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Despite advances in haematopoietic stem cell transplant (HSCT) techniques, the risk of

serious side effects and complications still exists. Neurological complications, both acute

and long term, are common following HSCT and contribute to significant morbidity and

mortality. The aetiology of neurotoxicity includes infections and a wide variety of non-

infectious causes such as drug toxicities, metabolic abnormalities, irradiation, vascular

and immunologic events and the leukaemia itself. The majority of the literature on this

subject is focussed on adults. The impact of the combination of neurotoxic drugs

given before and during HSCT, radiotherapy and neurological complications on the

developing and vulnerable paediatric and adolescent brain remains unclear. Moreover,

the age-related sensitivity of the nervous system to toxic insults is still being investigated.

In this article, we review current evidence regarding neurotoxicity following HSCT for

acute lymphoblastic leukaemia in childhood. We focus on acute and long-term impacts.

Understanding the aetiology and long-term sequelae of neurological complications

in children is particularly important in the current era of immunotherapy for acute

lymphoblastic leukaemia (such as chimeric antigen receptor T cells and bi-specific T-

cell engager antibodies), which have well-known and common neurological side effects

and may represent a future treatment modality for at least a fraction of HSCT-recipients.

Keywords: haematopoietic stem cell transplant, neurotoxicity, neurological complications, paediatric, acute

lymphoblastic leukaemia

INTRODUCTION

Neurological complications occurring post paediatric haematopoietic stem cell transplantation
(HSCT) contribute significantly to morbidity and mortality both in the short and long term. The
incidence of neurotoxicity in children following HSCT, for a variety of indications, ranges in the
literature from 11–59% (1–6). There is a paucity of literature examining neurological complications
specifically in children undergoing HSCT for ALL.
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Moreover, a widely cited post-mortem study showed that 90%
of the 180 HSCT recipients (adults and children; age range 1–48
years) had evidence of central nervous system (CNS) abnormality
and that this was the cause of death in 17% (7). A number of
studies have shown that the outcomes of HSCT are poorer for
patients who develop acute neurotoxicity (8, 9).

The majority of paediatric studies of the neurological
effects of HSCT have focussed on acute neurotoxicity (1–6).
As more children undergoing HSCT for acute lymphoblastic
leukaemia (ALL) become long-term survivors, we are obligated
to understand the long-term neurological consequences of this
treatment modality. With this in mind, the current review
explores both acute and long-term neurological complications
occurring after HSCT in paediatric patients with ALL.

Converging evidence from related fields (hypoxic and
traumatic brain injury, radiotherapy and ALL therapy not
including HSCT) has identified the vulnerability of the paediatric
brain to injury (10–12). This collective evidence strongly
suggests that radiotherapy, and possibly chemotherapy also,
added to neurological injury occurring as a result of acute
central nervous system (CNS) complications may have profound
effects on brain maturation and consequently on cognitive
function; indeed, fatigue and low mood have been shown
to be associated with neurocognitive deficits post cancer
therapy and HSCT (13–17). Because of the demonstrated
close relationship between neurocognitive deficits and fatigue,
with subsequent impacts upon educational and vocational
outcomes and quality of life, we have elected to review these
together under the term “long-term neurocognitive impacts”
of HSCT.

We aim to provide a comprehensive review of both the
acute and long-term neurological complications observed in
children who have undergone HSCT for ALL. Although a little
outside the scope of a HSCT review, we have also chosen
to include a brief review of the neurotoxicity associated with
CAR T cell therapy. We think it is important as CD19-
Chimeric antigen receptor (CAR) T cell therapy becomes more
widely available for children with relapsed or refractory CD19+
B ALL, including post HSCT relapse. Table 1 outlines the
risk factors associated with the neurotoxicities reviewed in
this paper.

Acute neurological complications are broadly divided into
infectious or non-infectious causes. Acute non-infectious
neurotoxicity relates primarily to drug toxicity. We review
here the neurotoxicity of common chemotherapy drugs
(busulfan and fludarabine) used for non-TBI-based conditioning
predominantly in younger children with ALL. We have included
the neurotoxicity of nelarabine, which is often used as a bridge
to transplant for patients with relapsed or refractory T-cell ALL.
We review the risk of posterior reversible encephalopathy, which
is most commonly associated with calcineurin inhibitors used
for graft-vs.-host disease (GvHD) prophylaxis in the majority of
patients undergoing HSCT. Lastly, in the acute section, we review
GvHD-associated CNS disease. The long-term complications
we review are: secondary CNS tumours, peripheral neuropathy,
ischaemic complications and neurocognitive impacts (including
cognition, fatigue and quality of life).

TABLE 1 | Risk factors for acute and late neurotoxicity effects after allogeneic

HSCT for pediatric ALL and CD19+ CAR T cell therapy.

Acute neurotoxicity Risk factors

Infections

- Viral

- Fungal

- Bacterial

- Toxoplasmosis

Pre-transplant viral status; EBV, CMV,

HSV, VZV,

HHV6, (JCV)

Toxoplasmosis

GvHD

Immunosuppression

Drug neurotoxicity; Posterior

reversible encephalopathy syndrome

(PRES), acute toxic

leukoencephalopathy (ATL),

leukencephalopathy, seizures,

peripheral neuropathy, headaches,

hallucinations, somnolence, cranial

nerve palsies, weakness

- Fludarabine

- Busulfan

- Nelarabine

Fludarabine

Busulfan

Nelarabine

Vincristine

Previous CNS disease

Advanced disease status

Older age

Posterior reversible encephalopathy

syndrome (PRES)

Calcineurin inhibitors

Sirolimus

Everolimus

Dexamethasone

Fludarabine

Hypomagnesaemia

Umbilical cord stem cell source

G-CSF

CNS GvHD; cerebrovascular disease,

demyelinating disease,

immune-mediated encephalitis

Acute and chronic GvHD

autoimmunity

Immune effector cell-associated

neurotoxicity syndrome (ICANS)

High disease burden pre CAR-T cells

High peak CAR T cell expansion

in blood

Extramedullary disease

Younger age Pre-existing

neurological abnormalities

High CAR T cell dose

Cytopaenias

High grade cytokine release

syndrome (CRS)

Long-term neurotoxicity Risk factors

Cerebrovascular accident (CVA) Cranial irradiation

TBI-based conditioning regimen

Cardiovascular risk profile

Metabolic syndrome

Disease status at HSCT (>CR1)

≥2 transplants

Secondary CNS malignancy Cranial irradiation

TBI-based conditioning regimen

CNS leukaemia before HSCT Young

age (<6 years old at HSCT, <3

higher risk)

Unrelated donor stem cell source

NF-1

Chronic GvHD/immunosuppression

Peripheral neuropathy Vincristine

Nelarabine

Chronic GvHD

Immunosuppressive drugs

(cyclosporine, tacrolimus)

(Continued)

Frontiers in Pediatrics | www.frontiersin.org 2 December 2021 | Volume 9 | Article 774853

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Gabriel et al. Neurotoxicity in Paediatric ALL HSCT

TABLE 1 | Continued

Acute neurotoxicity Risk factors

Neurocognitive effects Cranial radiotherapy

TBI

Young age (<3–4 years old at HSCT)

Methotrexate

Other CNS prophylaxis therapy

Low socioeconomic status

Low pre-HSCT

neurocognitive functioning

Fatigue Chemotherapy

Cranial radiotherapy

Medical comorbidities

Immunosuppression

Psycho-social status

Reduced physical activity

Decreased HRQoL TBI

Chronic health conditions after HSCT

Chronic pain

Anxiety

Fatigue

Unemployment/sick leave

Reduced physical activity

ATL, acute toxic leukoencephalopathy; CAR-T, chimeric antigen receptor T-cell; CMV,

cytomegalovirus; CNS, central nervous system; CVA, cerebrovascular accident; EBV,

Epstein-Barr virus; G-CSF, granulocyte colony-stimulating factor; GvHD, graft versus host

disease; HHV, human herpes virus; HRQoL, health-related quality of life; HSV, herpes

simplex virus; ICANS, immune effector cell-associated neurotoxicity syndrome; JCV, JC

polyomavirus; NF-1, neurofibromatosis type 1; PRES, posterior reversible encephalopathy

syndrome; TBI, total body irradiation; VZV, varicella zoster virus.

ACUTE NEUROTOXICITY POST HSCT

Infectious Causes of Acute Neurotoxicity
Infections due to viruses, bacteria, fungi and parasites are
the leading cause (35%) of acute neurotoxicity in paediatric
ALL patients who have undergone HSCT. Clinical infectious
manifestations may be absent in transplant recipients due to
host immunosuppression, but CNS infection should be suspected
upon occurrence of new neurological symptoms, fever or
other systemic infection, especially in the early post-transplant
period (18).

Pre-transplant viral status—defined as a higher number of
recipients who are seropositive to the herpes groups—correlates
with the risk of neurologic complications post-transplant
(19, 20). Following recovery from primary infection, human
herpes viruses (HHVs) enter a state of latency in lymphocytes
and monocytes/macrophages. Thus, viral CNS infections are
frequently caused by reactivation of these viruses including
herpes simplex virus, Epstein-Barr virus, varicella zoster virus,
cytomegalovirus (CMV), HHV-6 and human polyomavirus (also
known as JC polyomavirus or JCV). Approximately 40% ofHSCT
recipients experience early reactivation of herpes viruses after
transplantation, especially those suffering from GvHD (21, 22).
Appropriate prophylaxis matched to the herpes group serological
status of donor and recipient may protect from reactivation of
these infections.

Another important cause of infectious CNS morbidity in
paediatric ALL patients who have had an allogeneic HSCT is
invasive opportunistic fungal disease (23). The predominant

causal fungal genus is Aspergillus, with Aspergillus fumigatus
prevailing over other species. Since Aspergillus is rarely
recovered from blood cultures, the diagnosis of proven invasive
opportunistic fungal disease may require invasive procedures
to obtain tissue; however, such procedures are fraught with
risks of morbidity or mortality in this patient population,
especially when involving the CNS. Thus, while histopathological
diagnostic tools will always remain important to pursue a
specific definitive diagnosis, non-invasive diagnostic tools have
largely replaced tissue diagnosis of invasive opportunistic fungal
diseases in paediatric HSCT recipients. Imaging with computed
tomography (CT) or magnetic resonance imaging (MRI) scans,
serological testing including the serum galactomannan assay
for Aspergillus and the serum (1,3)-β-d-glucan (BDG) antigen
test, and molecular techniques including polymerase chain
reaction-based assays with higher specificity and sensitivity
than serological assessment can identify and lead to earlier
treatment (24).

Toxoplasmosis is an opportunistic infection caused by the
parasite Toxoplasma gondii. Infection in an immunocompetent
host leads to latency of the parasite as cysts in various organs.
Toxoplasma gondii allograft transmission or reactivation of latent
infectionmay be present inHSCT patients, especially in countries
where toxoplasmosis is more prevalent (25, 26). Toxoplasmosis
in patients following HSCT frequently involves the CNS, both
as an isolated cerebral infection or as disseminated disease. The
typical MRI features include multiple lesions in the subcortical
white matter, basal ganglia, and cerebellum, with focal nodular or
rim enhancement present in some lesions (27). Mortality rate in
cerebral toxoplasmosis is very high. The incidence is reduced by
use of trimethoprim-sulfamethoxazole prophylaxis in recipients
with positive serology or a seropositive donor (18).

Brain abscess is a rare but severe CNS complication of HSCT.
Similar to Aspergillus and Toxoplasma infections, bacterial
abscesses may not show significant enhancement because the
imaging characteristics of cerebral infections relate to the
immune status of the HSCT recipient. With brain abscesses,
encapsulation around the abscess cavity—which indicates the
occurrence of sequential events involving neovascularization,
inflammatory cell migration, and immune response—is not
usually complete, and a mass effect or oedema around the lesion
caused by an inflammatory infiltrate of polymorphonuclear cells
is relatively rare (27).

Current diagnostic techniques for suspected infectious cases
rely on prior knowledge of the likely causative agent. Informed
by clinical presentation, epidemiological data, guidelines and
local resources, a laboratory will perform targeted tests for
a disease. These are largely confined to specific PCR or
serological assays. This approach has fundamental limitations,
and contributes to the relatively high proportion of encephalitis
cases that remain undiagnosed. Thus, there is a need for
improved diagnostic methods for encephalitis. A method which
has recently been applied to pathogen detection in cases of
encephalitis is metagenomics analysis using next generation
sequencing (NGS). NGS has striking potential to identify
undiagnosed pathogens and thus reduce the number of cases with
unknown aetiology. It also has utility for pathogen detection in
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other clinical syndromes, such as respiratory infections, therefore
the implementation of this technique in clinical laboratories
would have wider implications for diagnosis of infection beyond
encephalitis (28).

Non-infectious Causes of Acute
Neurotoxicity
Non-infectious aetiology of acute neurotoxicity largely relates
to drug toxicities, vascular events, and metabolic and immune-
mediated (CNS GvHD) causes. We now describe each of these
in turn.

Drug Toxicities
The drugs used for conditioning prior to HSCT (e.g.,
fludarabine and busulfan) and for GvHD prophylaxis can
cause toxic leukoencephalopathy.

Fludarabine
Neurotoxic side effects of fludarabine when used in the
treatment of haematological malignancies have long and widely
been described (29–42). Studies have shown that neurological
complications usually occur 20–250 days post HSCT and
present with a variety of clinical manifestations including visual
disturbances, blindness, weakness, encephalopathy and coma.
Risk factors include higher doses of fludarabine, advanced disease
status, older age and renal impairment. In studies where MRI
was performed, there was evidence of toxic leukoencephalopathy
with either focal or widespread changes consistent with white
matter demyelination.

Beitinjaneh et al. evaluated toxic encephalopathy in 1,597
recipients (both adults and children) following fludarabine-
based conditioning prior to HSCT for a variety of indications
(43). The incidence of severe leukoencephalopathy was 2.4%.
They described three distinct clinical syndromes with associated
MRI changes:

1. Posterior reversible encephalopathy syndrome (PRES)
which presented with headache, visual disturbance and
seizures. MRI demonstrated subcortical and cortical white
matter changes.

2. Acute toxic leukoencephalopathy (ATL) which was associated
with cognitive impairment, visual disturbance and decreased
levels of consciousness. MRI changes were seen in the deep
white matter.

3. Other leukoencephalopathy which was clinically similar to
ATL but had less significant deep white matter changes
on MRI.

The authors found it difficult to discern calcineurin inhibitor-
associated PRES from fludarabine-associated PRES (43). Those
with ATL had a worse prognosis than those with PRES Risk
factors for fludarabine-associated leukoencephalopathy were
older age, renal impairment, fludarabine dose, a previous
fludarabine-based HSCT and previously treated CNS disease.

In a recent study of 29 adults undergoing HSCT for high
risk haematological malignancies by Bethge et al., fludarabine
200 mg/m2 was initially used but needed to be reduced to 160
mg/m2 after four patients developed severe neurotoxicity. This

study used haploidentical donors with CD3+/CD19+ depletion
of the stem cell product and mycophenolate mofetil as GvHD
prophylaxis. Calcineurin inhibitors were not used in this study,
so the neurotoxicity was attributed to fludarabine alone.

Busulfan
Busulfan-based chemoconditioning is used as an alternative to
TBI for younger patients undergoing HSCT for ALL. Seizures
are the most common neurological side effect associated with
busulfan. The drug has good penetration into the cerebrospinal
fluid (CSF), with levels similar to that in the plasma (44). The
risk of seizures appears to be dose dependent and related to
high drug concentrations in the CNS (44–46). In early studies
(which included adults and children undergoing HSCT for a
variety of indications), in which patients would not have received
prophylaxis for seizures, the incidence of seizures was in the order
of 10% (44, 47, 48). The use of anticonvulsant prophylaxis with
busulfan is now the standard of care for paediatric patients and
a variety of drugs are used (49–51). The risk of seizures has been
ameliorated by the routine use of prophylactic anticonvulsants
and targeted busulfan pharmacokinetics (52).

Nelarabine
Nelarabine is used for the treatment of relapsed or refractory
T-cell ALL (53–58). We are including nelarabine in this review
as it is often used as a bridge to HSCT in these patients (57).
It is associated with significant neurotoxicity with up to one-
third of children reported to develop severe peripheral sensory
or motor neuropathy or grade 3 or 4 central neurotoxicity
(seizures, headaches, hallucinations, somnolence, weakness and
cranial nerve palsies) when treated with nelarabine (53, 59–61).
The incidence of neurotoxicity appears to be the same when
nelarabine is combined with other chemotherapeutic agents (58,
62–64). The majority of neurological side effects appear to be
gradually reversible but some can persist in some children (53,
58, 64). As the number of patients reported to have nelarabine-
associated neurotoxicity in the literature is relatively small, the
impact of this neurotoxicity on potential HSCT neurological
complications is unclear. Therefore, we suggest it is important
for physicians conducting HSCT to monitor patients who have
experienced nelarabine neurotoxicity more closely than they
otherwise would.

Posterior Reversible Encephalopathy Syndrome
Calcineurin inhibitors such as cyclosporine and tacrolimus form
the backbone of GvHD prophylaxis for allogeneic HSCT in
both children and adults. PRES post HSCT is most commonly
associated with these agents. PRES has also been reported with
sirolimus, everolimus and dexamethasone use (65–67). Other
risk factors for PRES in children undergoing HSCT include
hypomagnesaemia, acute GvHD (aGvHD), the use of umbilical
cord blood as a stem cell source, the use of granulocyte colony-
stimulating factor (G-CSF) and the use of fludarabine as part of
the conditioning regimen (68, 69).

The term “posterior reversible encephalopathy syndrome”
(PRES) was first coined by Hinchey in 1996 (70) although the
syndrome had been described earlier (71, 72). It is a syndrome
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that usually presents early post HSCT (usually within the first
100 days (73) with a variety of clinical symptoms [seizures,
headaches, hypertension, alteredmentation, confusion and visual
disturbance (74–77) and distinct radiological features (vasogenic
oedema of most commonly the parieto-occipital white matter but
also the frontal and temporal lobes and posterior fossa] (78–83).
The incidence of PRES post HSCT is quite varied in the literature,
ranging from 1.6 to 20% (9, 84, 85).

Pathophysiology of PRES
The pathophysiology of PRES remains uncertain. There are two
main theories regarding the process that leads to the development
of vasogenic oedema underlying PRES (86):

1. In the first theory, it is thought that hypertension is the
primary trigger. A rapid rise in blood pressure overcomes the
autoregulatory mechanisms of the cerebral vessels resulting
in hyperperfusion and damage to the capillary bed, causing
leakage of fluid into the interstitium.

2. In the second theory, the primary event is speculated
to be activation of the endothelium leading to cerebral
vasoconstriction and hypoperfusion resulting in
vasogenic oedema.

There is more evidence to support the second theory in the
literature. Firstly, 20–30% of patients with PRES appear to
have normal or mildly elevated blood pressure (87). There
are a number of imaging studies which show evidence of
hypoperfusion with PRES (88–91). These observations have lead
others to hypothesise that the hypertension is a reactive event in
an attempt to improve cerebral perfusion and reduce the oedema
rather than it being the cause of PRES (86, 92).

Clinical Features of PRES
Seizures are the most common presenting feature of PRES in
children (68, 93–96). They usually start as non-convulsive focal
events and later proceed to convulsive seizures. Non-convulsive
status epilepticus has frequently been described (76, 97). Other
clinical features include visual disturbance, headache, an altered
level of consciousness, nausea and vomiting that may reflect
raised intracranial pressure (68, 86, 98, 99).

Diagnostic Neuroimaging of PRES
Given the numerous causes of abnormal neurology in the acute
post-HSCT setting, a CT scan of the head is often the first
choice of neuroimaging. However CT scans are often normal
or show non-specific changes in patients with PRES. MRI is
the gold standard for PRES diagnosis, with distinctive diagnostic
features present in the majority of cases (79). The typical lesions
seen are vasogenic oedema in the subcortical and cortical white
matter. These are seen as a high signal in T2-weighted images
and fluid attenuated inversion recovery (FLAIR) sequences (80).
Changes are usually seen bilaterally, most commonly in the
parietal and occipital lobes. The frontal and temporal lobes are
involved in about half of cases and the cerebellum, brain stem
and basal ganglia in about one-third (79, 80, 82, 83). Concurrent
intracranial haemorrhage is seen in ∼5–19% of patients with
PRES (78, 81, 83).

Treatment of PRES
The management of PRES in children post HSCT is supportive.
It includes the use of antihypertensives, anticonvulsants and
withdrawal of the presumed causative agent (68, 98, 100).
Anticonvulsant therapy as either primary or secondary
prophylaxis is recommended. The duration of therapy
varies in the literature from 3–12 months and should be
informed by persistence of symptoms, seizures and abnormal
electroencephalogram and MRI changes (73, 94, 101, 102).
There is little clear guidance in the literature about the use
of antihypertensive in PRES, particularly in children. Most
papers recommend their use with the caveat that rapid
reduction in blood pressure should be avoided to prevent
cerebral hypoperfusion. One paper suggests reducing blood
pressure by 25% in the first hour and then very gradually in the
following hours (103). Electrolyte abnormalities, particularly
hypomagnesaemia and bleeding diathesis, should also be
corrected (78). In most publications the diagnosis of PRES led to
the withdrawal of calcineurin inhibitors and substitution with
another immunosuppressant (mostly commonly tacrolimus
instead of cyclosporine or vice versa) (9, 68, 99).

Early recognition of PRES is important and the syndrome is
usually reversible without long-term sequelae with the supportive
treatment described above (68, 99). Although not common, PRES
can be life threatening and lead to permanent neurologic sequelae
if not treated promptly (104). Straathof et al. demonstrated
significantly higher non-relapse mortality in paediatric patients
who had cyclosporine-associated neurotoxicity compared to the
entire cohort of recipients who had undergone HSCT during
the study period at their centre (105). Permanent neurological
damage and cerebral infarction in children have also been shown
(106). Therefore, prompt recognition and early institution of
supportive care and treatment are imperative to ensuring good
long-term outcomes.

Central Nervous System Graft-Vs.-Host Disease
CNS GvHD as a cause for neurological abnormalities post
HSCT is rare and often a diagnosis of exclusion. As neurological
manifestations of chronic GvHD (cGvHD) are not included
in the National Institutes for Health (NIH)-defined diagnostic
criteria (107, 108), they are considered to be “associated with
cGvHD,” requiring occurrence together with a manifestation
of classic cGvHD in another organ. The diagnostic work-
up may include some important considerations: firstly,
other causes of CNS neurological abnormalities have to
be excluded in a comprehensive diagnostic work-up (as
outlined below); secondly, diagnosis of CNS cGvHD may be
probable if CNS manifestations are associated with the taper
of immunosuppressive treatment (109). Very likely, there
is an overlap between CNS cGvHD and autoimmunity, as
outlined by Buxbaum and Pavletic (110): as most antibody-
driven neurological entities after HSCT manifest in the
setting of full donor chimerism, processes of cGvHD and
autoimmunity may be assumed and manifestations have
been reported such as transverse myelitis, isolated optic
neuritis, CNS granulomatous vasculitis, panencephalitis
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with infiltration of CD3+ lymphocytes, and reversible
leukoencephalopathy (109–111).

In 2010, a consensus conference of clinical practise
in cGvHD, defined CNS GvHD as the presence of the
following two mandatory criteria plus at least two facultative
criteria (109):

• Mandatory criteria: 1. occurrence of neurological symptoms
in the presence of chronic GvHD affecting other organs;
and 2. signs of neurological involvement without any
other explanation, i.e., no infectious, vascular, or metabolic
aetiologies or drug toxicities.

• Facultative criteria: 1. abnormalities on brain MRI; 2.
abnormal cerebrospinal fluid (pleocytosis, oligoclonal bands,
elevated protein or immunoglobulin G levels); 3. brain biopsy
or post-mortem examination revealing GvHD lesions; and 4.
response to immunosuppressive therapy.

The consensus conference further defined three types of CNS
cGvHD: cerebrovascular disease, demyelinating disease and
immune-mediated encephalitis.

Reports of CNS GvHD in the literature are rare. A recently
published Frontiers case report and literature review (112)
included 46 cases reported between 1990 and 2019. Cases
included patients with acute or chronic GvHD prior to or
at the time of neurological abnormalities. The median age
of onset was 41 years (range 9–68 years) and diagnosis
was at a median of 390 days after HSCT (range 7–7300
days). Twenty-five patients had a history of aGvHD, and 29
developed cGvHD prior to or during the onset of neurological
symptoms. The clinical characteristics of the 46 patients
were variable: 11 presented with stroke-like episodes, 14 had
acute demyelinating encephalomyelitis or multiple sclerosis-
type manifestations, 17 presented with encephalopathy or
encephalitis, and the remaining four had atypical manifestations.
The cerebrospinal fluid of 40 patients was tested: 11 of these
(27.5%) had no abnormalities. The most common cerebrospinal
fluid abnormality was elevated protein, which was present in
23 patients (57.5%). Of the 45 patients who underwent brain
MRI, 42 had abnormal findings. The majority of brain biopsies
or post-mortem examinations demonstrated immune-mediated
changes: perivascular inflammation (n = 16, 72.8%), vasculitis
(n = 4, 18.2%), gliosis, microglia proliferation or activation (n
= 8, 36.4%), infiltration of CD3+/CD4+ Tcells (n = 1, 4.5%),
infiltration of CD3+/CD8+ T cells (n = 6, 27.3%), parenchyma
lymphocytic infiltration (n = 4, 18.2%),demyelination (n =

7, 31.8%), granulomatous infiltration (n = 3, 13.6%). Fourty
patients received immunosuppressive therapy. Most patients
have achieved complete response (n = 15) or partial response
(n = 7) in clinical and/or imaging studies after treatment.
Unfortunately, there were inadequate follow-up data to make
any conclusions about the outcomes for these patients. Although
uncommon, the majority of patients discussed in the review
seemed to respond to immunosuppressive therapy.

We were unable to find any definitions of CNS aGvHD in
the published literature. In summary, there are clear diagnostic
criteria for CNS cGvHD but guidelines regarding CNS aGvHD
are warranted.

LONG-TERM NEUROTOXICITY POST
HSCT

Cerebrovascular Accidents
After HSCT, endothelial damage is induced by the conditioning
regimen with or without TBI or other types of irradiation
and by HSCT complications such as GvHD (113–115). It
has been well described that HSCT survivors have a higher
prevalence of metabolic syndrome and atherosclerosis, both
of which predispose patients to cardiovascular adverse events
(including coronary artery disease and peripheral vascular
disease), as comparedwith non-transplanted leukaemia survivors
and the general population (114–123). This cardiovascular risk
profile predisposes paediatric transplant survivors to myocardial
infarction, stroke and peripheral vascular disease. Moreover, it
has been well shown that irradiation of the brain may lead
to endothelial damage and vasculopathy, which will put HSCT
survivors who received TBI conditioning at higher risk of
cerebrovascular events (124, 125).

In a report by the American Childhood Cancer Survivor
Study (CCSS), in which children with a cancer diagnosis between
1970 and 1986 and who were treated with different disease-
specific treatment protocols were included, stroke was reported
in 37 childhood leukaemia survivors with a rate of late-occurring
stroke of 57.9 per 100,000 person-years [95% confidence interval
(CI) 41.2–78.7]. The relative rate (RR) of stroke for leukaemia
survivors compared with the sibling comparison group was 6.4
(95% CI 3.0–13.8; p < 0.0001) (126). A second CCSS study
reported a cumulative incidence of stroke at age 50 years of
6.3% (95% CI 5.1–7.5%) after a median follow-up of 19 years. In
comparison, siblings had a cumulative incidence of stroke at age
50 years of 1.1% (95% CI 0.4–1.7%) (127).

Most existing reports on stroke in HSCT survivors included
both children and adults (∼20% of survivors were <20 years
of age at the time of HSCT) and the 10-year cumulative
incidence of stroke was 3.5%. Mortality from stroke was 4.0%
in HSCT survivors as compared with 1.9% in a population-
based comparison group after a median follow-up of 7.0 years
(range 2.0–23.7) after HSCT (128, 129). In a European Society for
Bone and Marrow Transplantation (EBMT) study, also mainly
including survivors who had HSCT in adulthood, the cumulative
incidence of a first arterial event 15 years after HSCT was 6%
(95% CI 3–10%) (130). There were 20 cardiovascular events of
which nine were cerebrovascular accidents across the cohort of
548 patients.

In the studies above, the reported main risk factors for stroke
included the presence of components of metabolic syndrome–
namely antihypertensive treatment pre-transplant [hazard ratio
(HR) 4.8; 95% CI 1.1–21], dyslipidaemia treatment (HR 7.4; 95%
CI 1.2–47) (128), a body mass index >30 (HR 3.4; 95% CI 1.1–
10.4) (129) – and the presence of ≥2 of the four cardiovascular
risk factors hypertension, dyslipidaemia, diabetes, and obesity
(RR:12.4; p < 0.02) (131). Other risk factors for stroke were
disease- or treatment-related and included relapsed disease status
(HR 5.9; 95% CI 2.4–14.7) (128) and higher treatment intensity,
defined as ≥2 conditioning regimens (HR 8.6; 95% CI 2.9–25.8)
and ≥3 conditioning regimens (HR 9.0; 95% CI 2.2–37) (129).
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Importantly, neither TBI (as compared with high-dose
chemotherapy only conditioning) nor TBI dose or fractionation
(less or more than 10Gy; single fraction vs. multiple fractions)
were associated with direct cardiovascular outcomes (129, 131).
However, compared with chemotherapy only conditioning, TBI-
conditioning and higher TBI dose came out as risk factors for
cardiometabolic traits such as the metabolic syndrome and its
components (central adiposity, hypertension, insulin resistance
and dyslipidaemia) in several studies that followed children after
HSCT (118, 132–135). Therefore, with prolonged follow-up,
these patients may be at higher-than-expected risk for stroke at
older ages and should be longitudinally monitored to ameliorate
cardiovascular risk factors where possible.

In summary, after HSCT there appears to be an increased risk
for stroke with a cumulative incidence of 3.5–6% after 10–15
years of follow-up, with cardiovascular risk factors such as the
metabolic syndrome being the main risk factor. However, as few
studies have assessed the long-term risk of stroke in childhood
HSCT survivors, the risk for stroke in children transplanted for
ALL remains to be determined.

Secondary CNS Malignancies Post HSCT
Therapeutic improvements over the years have resulted in
notably increased chances of survival after myeloablative
allogeneic HSCT for paediatric high-risk ALL (136, 137). This
increased survival brings a growing population of survivors
who are at risk for late therapy-related sequelae. Second
malignant neoplasms (SMN) are an unfortunate and distressing
complication for childhood HSCT survivors. Large cohort
studies have shown that childhood cancer survivors are at 3-
to 11-fold increased risk of developing malignancies than the
general population, and the incidence increases over time (138–
140). Children who have receivedHSCT form a special risk group
within these cohorts (141–144).

Long-running animal studies had already shown that dogs and
non-human primates who were given TBI and HSCT developed
a significantly higher rate of malignancies than expected after
intervals of 1.5 to >20 years (145, 146). When examining a
cohort of 7,986 childhood cancer survivors who were treated
between 1985 and 2009, Pole et al. observed that children
who had received an allogeneic HSCT were at significantly
greater risk of developing a SMN than children who had been
given an autologous HSCT or had received other treatments
for childhood cancer, with cumulative incidences at 15 years
of 3.1, 2.5 and 2.3%, respectively; incidence rates diverged
more profoundly after ≥15 years (147). A population-based
study in 826 adolescents and young adults who had received
HSCT for acute myeloid leukaemia (AML), using data from the
Centre for International Blood and Marrow Transplant Research
(CIBMTR), extrapolated a 10-year cumulative incidence of SMN
of 4%, with incidence equally distributed between TBI- and high-
dose chemotherapy conditioned patients; 16 non-CNS tumours
were diagnosed during a median follow up of 77 months (range
12–194) (148). Chronic GvHD may also be a risk factor for SMN
(143, 149). However, this has not been systematically observed
in all studies (150, 151), and prolonged immunosuppression may
potentially play a role.

Most diagnosed SMNs are solid tumours, among
which sit CNS neoplasms. Among the many different
reported histologies of second CNS neoplasms, the most
often diagnosed neoplasms are meningiomas, low-grade
gliomas and high-grade gliomas (150–156), but other
pathologies such as ependymomas, medulloblastomas, and
supratentorial primitive neuroectodermal tumours occur
also (142, 151, 154).

The International Late Effects of Childhood Cancer
Guideline Harmonisation Group developed a guideline
regarding surveillance for subsequent CNS neoplasms, which
was recently published (157). The group concluded that risk
of CNS neoplasms was increased after cranial radiotherapy
with aggravated risk at higher doses, and that younger
treatment age and neurofibromatosis type-1 diagnosis were
relevant risk factors. However, they found no high-quality
evidence significantly linking exposure to alkylating agents,
epipodophyllotoxins, anthracyclines or other chemotherapy to
subsequent CNS tumours. They evaluated the sparse evidence
linking intrathecal methotrexate and exposure to platinum agents
with meningioma development as of small relevance (152, 158).
Latency times between primary therapy and development of
CNS neoplasms span from 4 to 44.5 years. Cumulative incidence
of high-grade gliomas seems to plateau after 14 years, but no
such plateau could be established for meningioma incidence. The
group did not find sufficient evidence that early detection would
reduce morbidity and mortality of CNS secondary neoplasms;
therefore, they did not advise routine MRI surveillance for
asymptomatic survivors.

Several studies have evaluated the risk of secondary CNS
neoplasms after treatment for ALL during childhood. Walter
et al. followed 1,612 children treated between 1967 and 1988
for a median of 15.9 years (153). Cumulative incidence at
20 years of CNS neoplasms was 1.39% and of high-grade
tumours was 0.7%, with median latency of 12.6 years. Significant
risk factors for SMN included presence of CNS leukaemia at
diagnosis and use of cranial radiotherapy, with a dose-dependent
cumulative risk. These two risk factors were intertwined, as
patients with CNS leukaemia at diagnosis were given higher doses
of cranial radiotherapy. In a study by Schmiegelow et al., 89%
of patients who developed CNS neoplasms after treatment for
ALL had received cranial radiotherapy; 5-year survival for non-
meningioma CNS neoplasms was dismal (18.3%, standard error
± 3.8%) (154).

With regard to paediatric high-risk ALL patients who
undergo HSCT, it can be assumed that it is mainly those
patients who receive TBI and/or CNS radiotherapy within
their therapy schedules who are at risk for development of
secondary CNS neoplasms. This has been confirmed in studies
that compared the late effects of TBI conditioning with those
of high-dose chemotherapy conditioning in paediatric patients
receiving HSCT for leukaemia (144, 150, 156). In adults,
some subsequent CNS neoplasms have been described after
previous busulfan- and cyclophosphamide-based conditioning
for HSCT (159).

Myeloablative TBI-based conditioning regimens used in
HSCT, especially in children, have changed over the years from a
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high-dose single fraction (e.g., 6–10Gy) to fractionated TBI (e.g.,
10–17.5Gy delivered over multiple days); the most prevalent
schedule is now six fractions of 2Gy given over three consecutive
days (160, 161). With regard to secondary neoplasms, including
CNS neoplasms, in children and adults, it has been shown that the
risk associated with TBI was decreased when the TBI schedule
was fractionated, but that this benefit was lost when high total
cumulative doses were administered, especially at doses above
14.4Gy (140, 162). Nevertheless, a British Childhood Cancer
Survivor Study population-based study in 17,980 childhood
cancer survivors found that even at cranial radiotherapy doses
of 0.01–9.99Gy or 10.00–19.99Gy (the range in which currently
used TBI doses fall), the risk of developing a second CNS
neoplasm was already 2-fold and 8-fold increased, respectively,
compared with children not receiving cranial radiotherapy (158).
When looking at only the risk of subsequent meningioma
development, the same pattern holds true (152). Other, often
asymptomatic findings on MRI, such as cavernomas, atrophy
and white matter abnormalities, can be found in childhood
leukaemia survivors and HSCT recipients especially after cranial
radiotherapy or TBI (163–165).

Younger age at HSCT also stands out as a risk factor for
SMN; children <10 years, especially those <3 years, develop
CNS secondary neoplasms at higher rates than older patients, in
principal after TBI or cranial radiotherapy (140, 143, 150, 157).

The difficulty of assessing the risk of secondary CNS
neoplasms in the paediatric HSCT population is that most studies
are performed either in large cohorts including both adults and
children or smaller, mostly single centre, paediatric cohorts that
do not focus on CNS tumours exclusively. Recently, however,
a large multicentre CIBMTR study specifically determined the
risk factors for CNS neoplasms after allogeneic HSCT for
haematolymphoid diseases in 8,720 paediatric patients between
1976 and 2008, with a case-controlled design, where disease-
matched controls had received HSCT but did not develop a
CNS neoplasm (151). With 59 CNS tumours developing during
follow-up, Gabriel et al. established a 33-times higher than
expected rate of CNS neoplasms. The cumulative incidence
was 1.29% 20 years after HSCT, and significant risk factors
in the entire cohort were having an unrelated donor (HR
3.35, confidence limit 1.77–6.34, p = 0.0002) and CNS disease
before HSCT for ALL (HR 8.21, confidence limit 2.64–25.56,
p = 0.0003) or AML (HR 6.21, confidence limit 1.38–28.03,
p = 0.0174). In contrast, use of TBI, dose of TBI (<12Gy
vs. ≥12Gy) and age, were not found to be significant risk
factors. The lack of significance of TBI as a risk factor can
be explained from a statistical point of view: only patients
who underwent HSCT for haematologic malignancies were
analysed, meaning that the majority of patients in both groups
received TBI (88% of patients with CNS tumours and 71%
of the controls). Multivariate analysis of the matched patient
vs. control cohort (n = 168) showed that having an unrelated
donor transplant (HR 4.79, confidence limit 1.67–13.78, p =

0.0037), CNS disease before HSCT (HR, 7.67, confidence limit
1.78–33.16, p = 0.0064), and radiotherapy exposure before
conditioning (HR, 3.7, confidence limit 1.19–11.47, p = 0.0234)
were significant risk factors for SMN. Patients who developed

CNS tumours had a 37.2-times higher risk of not surviving
compared with the matched controls without CNS tumours
(95% CI 26.6–52.0, p < 0.0001).The relatively low incidence
and long latency between HSCT and development of subsequent
CNS neoplasms precludes a recommendation to perform routine
MRI surveillance among asymptomatic survivors. However,
the devastating consequences of developing a CNS neoplasm,
especially those that are malignant, are of such magnitude that
HSCT survivors who have received TBI or cranial radiotherapy,
their caregivers and healthcare providers should be made aware
of the related signs and symptoms, so that appropriate diagnostic
actions can be taken when necessary.

Peripheral Neuropathy Post HSCT
Chemotherapy-induced peripheral neuropathy is a side effect
that can interfere with survivors’ quality of life even a long time
after therapy for childhood ALL (166). Peripheral neuropathy
may imply damage to large fibres which is characterised
by loss of vibration perception, proprioception and motor
control and/or small fibres implying abnormal sensation
of heat and cold, paraesthesia, allodynia, spontaneous
pain and abnormal perception of thermal stimuli and
pain (167).

Following anti-leukaemic therapy, vincristine is historically
considered the major cause of peripheral neuropathy (168). In
addition, nelarabine as a component of treatment of relapsed
T-cell ALL has been associated with severe and sometimes
irreversible peripheral neuropathy and pain (169). The additional
risk posed by HSCT was recently described in a cross-sectional
study of 25 paediatric ALL patients undergoing HSCT. At a
median of 8.25 years post HSCT, signs of small and large fibre
dysfunction were present in 88 and 68% of patients, respectively,
and 50% presented abnormal sensation to pain stimuli (167).
In comparison, the same authors found that, in a group of
ALL survivors treated with chemotherapy alone, about 66 and
33% of patients had abnormal small and large fibre dysfunction,
respectively, and 30% reported abnormal pain sensation at a
median 2.5 years post therapy (168).

These studies indicate an additional effect of HSCT on
the risk of peripheral neuropathy and pain. This may
be due to immune-mediated mechanisms, neuropathies
and associated muscle cramps have been described in
series of patients with cGvHD (109, 170). Furthermore,
immunosuppressive drugs, especially cyclosporine
and tacrolimus, may induce peripheral neuropathy
(171) and pain syndromes (172, 173) in paediatric
HSCT patients.

A study with long-term follow-up of paediatric cancer
patients, at a median of 8.5 years after treatment, found
peripheral neuropathy to be associated with impaired
performance on distal sensory and motor tasks compared
with healthy controls and concurrent impact on patients’ and
parents’ reported outcome and quality of life (QoL) (174). Only
about 25% of these patients had undergone HSCT. Larger,
prospective studies are needed in order to fully evaluate the
extent and implications of neuropathy and pain syndromes after
paediatric HSCT.
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Long-Term Neurocognitive Outcomes Post
HSCT
Impact on Cognition
Long-term neurocognitive effects of oncologic treatment for ALL
have been recognised since the 1970s. With the understanding
that prophylactic CNS therapy could prevent CNS recurrences
of ALL, overall survival increased dramatically. In the early
protocols, prophylactic CNS-directed therapy consisted of
intrathecal methotrexate and cranial radiotherapy to a dose of
24Gy. In an early prospective study published in 1976 of 23
children undergoing HSCT, 12 months post complete remission
12 children had developed neurologic symptoms, including
limping, poor coordination, seizures, ataxia, hyperactivity, and
learning disabilities (175). As other studies reported detrimental
effects on neurocognitive functioning, especially in children aged
<3 to 5 years, cranial radiotherapy doses were decreased to
18Gy. However, many studies did not find any improvement
for cognitive effects, potentially also because of interactive
effects of increased doses of methotrexate in many studies
(176, 177). A recent mathematical model from the Paediatric
Normal Tissue Effects in the Clinic (PENTEC) international
consortium calculated the detrimental interaction between
cranial radiotherapy and administratedmethotrexate with regard
to the risk of intelligence quotient (IQ) decrease after treatment
and generated dose- and other risk-factor-related normal tissue
complication probability models (178). The risk of an IQ <85
was 5% for children who had received a whole-brain dose of
radiotherapy of 18.1Gy, and methotrexate increased any risk of
an IQ <85 in equivalence to a generalised uniform brain dose
of 5.9Gy. Because greater event-free survival has been observed
in standard-risk ALL patients without prophylactic cranial
radiotherapy, the practise is now reserved for selected high-
risk CNS3 or CNS relapse cases (179–181). However, even in
children treated for ALL without radiotherapy, IQ deficits of 6–8
points and deficits in other domains such as working memory,
information processing speed and fine motor functioning as
compared with healthy controls are frequent (182, 183).

Within the context of allogeneic HSCT for ALL, some high-
risk CNS disease protocols involve cranial radiotherapy or
craniospinal irradiation boost before TBI in the conditioning
schedule. Hiniker et al. performed TBI to a dose of 12–13.2Gy
in 1.2Gy fractions with a cranial radiotherapy or craniospinal
irradiation boost to a median dose of 24Gy (range 14–35.4Gy)
in 41 paediatric ALL patients (184). With a median follow-
up of 89.7 months, neurocognitive testing revealed a mean
post-HSCT overall IQ of 103.7 at 4.4 years. Pre- and post-
HSCT neurocognitive testing revealed no significant change
in IQ (mean increase +4.7 points). Relative deficiencies in
processing speed and/or working memory were noted in six
of 16 tested patients (38%). Regarding paediatric leukaemia
patients who only received radiotherapy in the form of single-
dose or fractionated TBI before HSCT, studies in the 1980s and
1990s reported mostly small but significant decrements in IQ or
sensory-motor and cognitive function, although profound effects
were observed in children receiving TBI before age 3–4 years
(185–187). Kramer et al. found IQ and developmental decline

in 65 tested children. Baseline IQ was 110.5 [standard deviation
(SD) 14.3] and this fell to 94.5 (SD 16.7) at 1 year after HSCT; 26
patients were re-evaluated at 3 years post HSCT and showed no
further changes in IQ (188). However, other researchers did find
progressive deficits over >5 years of follow-up in patients with
haematologic malignancies treated with HSCT as compared with
siblings, especially after previous cranial radiotherapy and/or
other CNS prophylaxis (189). Willard et al. concluded that the
continuous decline in IQ after HSCT for various diagnoses was
only observed in TBI-treated children, as children treated with
chemotherapy only conditioning showed recovery in their IQ
scores 3 to 5 years after HSCT (190).

In contrast, various other small and large studies found
no significant changes in children’s neuropsychological or
cognitive status after HSCT, even with TBI-based conditioning
(15, 191–195). In a study of 158 mixed-diagnosis paediatric
patients undergoing HSCT, Phipps et al., found some significant
differences in 5-year follow-up graph slopes of IQ and
academic achievement measurements, based on diagnosis, type
of transplantation, use of TBI, and presence of GvHD (194).
However, these differences were small and of limited clinical
significance compared with the effect of socioeconomic status of
the children on their IQ and academic achievement.

Disparities in outcomes reported by different studies may
be partly explained by the different patient populations
studied: most study populations consisted of children with
various malignant and non-malignant diseases, although the
majority usually had acute leukaemia. Therefore, other factors
surrounding high-risk ALL patients, such as CNS disease and
intensive pre-HSCT (CNS-directed) treatment, may have an
important additive effect on core neurocognitive functioning and
academic as well as social achievements (183).

One recent study published in 2020 assessed
neuropsychological outcomes and anatomical changes on
MRI at a median of 5 years after therapy completion in paediatric
high-risk ALL patients who were treated with (n = 15) or
without (n = 14) HSCT with fractionated TBI using a protocol
that was otherwise similar to the ALL Intensive Chemotherapy
Berlin-Frankfurt-Münster (ALL-IC-BFM) 2002 study (163).
Outcomes were compared with those of newly diagnosed ALL
patients without CNS involvement and hence no disease-related
MRI changes (n = 16). Compared with non-transplanted
patients and pre-treatment controls, patients receiving HSCT
had significantly lower volumes of white and grey matter and
subcortical structures including the thalamus, hippocampus,
putamen, globus pallidus and accumbens. In addition, patients
receiving HSCT had generally lower cognitive performance,
especially in vocabulary, visuospatial ability, executive functions
and attention, and processing speed than other patients. Both
treated cohorts performed comparably to controls on all
measures related to learning capacity and memory. The thalamus
volume was correlated with neuropsychological performance
in verbal functions, executive functions and processing speed.
There was a general trend for decreased brain volumes in high-
risk ALL survivors compared with the pre-treatment controls.
This study underlines the added detriment of TBI-based HSCT
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in high-risk ALL patients, although the relationship between
cognitive decline and neuroanatomical changes has been
previously described in paediatric ALL patients treated with
chemotherapy only (196).

Of course, many biologic and sociodemographic factors
influence overall neurocognitive functioning of ALL patients
before and after HSCT. Kupst et al. found that pre-HSCT
functioning in 153 children with multiple diseases was strongly
predictive of later functioning (15). During the course of
the disease, children lose developmental and educational
opportunities in relation to their peers. Evenmaternal depression
rates can influence children’s cognitive tests (197). Moreover,
cognitive function does not always directly relate to educational
functioning (197). One influential factor that stands out is age
at HSCT. The repeated observation that TBI-based conditioning
before HSCT results in significantly worse cognitive outcomes for
children transplanted before age 3–4 than for older children, is
one of the main reasons to refrain from TBI at such young ages
(190, 193, 197–200).

It is difficult to compare studies of neurocognitive function
with one other. Different study methodologies, patient
characteristics, treatment schedules, use or lacking of baseline
testing, comparisons with control groups, and the length and
manner of follow-up hamper direct comparisons. A major
issue is the difference in testing instruments that are applied
throughout studies; in cohorts with longer follow-ups, reports
can present different outcomes related to changes in test
instruments over time (193, 194).

It remains important to remember that, although declines in
cognitive function may be measurable for paediatric high-risk
ALL patients followed up after HSCT, the vast majority of these
children will still display neurocognitive functioning skills within
the average population range, and very-long-term neurocognitive
quality-of-life effects seem onlymoderate (201). Notwithstanding
this, it is of vital importance that paediatric high-risk ALL
patients are monitored and supported from early in their
treatment and are followed up, especially after HSCT, in order
that they can start required early interventions to negate any
decline in neuropsychological, cognitive and academic function
as much as possible.

An expert review from the CIBMTR and EBMT on the
neurocognitive dysfunction in both adult and paediatric HSCT
recipients recommends neurocognitive testing in children before
and 1 year after HSCT and then at the beginning of each new
stage of education. That review includes a table summarising the
validated tests for various neurocognitive domains, the applicable
age ranges and time required apply the test (202).

Fatigue
Fatigue refers to “the persistent, subjective sense of physical,
emotional, and/or cognitive tiredness or exhaustion that is
not proportional to recent activity and interferes with usual
functioning” (203). The reported prevalence of severe fatigue
following paediatric haematological cancers ranges from
1.8 to 35.9% (204). The aetiology is probably multifactorial,
representing a complex interaction of chemotherapy- or
radiation-induced damage, psycho-social factors, medical

comorbidities and immunological/inflammatory mechanisms.
In a follow-up study of 76 paediatric patients (of whom 69.7%
had received TBI) 5–14 years post HSCT, the mean levels of self-
reported and parent-reported fatigue were moderately elevated
compared to normative values and were significantly higher
than in healthy peers (205). Self-reported fatigue was associated
with poorer functioning across all quality of life domains and
with more concerns regarding internalising problems, emotional
symptoms and personal adjustment (205). Excessive daytime
sleepiness–the tendency to doze off or fall asleep in various
situations (203)–was reported by 21% of parents and 28% of
survivors in the same study.

Randomised trials (206) and longitudinal studies (207) of
cancer and HSCT survivors indicate a significant and clinically
relevant effect of physical activity on reducing fatigue. A meta-
analysis of more alternative mind-and-body practises found a
significant positive effect of mindfulness and relaxation practises
on fatigue in primarily adult cancer patients, while acupuncture,
massage and energy therapy showed no significant effect (208).
These results, which need to be confirmed, might indicate that
practises aimed to reduce fatigue where the patient takes an active
role in execution and in symptom management have a higher
success rate than practises where individuals take a more passive
role and are reliant on practitioners to administer therapies.

Although prospective long-term studies are needed to fully
assess the extent and severity of fatigue following HSCT for
childhood leukaemia, both the suspected incidence and the
possibilities for effective interventions indicate that screening for
fatigue and excessive tiredness should be a priority in long-term
follow-up consultations after allogeneic HSCT.

Quality of Life
With increasingly better outcomes following childhood cancer,
including ALL, health-related quality of life (HRQoL) has
become an important outcome measure for paediatric oncology
that might guide clinical decisions in cases where different
protocols have the same survival outcomes (209). Studies of
HRQoL in paediatric HSCT recipients often have differences
in design, follow-up time, heterogeneity in diagnoses, treatment
regimen and scoring instruments (210). Instruments to validate
paediatric QoL scoring systems specific to the HSCT population
are under development (211).

HSCT recipients are at high risk of late effects (212–216);
a recent study on survivors of haematological malignancies
found that 47% of HSCT recipients and 22% of patients who
received only chemotherapy suffered from multiple chronic
health conditions 10–33 years post diagnosis (215). The presence
of a chronic health conditions is the strongest predictor of
reduced HRQoL in leukaemia survivors (212, 214–216). Indeed,
the number of chronic health conditions seems to have a greater
impact on the long-termHRQoL than the treatment modality the
patient received (HSCT vs. chemotherapy only) (215). However,
the inclusion of TBI in the conditioning regimen has been
associated with impaired psychosocial functioning beyond the
first year post HSCT (217).

The presence of chronic GvHD and related chronic health
conditions impact on patients’ quality of life both early (within 2
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years) (218) and in the long term (>10 years) (213). Chronic pain
(174, 213, 214), anxiety (214, 215) and fatigue (205, 215) seem to
negatively influence long-term quality of life. However, the extent
and severity of these problems needs to be further investigated in
longitudinal studies.

Using comparisons against healthy controls, studies from
the last decade of quality of life post HSCT have primarily
observed differences in the physical components of HRQoL
scores (214, 215, 218). However, the results are not uniform.
Berbis et al. found that patients who underwent HSCT had lower
HRQoL than population norms for all QoL domains except
physical composite scores, bodily pain and general mental health
(213). Visentin et al. found both physical and mental composites
scores to be decreased at a mean of 7.6 years post HSCT
compared to age-and-sex-matched French reference scores (219).
A very recent study by Yen et al. reported no difference in
mental component summary scores but significantly higher
levels of anxiety, fatigue, sensation abnormalities and memory
problems in HSCT recipients 11–28 years post treatment
compared with non-cancer controls (215). Lastly, Sundberg et al.
found that being unemployed or on sick leave was a stronger
predictor of reduced quality of life than HSCT in long-term
(>10 year) survivors of lymphoblastic malignancies, underlining
the importance of including measures of social and societal
functioning in research and follow-up consultations (220).

Several studies indicate a positive effect of physical training on
HRQoL for childhood leukaemia survivors (217, 221), although
the timing and optimal modality of this training has not been
uniformly defined (222). A recent study by Davis et al. on 20
HSCT recipients who received TBI based conditioning. found
that even at a mean of 8.4 years post HSCT (range 2.3–16 years) a
6-month supervised exercise intervention significantly improved
physical health, emotional, social and school domains as well as
overall quality of life compared to pre-intervention (223). The
improvement was maintained at 6 months after the intervention,
suggesting a role for physical rehabilitation even at long-term
follow-up clinics post HSCT.

IMMUNE EFFECTOR CELL ASSOCIATED
NEUROTOXICITY SYNDROME

Neurological toxicity has been described in virtually every trial
using CAR T cell therapy for haematological malignancies (224).
Following the initial descriptions of the neurotoxity associated
with CAR T cells, it was initially speculated that the Fludarabine,
used for lymphodepletion, may have been responsible (225).
However with more time, experience and the use of alternative
lymphodepletion regimens, it has become clear that the timing
and neurological symptoms are distinct from those seen with
fludarabine toxicity and that Fludarabine is not primarily
responsible for CAR T cell associated neurological toxicity (226).

At the time of writing this paper Tisagenlecleucel (Kymriah,
Novartis), an autologous CD19-CAR Tcell, is approved by
the US Food and Drug administration (FDA) and other
governmental bodies for use in children and young adults for
relapsed or refractory CD19+ B ALL, including post HSCT

relapse. The pivotal phase 2 study (ELIANA trial) administered
Tisagnelecleucel to 75 children and young adults with relapsed
and refractory CD19+ B ALL (227). Neurological events
occurred in 40% of patients within 8 weeks of infusion. Grade
3 neurological events occurred in 13% and there were no
grade 4 neurotoxicity and no reported cerebral oedema. Clinical
presentation included encephalopathy, confusion, delirium,
tremor, agitation, somnolence and seizures. Neurological events
usually occurred at the same time as cytokine release syndrome
(CRS) or shortly after it’s resolution. Median time to develop
ICANs was 8 days and the median duration of symptoms was
7 days. Severe neurological events occurred more frequently in
patients with severe CRS.

Reassuringly, real world data published recently using data
provided to the CIBMTR on 255 children and young adults
(median age 13.2 years) who received Tisagenlecleucel for
relapsed or refractory CD 19+ALL showed lower rates of ICANs
than the ELIANA trial (228). The incidence of any neurological
event was 27.1% (and 9% for ≥grade3 ICANs). The time to
develop symptoms and duration of ICANs were similar with that
seen in the ELIANA trial. The most common symptoms were
reduced consciousness (47.8%), tremors (21.7%), seizure (18.8%),
hallucinations (17.4%) and dysphasia/aphasia (15.9%).

The most frequently identified risk factors for the
development of ICANS are disease burden and peak CAR
T cell expansion (225, 229–232). Other risk factors include
extramedullary disease (229, 231), younger age, pre-existing
neurological abnormalities, higher CAR T cell dose and
cytopenias (225, 231) and high grade CRS (227).

The recently published clinical practise guideline for immune
effector cell related adverse events from the Society for
immunotherapy for cancer (SITC) (231) provides clear guidance
for the grading, investigation (pre, during and post) and
management of ICANs following CAR T cell therapy.

There is nothing yet in the literature about the long term CNS
complications of CAR T cell therapy.

CONCLUSION

In this review, we have provided a comprehensive review of both
the acute and long-term neurological complications in children
following HSCT for ALL. The majority of the literature on
acute neurotoxicity is in the adult population, although some
studies included children and a minority of studies focussed on
paediatric HSCT recipients (1–6, 104, 233, 234). Within these
studies, the paediatric populations were heterogeneous, with
children undergoing HSCT for a variety of indications and use of
different stem cell sources and a range of conditioning regimens.
Possibly due to this heterogeneity, the reported incidence of
acute neurotoxicity varies widely from 10 to 57% (1–6), but
overall appears high. What is clear is that acute neurological
complications are associated with significant mortality, with
mortality rates of up to 10% reported (1, 4, 6, 104).

Identified risk factors for CNS complications include aGvHD,
alternate donors and the use of TBI-based conditioning regimens
(1, 4, 6, 104). TBI being a risk factor for neurological
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complications is an important consideration for the approach to
HSCT in paediatric ALL. However, the recently published For
Omitting Radiation Under Majority Age (FORUM) study has
clearly identified that TBI-based conditioning regimens provide
a survival advantage for children ≥4 years. Therefore, for the
foreseeable future TBI will continue to be used for the majority
of children with ALL undergoing HSCT (137).

The major acute CNS toxicities in children post HSCT relate
to infections and drug-related toxicities (from conditioning
agents and GvHD prophylaxis). The majority of reviews
focussing on paediatric HSCT recipients concentrate on
short-term CNS complications. We chose to include long-
term neurotoxicity in this review, specifically cerebrovascular
accidents, SMNs, peripheral neuropathy and neurocognitive
outcomes (including cognition, fatigue and quality of life).
We believe it is essential to improve our understanding
of long-term neurological complications of HSCT as more
children undergoing this treatment are becoming long-term
survivors. This is particularly relevant as long-term neurological
toxicities can significantly impact on the quality of life
for survivors.

How acute neurotoxicities such as CNS infections and
drug toxicities impact on long-term outcomes–especially
neurodevelopmental, neurocognitive and quality of life
outcomes–is understudied and largely unknown. As an example,
how viral- or drug-associated encephalopathy, which usually
occurs as an acute complication of HSCT, impacts on long
term neurocognitive outcomes is not clear. In addition, whether
children who develop an acute neurotoxicity are at greater risk of
developing a long-term neurological complication is not known.
As more children are expected to become survivors of HSCT
for ALL, it is important to understand how the acute toxicities
can affect the developing brain in the long term: this should be a
priority for future studies.

The impact of acute neurological complications on long-term
outcomes is particularly important to understand in the current
era, with the advent of CAR T-cell therapy for ALL. Immune
effector cell-associated neurotoxicity syndrome (ICANS) is a
well-recognised early complication of CD19-targeted CAR T-
cell therapy for patients with relapsed ALL when used before or

after HSCT. The incidence of ICANS was 40% in the ELIANA
trial of the CD19-targeted CAR T-cell therapy tisagenlecleucel
for children and young adults with pre-B-cell ALL (227). The
long-term CNS complications of CAR T cell therapy are not yet
known and is an important area for research as children become
long-term survivors of this type of therapy.

In conclusion, the exact risk assessment of developing
neurotoxicity for an individual patient undergoing HSCT for
paediatric ALL is difficult due to the lack of good studies in
this area. The risk of acute neurological symptoms such as
seizures or encephalopathy (PRES, infections, Busulfan) and
peripheral neuropathy (Vincristine, Calcineurin inhibitors) are
relatively high with estimates at 5–10% (18–20, 45, 47, 48,
68, 76, 93, 104) and 10–50% (167, 170–172), respectively and
should lead to specific considerations during the pre-HSCT
assessment and the informed consent process with families prior
to HSCT. Furthermore, the risk of more durable or late occurring
neurotoxicity such as stroke or secondary brain tumours is
higher than background population at an estimated risk of at
least 2–4 times higher, probably rather 4–8 times higher (128–
130, 151, 158). Cognitive impairment following TBI may be less
pronounced with modern HCT modalities, but risk of fatigue
in the early post-transplant years (205) and risk of reduced
brain processing speed may be relevant. Memory, attention
and changes in IQ has not yet been shown to be significantly
impacted (184–195). However, this may change as the population
of paediatric HSCT survivors gets older. More research is needed
for both the acute and long-term neurological complications in
children undergoing HSCT for ALL.
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