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Glaucoma is a progressive, irreversible loss of retinal ganglion cells (RGCs) and

axons that results in characteristic optic atrophy and corresponding progressive

visual field defect. The exactmechanisms underlying glaucomatous neuron loss

are not clear. The main risk factor for glaucoma onset and development is high

intraocular pressure (IOP), however traditional IOP-lowering therapies are often

not sufficient to prevent degeneration of RGCs and the vision lossmay progress,

indicating the need for complementary neuroprotective therapy. This review

summarizes the progress for neuro protection in glaucoma in recent 5 years,

including modulation of neuroinflammation, gene and cell therapy, dietary

supplementation, and sustained-release system.
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Introduction

Glaucoma is a progressive, irreversible loss of retinal ganglion cells (RGCs) and axons

that results in a characteristic optic atrophy and a corresponding progressive visual field

defect. The most common types of glaucoma are primary open-angle glaucoma and

primary angle closure glaucoma (PACG) (Dietze et al., 2022). Acute PACG has typical

anatomical characteristics, such as shallow anterior chamber, pupillary block, plateau iris,

etc., it usually causes acute attack. However, patients with POAG and chronic PACG are

often asymptomatic until the optic nerve damage is severe. The exact mechanisms

underlying glaucomatous neuron loss are not clear.

Although some scholars believe that it is a neurodegenerative disease (Ramirez et al.,

2017), it is not exactly the same as Parkinson’s disease, Alzheimer’s disease, and other

neurodegenerative diseases that mainly occur in the middle-aged and the elderly.

Glaucoma has a wide age, some young and middle-aged patients with open and

chronic closure have very late visual field, obvious C/D cupping and optic nerve

atrophy. Because irreversible blindness seriously affects patients’ quality of life and

heavy social burden, it is critical to explore the possible pathogenesis of optic nerve

injury and effective treatment targets.

The main risk factor for glaucoma onset and development is high intraocular pressure

(IOP), and the current treatments available target the lowering of IOP (Dietze et al., 2022).

However, degeneration of RGCs and the vision loss may progress despite significant IOP

lowering in some patients, indicating that complementary neuroprotective therapy are

needed. In recent years, a large number of studies on optic nerve protection have emerged,
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this review summarizes the progress for neuro protection in

glaucoma in recent 5 years, including modulation of

neuroinflammation, gene, and cell therapy, dietary

supplementation, and sustained-release system.

Neuroimmunity

Immune system dysregulation is increasingly being

attributed to the development of a multitude of

neurodegenerative diseases (Stothert and Kaur 2021). In

recent years, a large amount of studies focus on the glia

cells and immune system in the development of

glaucomatous optic neuropathy (de Hoz et al., 2018). An

excessive microglial response may be a significant

degenerative factor for increased cell death (Grotegut

et al., 2020), microglia activation and release of pro-

inflammatory cytokines are the main contributors for

retinal cell death in glaucoma (de Hoz et al., 2018). OPN

was found to enhance the proliferation and activation of

retinal microglia, and contribute to the eventual RGCs loss

and vision function impairment in glaucoma (Yu et al., 2021).

Blocking microglial A2A R prevents microglial cell response

to elevated pressure and it is sufficient to protect retinal cells

from elevated pressure-induced death (Aires et al., 2019).

Another study found activation of Adenosine A (3) receptor

could hinder the microglia reactivity (Ferreira-Silva et al.,

2020), attenuated the impairment in retrograde axonal

transport, and afford protection against glaucomatous

degeneration. In addition, P2X7 receptor antagonist

protects retinal ganglion cells by inhibiting microglial

activation in a rat chronic ocular hypertension model

(Dong et al., 2018).

Astrocytes perform critical non-cell autonomous roles

following CNS injury that involve either neurotoxic or

neuroprotective effects. Astrocyte-derived lipoxins A4 and

B4 promote neuroprotection from acute and chronic injury

neuroprotective signal (Livne-Bar et al., 2017). Statins

promotes the survival of RGCs by reduce apoptosis and

suppress chronic high IOP induced glial activation (Kim et al.,

2021).

Gene therapy

Gene therapy, which uses a viral vectors to deliver genetic

material into cells, is a promising approach to directly target

pathogenetic molecules (Keeler et al., 2017). The retina is a

favorable target for gene therapy because of its easy access,

established clear functional readouts, partial immune privilege

and confined non-systemic localization (Ratican et al., 2018). The

success of adeno-associated virus (AAV)-mediated gene

replacement therapy for inherited retinal disease (Maguire

et al., 2008; Busskamp et al., 2010; Smalley 2017) has made

RGC-specific gene expression and AAV editing a promising gene

therapy strategy for optic neuropathies. Table 1 lists the gene

therapy studies on neuroprotection of glaucoma in recent 5 years,

their findings indicate that gene therapy has a broad prospect in

protecting both structure and function of RGC. Apart from this,

reprogramming cells with defined factors is another promising

strategy to produce functional cells for therapeutic purposes

(Wang et al., 2021). OSK-induced reprogramming in mouse

RGC was found to promote axon regeneration and reverse vision

loss (Lu et al., 2020). Math5 and Brn3b transcription factors

(TFs) combination can reprogrammature mouseMüller glia into

RGC, resulting in proper projection of RGC in the visual

pathway, and improved visual function (Xiao et al., 2021).

Recently, another study, using a CRISPR-Cas9-based genome-

wide screen of 1,893 TFs, found that manipulation of ATF3/

CHOP and ATF4/C/EBPγ protected RGC in a glaucoma model

(Tian et al., 2022).

Cell therapy

Cell therapy provides a new therapeutic strategy for

glaucoma. Stem cell therapy mainly involves the

transplantation of cells to replace the dead and lost RGC.

However, it is associated with a number of major challenges

besides ethical issue. Regeneration of RGCs requires full synaptic

integration of host inner retinal stem cells and the development

of long-distance axons, which project to the brain and accurately

form effective synaptic connections with corresponding targets

to complete signal transmission. Up to now, the replacement of

RGCs has not made a breakthrough (Zhang J. et al., 2021).

Several recently studied cell types for transplantation including

mouse induced pluripotent stem cell (miPSC) or mouse

embryonic stem cell (mESC)-derived RGC (Oswald et al.,

2021) and spermatogonial stem cell-derived RGC (Suen et al.,

2019). Another study found mesenchymal stem cells (MSC)

secreted exosomes can promote survival of RGC and

regeneration of their axons (Mead and Tomarev 2017). In

addition, further study found that TNF-α stimulated gingival

MSC derived exosomes play neuroprotection and anti-

inflammation roles by delivering miR-21-5p-enriched

exosomes through MEG3/miR-21-5p/PDCD4 axis (Yu et al.,

2022).

Dietotherapy

In animal models of glaucoma, various diet-related

treatments were found as non-IOP-related neuroprotective

mechanisms. High VitK1 intake (Deng et al., 2020) ,

Coenzyme Q10 + Vitamin E (Zhang et al., 2017; Ekicier Acar

et al., 2020), Nicotinamide riboside of the vitamin B3 family
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(Zhang X. et al., 2021), probiotic bacteria (Fafure et al., 2021) and

other dietary supplementation (Cammalleri et al., 2020) were

proved to attenuate the loss of RGCs by regulating glia-mediated

neuroinflammatory or BDNF activity, etc.

New drug loading system

Several preclinical studies demonstrate that neurotrophins

(NTs) prevent RGCs loss (Gupta et al., 2022). NTs can be

TABLE 1 Gene therapy studies on neuroprotection of glaucoma in recent 5 years.

Target gene Effect Model Function References

Complement C3 overexpression of C3 inhibitor reduce
the activation of complement C3d

intravitreal injection in mice
glaucoma model

neuroprotection of retinal ganglion
cells (RGC) axons and somata

Bosco et al. (2018)

Brain-derived
neurotrophic factor
(BDNF) and its receptor

increase the production of BDNF and
TrkB

intravitreal injection in
experimental glaucoma or
humanized tauopathy model

improve long-term
neuroprotective signaling, RGC
survival, and functional recovery

Osborne et al., 2018,
Wojcik-Gryciuk et al., 2020,
Khatib et al., 2021

Vascular endothelial
growth factor (VEGF)

transduction of VEGF variants by
VEGFR2 and PI3K/AKT signaling

AAV2-mediated transduction
into primary mouse RGC

promote synaptogenesis, increase
the length of neurites, axons

Shen et al. (2018)

γ-synuclein (mSncg)
promoter

combine AAV-mSncg promoter with
CRISPR/Cas9 gene editing knock
down pro-degenerative genes

AAV2-mSncg in hPSC-derived
RGCs and mice ON crush model

preserve the acutely injured RGC
somata and axons

Wang et al. (2020)

CaMKII increase the expression level of
CaMKII

intravitreal injection AAV for the
treatment of CaMKIIα T286D in
a mouse model of glaucoma

protection of RGC and their axons Guo et al. (2021)

BCLXL gene therapy with mCherry-BCLXL

and force its overexpression
intravitreal injection in mice
glaucoma model

robustly attenuate both RGC soma
pathology and axonal degeneration
in the optic nerve

Donahue et al. (2021)

NMNAT overexpression of NMNAT2 mutant
driven by mSncg promoter restore the
decreased NAD + levels

intravitreal injection in mice
glaucoma model

significant neuroprotection of both
RGC soma and axon and
preservation of visual function

Fang et al. (2022)

Myc-associated protein
X (MAX)

gene therapy by overexpression
of MAX

intravitreal injection in rat
glaucoma model

prevent RGC death and protect
optic nerve axons

Lani-Louzada et al. (2022)

X-linked inhibitor of
apoptosis (XIAP)

blocking the activation of apoptosis intravitreal injection in mice
glaucoma model

provide both functional and
structural protection of RGC

Visuvanathan et al. (2022)

FIGURE 1
New neuroprotective strategy of glaucoma in recent 5 years.
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conjugated to nanoparticles, which act as smart drug carriers.

This enables the self-localization of drugs in the retina and the

prevention of rapid degradation of drugs (Giannaccini et al.,

2018).

Sunitinib is a protein kinase inhibitor with activity against the

neuroprotective targets dual leucine zipper kinase (DLK) and

leucine zipper kinase (LZK). It was found to enhance survival of

RGCs for neuroprotection. Recently, a hypotonic,

thermosensitive gel-forming eye drop (Kim et al., 2022) and a

sunitinib-pamoate complex (SPC) microcrystals for

subconjunctival injection (Hsueh et al., 2021) were devised to

continuously release for 1 and 20 weeks.

Others

Cannabinoids (CBs) was found to target several factors that

related with the progression of glaucoma, it promotes

neuroprotection, abrogates changes in ECM protein, and

normalizes the IOP levels in the eye (Maguire et al., 2022;

Somvanshi et al., 2022).

In summary, various neuroprotective therapy (Figure 1)

can help us to better understand the pathological basis of

visual function impairment and progression in glaucoma. At

present, many scholars have committed to clinical

translation to save RGCs and visual function of glaucoma

patients from the molecular and cellular levels. These new

strategies will bring hope for the prevention and treatment of

glaucoma.
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