593 cm−1 (E2g mode of the two-dimensional
hexagonal graphitic structure) [50], representing the coexistence of sp2 and sp3-coordineted carbon in
the residue. The same, but weak Raman bands in the spectrum of the Ag nanoparticles, transferred from
the carbon-free silica glass substrate, can be related to post-contamination of the sample during its
storage and analysis.
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Figure 5. Raman spectra of samples: donor PET and acceptor Si substrates, Ag NPs transferred onto
acceptor Si substrates from the donor PET and glass substrates.

3.2. Microbiological Tests

These in vitro studies were performed on biofilms of Staphylococcus aureus and Pseudomonas
aeruginosa bacteria. Figure 6 shows 1-micron sized separate Staphylococcus aureus bacteria
incubated on a silica glass slide with pre-deposited silver nanoparticles, with an additional 10 nm
gold layer deposited atop the sample to eliminate surface charging during the scanning electron
microscope visualization.
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Figure 6. SEM visualization of Staphylococcus aureus bacteria incubated on the glass substrate with
predeposited Ag nanoparticles.

During the LIFT-based biofilm treatment, the clean gold, silver and copper metallic nanoparticles
from the silica glass substrates, as well as same particles coated with fluffy PET were laser-transferred
to the previously grown daily biofilm samples. After the laser-induced nanoparticle transfer, the glass
plates with the bacterial biofilms were transferred to test tubes with a physiological saline solution and
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the basics were shaken vigorously on a shaker for 1 h. Under the influence of DNA-ase, the biofilm
matrix was destroyed, but the bacteria cells remain unharmed. Then, the resulting suspension
was titrated by the standard microbiological method, prepared ten-fold dilutions and sown on a
solid nutrient medium to determine corresponding CFU (colony forming unit) values (Table 2).
All samples with biofilms were grown in the same conditions. To determine the degree of antibacterial
effect of nanoparticles on biofilms, experimental samples were compared with biofilms of untreated
nanoparticles (control of biofilm growth). To evaluate the effect of the direct laser radiation on the
biofilm, scanning of the transparent substrates was performed under similar conditions, but without
the metallic films (Table 2, PET). According to the results in Table 2, direct laser irradiation didn’t
influence the films.

Table 2. Effect of transferred NPs on CFU/mL values of clinical isolates biofilms.

Ag/PET Cu/PET Au/PET PET Ag/Glass Cu/Glass Au/Glass Control

S. aureus 0 0 2 × 106 4 × 106 4 × 106 4 × 106 2 × 106 4 × 106

P. aeruginosa 0 0 3 × 107 1 × 107 4 × 106 4 × 106 3 × 107 3 × 107

With a well-expressed antibacterial effect, the number of bacteria decreases by several orders of
magnitude. Studies have shown that silver and copper nanoparticles transferred from the polymer
substrate completely destroyed the biofilms in both Staphylococcus aureus and Pseudomonas aeruginosa.
The number of bacteria in these samples decreased by 6–7 orders of magnitude. In contrast, gold
nanoparticles transferred from the PET substrate did not show a decrease in CFU for gram-positive and
gram-negative bacteria. In the case of laser-induced direct transfer of metal nanoparticles from a quartz
glass substrate, the result was almost similar to the control experiment, in which the biofilms were not
exposed to laser radiation or nanoparticles. A slight decrease in the number of bacteria was observed
when silver and copper were transferred from the quartz glass substrate. In these samples, the number
decreased by only one order of magnitude and only in the case of Pseudomonas aeruginosa.

Similarly to the case of metallic nanoparticle transfer onto the biofilms, very significant bactericidal
effect (red staining) was noticeable for silver and copper nanoparticles, which coated glass slides
for bacterial incubation (Figure 7), while for gold nanoparticles no effect was observed. However,
comparing to the completely successful frontal laser-induced Ag and Cu nanoparticle transfer onto the
biofilms, in the latter procedure the biofilm formation was not totally prevented, just delayed until a
few layers of dead bacteria will isolate the biotoxic Ag or Cu-nanoparticle coating.
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Finally, one can draw a few important conclusions, based on these experimental results. First,
laser radiation itself doesn’t affect the films, as shown in Table 2 (PET column). Second, chemically-inert
gold nanoparticles make very little effect both in the cases of PET and silicas glass substrates. Meanwhile,
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third, in the bactericidal effect of silver and copper nanoparticles there is apparently strong effect of
their fluffy PET coating, which is yet to be unveiled by IR and Raman micro-spectroscopy, similarly to
our previous studies [51]. Possible mechanism of bacteria death is not clear at this moment, but maybe
connected to the property of metals to participate in redox reactions determining the tendency to acquire
electrons from a donor [34]. Redox-active essential metals, such as silver and copper, can therefore act
as catalytic cofactors in a wide range of cell enzymes either generating or catalyzing reactive oxygen
species. Reactive oxygen species can induce an oxidative stress, damaging cellular proteins, lipids and
DNA, if the cell antioxidant capacity is exceeded. Moreover, diffusion of metallic ions can cause
structural changes and finally, bacterial death [34].

Importantly, this LIFT-based approach demonstrates very promising anti-fouling efficiency and
biosafely, comparing to other well-known and patented laser-based nanotwechnological approaches,
e.g., application of bactericidal colloidal nanoparticles from their solutions [27,52], in the surface
density of nanoparticles resided on the biofilm. Moreover, our approach does not show direct
photolithitic laser influence on the biofilms, comparing to laser heating of deposited optically-absorbing,
but chemically-inert plasmonic nanoparticles [53–55] or direct laser-driven shock-wave impinging of
bactericidal nanopartciles into biofilms [56]. Furthermore, we believe that with mobile laser scanners
the LIFT-based anti-fouling treatment can go mobile too.

4. Conclusions

This work presents a new, promising, simple, robust, cost-effective and highly efficient treatment
method for Staphylococcus aureus and Pseudomonas aeruginosa bacterial biofilms. This method consists in
laser-induced forward transfer of metal-polymer composite nanoparticles from thin silver, copper and
gold metallic film on polyethylene terephthalate substrate (not on silica glass one) directly onto the
biofilms. Microbiological tests revealed the complete destruction of these bacterial biofilms by the
silver and copper nanoparticles, not by chemically inert gold nanoparticles. After the laboratory
in vitro investigation of this approach on stand-alone pathogenic biofilms and its patent application,
in continuation of this research we will study this approach on mouse wounds in vivo regarding its
efficiency to chronic infections and biotoxicity.
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