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Abstract: Utilization of advanced engineering thermoplastic materials in fused filament fabrica-
tion (FFF) 3D printing process is critical in expanding additive manufacturing (AM) applications.
Polypropylene (PP) is a widely used thermoplastic material, while silicon dioxide (SiO2) nanoparticles
(NPs), which can be found in many living organisms, are commonly employed as fillers in polymers
to improve their mechanical properties and processability. In this work, PP/SiO2 nanocomposite
filaments at various concentrations were developed following a melt mixing extrusion process, and
used for FFF 3D printing of specimens’ characterization according to international standards. Tensile,
flexural, impact, microhardness, and dynamic mechanical analysis (DMA) tests were conducted
to determine the effect of the nanofiller loading on the mechanical and viscoelastic properties of
the polymer matrix. Scanning electron microscopy (SEM), Raman spectroscopy and atomic force
microscopy (AFM) were performed for microstructural analysis, and finally melt flow index (MFI)
tests were conducted to assess the melt rheological properties. An improvement in the mechanical
performance was observed for silica loading up to 2.0 wt.%, while 4.0 wt.% was a potential threshold
revealing processability challenges. Overall, PP/SiO2 nanocomposites could be ideal candidates for
advanced 3D printing engineering applications towards structural plastic components with enhanced
mechanical performance.

Keywords: additive manufacturing (AM); three-dimensional (3D) printing; nanocomposites; polypropy-
lene (PP); silicon dioxide (SiO2); tensile test; flexural test; Charpy impact test; Vickers microhardness;
scanning electron microscopy (SEM)

1. Introduction

Additive manufacturing (AM) has significantly expanded during the last decade,
while research and development on AM technologies herald a promising future [1]. Fused
filament fabrication (FFF) three-dimensional printing (3D printing) is one of the AM
technologies that is currently widely employed, among others, in applications ranging from
home use, up to prototyping and industrial manufacturing on a small scale [2]. Consumer
products, operational parts in wide range of machinery and applications, biomedical
equipment, etc. are some of the applications where FFF is utilized [3–5]. AM provides
new opportunities, especially when small batch fabrication is the target. A further feature
of FFF technology is the ability to operate almost autonomously even up to 24 h per day
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and with little requirements regarding tools. This asset also strengthens the ability of FFF
equipment to operate even in non-industrial environments, leading to a more decentralized
and flexible future production model [3].

FFF manufacturing technology is part of the three-Dimensional printing (3D printing)
technologies [6], which are replacing conventional manufacturing through AM, although
this is still a hard and challenging task. Currently, there is a lot of research being carried
out to identify the necessary specifications in order to replace conventional manufacturing
technologies, such as injection molding, thermoforming, machining, and others [7]. 3D
printed parts have the advantage to be manufactured with a great geometrical freedom [8].
Additionally, tools’ cost is annihilated through AM utilization [9], while fully tailored
made products up to consumer’s demand can be fabricated with AM [10]. In contrast, AM
technologies operating principle, which is outlined as a layer-by-layer material deposition,
controlled through a computer program (gcode), is responsible for the 3D printed part
anisotropic properties, compared to parts that have been manufactured through tradi-
tional methods [11]. This anisotropy in the 3D printed parts, is mainly caused by poor
interlayer fusion.

Moreover, materials used for AM technologies are produced with properties aiming to
improve processability [6]. Most of the existing stock filament materials have nowadays al-
ready been thoroughly studied in literature [12–14]. To achieve multi-functional 3D printed
objects via FFF i.e., exhibiting enhanced mechanical and thermal (or electrical) properties,
etc., polymer nanocomposites are considered as ideal candidates [15,16]. However, they
may induce some processability issues to the FFF 3D melt filamentous printing process.
This is due to the well-known abrupt increase of the polymer melt viscosity, associated
with the nanoparticle inclusions hindering the polymer chain mobility in the melt state,
which may result in a deteriorated quality of the 3D printed final objects [17–20]. It is of
great scientific interest thus to develop polymer (nano-)composites able to be processed
through AM technologies without compromising mechanical, thermal and other inherent
properties of the matrix host material [6,17–23].

Polypropylene (PP) is one of the most widely used thermoplastic polymers in a great
variety of engineering applications [24]. High quality mechanical performance and heat
resistance have given a standout position of PP in industrial applications [25]. The semi-
crystalline nature of PP is the main reason for deviations in the material’s properties,
known to be significantly affected by the manufacturing process followed i.e., in melt
mixing extrusion processes PP is very “process” sensitive to plausible shear induced
crystallization phenomena that may take place during processing [26]. The processing
temperature can have also a prominent effect on the crystallization of PP. This is critical
to be considered especially for 3D printing, since melt processing temperatures, that
may induce strong crystallization of the extruded material, could result into shrinkage
phenomena, not desirable for high quality 3D printed objects [27]. Due to this process
temperature sensitivity behavior, PP is a hard-to-process material in FFF. High shrinkage
and thermal instability create intense wrap phenomena when PP is 3D printed with the FFF
process. Such phenomena are responsible for most parts manufacturing failures, tolerance
deviations and geometrical inconsistencies. As such, it is of great interest to develop PP
formulations that can overcome such processing issues, by increasing thermal stability, to
expand the usage of the PP in AM applications.

Silicon dioxide (SiO2) commonly referred to as silica, can be found in many living
organisms [28]. Sand is mainly composed from quartz-based silica, and its contribution
in concrete industry is widely known [19,29]. Silicon dioxide is also utilized as filler in
polymer-based composites [30–33]. Targeting to increase microwave absorption, antimicro-
bial performance, mechanical properties, etc., silica can be used as a dispersed phase in
polymeric materials [20,34]. In many cases SiO2 is also accrued as to improve processability
of polymers in different manufacturing methods [20,35].

In the current study, the effect of compounding isotactic PP (i-PP) with SiO2 NPs,
as a filler in low concentrations, on the mechanical, viscoelastic, physicochemical and
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microstructural properties of the developed nanocomposites, was studied. As such, SiO2
at 0.5 wt.%, 1.0 wt.%, 2.0 wt.% and 4.0 wt.% filler loading was dispersed in PP, with a
view to studying the sensitivity of filler fraction to PP properties and also determining
a potential threshold of filler loading at which PP properties start to degrade. The me-
chanical performance of 3D printed specimens was evaluated through tensile, flexural,
impact and microhardness tests, while viscoelastic thermomechanical properties were
evaluated through dynamic mechanical analysis (DMA). No similar has been presented in
literature so far. According to literature, although both the matrix material and the filler are
popular in industrial applications, there is no similar research available yet for this specific
nanocomposite studied in this work for 3D printing, which is a very popular process
nowadays in research and in industry, as mentioned above. Additionally, nanocomposites
were fully characterized for their mechanical, thermal and rheological properties, according
to international standards, ensuring the completeness and the reliability of the presented
results, which are analyzed and discussed in detail further below in the study.

Microstructural analysis of the 3D printed samples’ outer surface and internal structure
was performed via scanning electron microscopy (SEM), while atomic force microscopy
(AFM) was performed onto the extruded filaments revealing the surface topography with
respect to the different SiO2 NP filler loadings. Raman spectroscopy proved the expected
fingerprints of the PP/SiO2 nanocomposite materials, whilst rheological investigations
revealing the effects of filler loading on the PP melt viscosity were performed via melt
flow index (MFI) analyses. Results indicated significant reinforcement mechanisms of the
PP/SiO2 nanocomposite, even at low fractions, rendering the proposed formulations as
promising feedstock for potential industrial-scale FFF 3D printing applications where PP
enhanced static mechanical and dynamic thermomechanical properties are required.

2. Materials and Methods
2.1. Materials

Isotactic polypropylene (i-PP) to be used as the matrix material in the current study
sold under the Ecolen PP trademark was procured from Hellenic Petroleum S.A. (Hellenic
Petroleum S.A., Athens, Greece). PP was procured in coarse powder form, to improve
compounding. Silicon dioxide (SiO2) nanoparticles were procured from Sigma-Aldrich
Chemie GmbH (Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA), in spherical shape
with diameters varying from 5 to 15 nm. The purity of the SiO2 powder was over 99.5%.
Nanocomposite materials were fabricated in this work in four (4) different SiO2 filler
concentrations (0.5 wt.%, 1.0 wt.%, 2.0 wt.% and 4.0 wt.%) and their properties were
compared to pure PP.

2.2. Methods

A presentation of the followed steps in this work is schematically illustrated in
Figure 1. Each step and sub-step followed during this study are described in detail in
the next sections.

2.2.1. Filament Production Process

The following process parameters were employed for the preparation of all samples
in the current study. Before starting the mixing process, pure PP in coarse powder form
was dried at 80 ◦C for 24 h, using a laboratory oven. After drying, mixing with silicon
dioxide (wt.%), for the four filler fractions of this study, followed. PP powder mixing was
performed in a closed chamber, using a mechanical mixer to minimize material losses
during blending, which could result to a change in filler percentage. Nanocomposites and
pure PP powders were further dried afterwards at 80 ◦C for 4 h, to reduce moisture in the
mixing compound.
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Figure 1. Schematic illustration and photos captured during the processes followed in this study.

Filament fabrication of diameter suitable for 3D printing (1.75 mm) followed, using a
3D Evo Composer 450 (3D Evo B.V., Utrecht, The Netherlands) extruder. Composer 450
is a single screw extruder designed for the optimization of the melt-mixing process. It is
equipped with a four (4) heating zones chamber and a built-in real-time filament diameter
measurement system. In this way, the rotational speed of the winder is automatically
adjusted in real time during the extruding process, according to the filament’s measured
diameter, to minimize the produced filament diameter deviations.

Heating zone 4 (closer to hopper) was set at 195 ◦C, heating zone 2 and 3 (middle
stage) at 210 ◦C and finally heating zone 1 (closer to extruder’s nozzle) at 205 ◦C. Extruder’s
screw rotational speed was adjusted to 3.5 rpm. The cooling system of the extruder was
set to 40%, while an external duct was utilized in order to achieve a smooth cooling
process. This duct was designed to drive air around the extruded material, aiming to
improve filament’s roundness. This feature was experimentally found to be necessary for
the specific materials of this work. Quality control was performed using both the built-in
measurement system, with measurements recorded in real time, and manually, using a
high-quality caliper. The achieved filament diameter was 1.75 ± 0.07mm throughout the
filaments’ extrusion process.

2.2.2. Tensile Specimens Fabrication and Testing

An Intamsys Funmat HT (Intamsys Technology ltd, Shanghai, China) was utilized
for the 3D printing process of the specimens. A 0.4 mm diameter nozzle was used for all
materials in a closed chamber 3D printer to maintain constant temperature conditions and
minimize the “wrapping” effect on the 3D printed specimens. The gcode required for the
3D printing process was prepared using the Intamsuite software (Intamsys Technology
Ltd., Shanghai, China), with the settings shown in Figure 2. All the other settings for the
3D printing process (not referred in Figure 2) were set to the default value of the Intamsuite
software, using PP as the selected material.
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Tensile specimens were fabricated following the ASTM D638-02a international stan-
dard. Five (5) specimens were 3D printed for all the materials tested. ASTM D638-02a
standard type V specimens with 3.2 mm thickness were manufactured. The tensile appara-
tus utilized for the tests was an Imada MX2 system (Imada Inc., Northbrook, IL, USA). Test
rate was set to 10 mm/min under room temperature conditions (22 ◦C and 50% RH).

2.2.3. Flexural Specimens Fabrication and Testing

Flexural specimens were manufactured following the same process described in
Section 2.2.2. ASTM D790-10 international standard was followed for specimen’s testing.
According to the standard, five (5) specimens of 3.2 mm thickness were fabricated for each
material studied, so a total of twenty-five (25) flexural specimens were manufactured and
tested. Flexural tests were conducted using also the Imada MX2 apparatus, in three-point
bending setup (bottom-right picture of Figure 1). Test rate was adjusted to 10 mm/min
and tests were conducted at room temperature conditions (22 ◦C and 50% RH).
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2.2.4. Charpy Impact Specimens Fabrication and Testing

ASTM D6110-04 standard was followed for notched specimens’ Charpy Impact tests.
According to the standard, specimen dimensions were 80 mm length, 10 mm width and
8 mm height. Specimens were fabricated using the process described in Section 2.2.2. For
impact testing, a Terco MT220 Charpy (Terco AB, Kungens Kurva, Sweden) apparatus
was utilized. A total of 25 specimens were tested (five for each material case), employing
release height of 367 mm at room temperature conditions (22 ◦C and 50% RH).

2.2.5. Microhardness Measurements

Microhardness is related to the plasticity of the material, which is directly connected
with the material mechanical response [36]. Vickers microhardness measurements were
carried out at randomly selected specimens produced for tensile, flexural or impact testing.
Specimens’ surfaces were thoroughly polished prior to taking measurement, to minimize
roughness due to the 3D printing manufacturing process. Microhardness measurements
were taken with an Innova Test 300-Vickers laboratory machine (Innovatest Europe B.V.,
Maastricht, The Netherlands). Indentations were conducted by setting the applied force
at 300 gF, while indentations’ duration was set to 10 s. Each material’s microhardness
was calculated as an average of five (5) measurements, taken at temperature of 22 ◦C and
~50% RH.
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2.2.6. Dynamic Mechanical Analysis (DMA)

DMA specimens were fabricated using the 3D printing process described at Section 2.2.2.
Batches of three (3) specimens were manufactured and tested for each material case.
DMA was conducted on a TA Instruments DMA850 (New Castle, DE, USA) appara-
tus. Dimensions of the 3D printed specimens were of 60 mm length, 15 mm width and
3.0–3.2 mm thickness. Prior to testing, all specimens were polished using 200 and 400 grain
sandpapers, to smoothen rough side edges from manufacturing process, followed by dry-
ing for 48 h at 30 ◦C. The DMA testing process consisted of a temperature ramp from room
temperature to 130 ◦C, following a rate of 3 ◦C/min. Test was conducted using a 3-point
bending fixture (preload of 0.1 N and 1 Hz frequency). Data was collected at a sampling
rate of 0.33 Hz. The recorded parameters are the storage modulus, loss modulus, tan δ,
temperature, time, and oscillation angular frequency.

2.2.7. Spectroscopic and Morphological Characterization

Raman spectroscopy was performed for the pure PP, as well as the PP/SiO2 nanocom-
posite 3D printed specimens using a Labram HR-Horiba (Horiba Co Ltd., Kyoto, Japan)
scientific micro-Raman system. An optical microscope equipped with a 50× long working
distance objective was utilized both for delivering the excitation light, as well as collecting
the back-scattering Raman activity. An Ar+ ion laser line (514.5 nm) at 1.5 mW power at
the focal plane was utilized for the Raman excitation. All acquired and depicted spectra
in this work have been treated with a baseline correction through subtraction of a linear
or polynomial fit of the baseline from the raw spectra in order to remove tilted baseline
variation caused by various noises, i.e., fluorescent background, etc.

In order to acquire more information for the microstructural characterization, Scanning
electron microscopy (SEM) was performed on a JEOL JSM 6362LV (JEOL Ltd., Peabody,
MA, USA) electron microscope in high-vacuum mode at 20 kV acceleration voltage on
sputtered-gold coated samples. SEM images were captured from tensile test specimens for
all nanomaterials fabricated in this work. Captures were taken to the side and the fracture
area of the tensile specimens at various zoom levels.

Atomic force microscopy (AFM) was also utilized for the morphological characteri-
zation of the produced filaments of this work. A MicroscopeSolver P47H Pro NT-MDT
(Moscow, Russia) was utilized for the AFM measurements. Filaments’ surface topology
was studied at room temperature of 22 ◦C, with a resonant frequency of about 300 kHz.
Silicon cantilevers available at the market were used with scanning frequency of 1 Hz and
the remaining parameters for the measurements were as follows: cantilever spring constant
was 35 N/m, the tip cone angle was 20◦ and the tip radius was approximately 10 nm.

2.2.8. Melt Flow Index

Melt flow index tests were conducted following the ISO 1133:2005 international stan-
dard. A CEAST MF20 Melt Flow Tester (Instron, Norwood, MA, USA) was utilized for the
purposes of the current study. PP and the four nanocomposites fabricated in this work were
tested for their ease of flow in the melt state. The basic principle of the method involves
the thermal heating (230 ◦C in this study) of a granulated thermoplastic to molten state
and its forced flow out of a capillary die. An extruding piston is used that is loaded with
dead weights, up to 21.6 kg. In this work, 4 min pre-conditioning (in the chamber) without
any weight was employed, using dead-weights of 2.16 kg, at room temperature conditions.
Melt mass-flow rate (MFR) corresponds to the mass flow an alternative quantity is the
volume flow, called melt volume-flow rate (MVR), as expressed in Equation (1):

MVR =
MFR

ρ
(1)

where, ρ = the polymer’s density in the melt state.
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3. Results
3.1. Mechanical Performance
3.1.1. Tensile Test Results

Figure 3 shows results obtained during the tensile tests. Specifically, Figure 3a shows
a typical tensile stress (MPa) to corresponding strain graph for each material case tested.
Average tensile strength and the corresponding standard deviation of the average value
of each material tested is shown in Figure 3b. As shown in Figure 3b, an approximately
10% increase is observed when comparing pure PP maximum tensile stress values to
the corresponding values for filler ratios of 0.5 wt.% and 2.0 wt.%. A similar percentage
increase is also observed for the average tensile modulus of elasticity, in this case for
PP-SiO2 4.0 wt.%, when compared to neat PP (Figure 3c).
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3.1.2. Flexural Test Results

Figure 4 shows results obtained during the flexural tests. Specifically, Figure 4a shows
a typical flexural stress-strain graph for each material case tested. As shown, maximum
strain for all materials was terminated at 5.0% strain, according to ASTM D790-10. Figure 4b
shows the average maximum flexural stress values at 5.0% strain for all tested material
cases in the current study.
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Figure 4c shows the average flexural modulus of elasticity calculated for each material
case, respectively. An increase of ~13%, ~12% and ~4 % is observed for the flexural strength
for the cases of PP/SiO2 1.0 wt.%, 2.0 wt.% and 4.0 wt.%, compared to pure PP. A similar
trend was observed for the average flexural modulus of elasticity values presented in
Figure 3c.

3.1.3. Impact and Microhardness Test Results

Impact and Vickers microhardness tests results are summarized in Figure 5. Figure 5a
depicts the average recorded impact strength values (kJ/m2), while Figure 5b presents the
Vickers microhardness (HV) average values, for the different PP/SiO2 nanocomposite filler
loadings. An increasing trend in the average impact strength values was recorded with the
increase of the filler loading. However, due to the large experimental scatter, the effect is
insignificant. A similar, but of lower magnitude, trend, was observed for the effect of the
filler loading on the microhardness values.
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3.2. DMA Results

Storage modulus and tanδ as a function of temperature are shown in Figure 6. A
general drop of the storage modulus with increasing temperature is observed for all
studied materials, that changes its gradient after ~60 ◦C. Silica presence in ratios higher
than 1.0 wt.% shows a stiffening effect on the nanocomposite materials, apart from the
case of 4.0 wt.%, which coincides with the findings from tensile and flexure testing. At
the same time, damping increased, with filler loading, with 0.5 wt. % exhibiting the most
pronounced increase. It is interesting to note that tanδ curves exhibit a general increasing
tendency, that saturates after approximately 70 ◦C, while beyond 110 ◦C, a oscillating trend
is observed, that corresponds to softening at high temperatures, which was more evident
for 0.5 wt.%. The latter is in agreement with the tensile and flexure responses due to filler
loading (Figures 3 and 4).
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3.3. Spectroscopic and Microstructural Analysis

Figure 7 shows the Raman spectra of the respective 3D printed samples, namely
the pure PP, as well as the PP/SiO2 nanocomposites at different filler loadings. Specif-
ically, Figure 7a shows the whole acquired Raman spectrum in the spectral range of
250–3000 cm−1, while Figure 7b in the 300–700 cm−1 regions. All peaks attributed to the
PP matrix macromolecular chains chemistry i.e., due to the polymer chain backbone and
the side groups, are depicted with continuous lines, while the specific bands assigned to
SiO2 NPs are illustrated with dashed lines (Figure 7a,b).

Figure 8 shows SEM pictures acquired from the side of the tensile specimens. Figure 8a,b
show a specimen’s side at ×30 and ×150 magnification respectively, for PP/SiO2 0.5 wt.%.
Figure 8c,d show same magnification, in correspondence to Figure 8a,b, for PP/SiO2 2.0
wt.% while Figure 8e,f, for PP/SiO2 4.0 wt.%, respectively. In Figure 9 SEM images captured
through the fractured area of the tensile specimens are shown. Specifically, Figure 9a,b
correspond to the fractured area of PP/SiO2 0.5 wt.% at ×30 and ×1000 magnification,
respectively. Figure 9c,d show the fractured area of PP/SiO2 2.0 wt.%, while Figure 9e,f of
PP/SiO2 4.0 wt.%, respectively.
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Figure 8. SEM images of the tensile specimens’ side/outer surfaces: (a) ×30 magnification of PP/SiO2 0.5 wt.%; (b) ×150
magnification of PP/SiO2 0.5 wt.%; (c) ×30 magnification of PP/SiO2 2.0 wt.%; (d) ×150 magnification of PP/SiO2 2.0 wt.%;
(e) ×30 magnification of PP/SiO2 4.0 wt.%; (f) ×150 magnification of PP/SiO2 4.0 wt.%.

AFM 3D height images are shown in Figure 10. The filament surface topology of
PP/SiO2 0.5 wt.% is shown in Figure 10a, and Figure 10b,c correspond to PP/SiO2 nanocom-
posites with 2.0 wt.% and 4.0 wt.% filler loading, respectively. In general, filler concentration
has a minor effect in the materials’ microstructure, with further analysis to follow in the
next sections.
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Figure 9. SEM images of the tensile specimens’ fractured areas: (a) ×30 magnification of PP/SiO2 0.5 wt.%; (b) ×1000
magnification of PP/SiO2 0.5 wt.%; (c) ×30 magnification of PP/SiO2 2.0 wt.%; (d) ×1000 magnification of PP/SiO2 2.0
wt.%; (e) ×30 magnification of PP/SiO2 4.0 wt.%; (f) ×1000 mag nification of PP/SiO2 4.0 wt.%.
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3.4. Melt Flow Index Results

Figure 11 illustrates the MFI setup (Figure 11a) and the effect of the filler loading to
MVR (Figure 11b). MVR as stated, is a quality control index to determine the ease of flow
of each material. Therefore, MVR is one of the parameters related to the processability
of the material, which is of prior importance for FFF 3D printing. Silica nanoparticles
induced a general drop in MVR, which was an expected result as polymer melt viscosity
increases with filler ratio. The highest MVR value was recorded for the case of pure PP
(~34 cm3/10 min), while the lowest MVR value for the case of PP/SiO2 4.0 wt% (~27.5
cm3/10 min).
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4. Discussion
4.1. Mechanical Properties Analysis

With regards to the tensile property response to filler loading, a clear increasing
effect was exhibited for the case of the tensile strength of 0.5 wt.%, 1.0 wt.% and 2.0 wt.%
(Figure 3b). From Figure 3c, the tensile modulus of elasticity (which is related to the
material stiffness) indicates a marginal increasing tendency, which is more pronounced for
the case of PP/SiO2 4.0 wt.% (~7% increase compared to pure PP). However, the average
value increase is within the experimental scatter, therefore, no significant conclusion can
be drawn. Tensile response agrees with literature [37], where an increase of the tensile
strength with the increase of silica loading has been reported for non-3D printed specimens.
Tensile stiffness increasing tendency leads to an expected brittle behavior [38], which is
more prominent in the work, for 4.0 wt.% filler loading. Kruenate et al. [38] reported a 20%
reduction in the strain at break for PP/SiO2 2.0 wt.% nanocomposites (compared to pure
PP), which coincides with the finding of this this work, for both the 2.0 wt.% and 4.0 wt.%
nanocomposites (Figure 3a).

A similar effect to the tensile response was observed for the flexural properties. The
increase of silica ratio inclusion within PP leads to an increase of the flexural strength
and stiffness. More specifically, flexural properties after revealing a marginal drop for
0.5 wt.% filler loading, improved for the cases of 1.0 wt.%, 2.0 wt.% and 4.0 wt.%, re-
spectively. Interestingly, flexural strength and stiffness exhibited peak values for 1.0 wt.%
filler loading that started to diminish with higher loadings. Impact strength and micro-
hardness measurements were insignificantly affected by the introduction of silica to the
matrix material.

Figure 12 and Table 1 summarize the mechanical response to filler loading. Highest
recorded or calculated values are marked on the right side of Figure 12. The 1 wt.%
concentration had the better mechanical performance overall among the concentrations
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studied, showing that even low concentrations are adequate to enhance the response of the
material. At 4 wt.% the mechanical response of the material started to decrease, with the
average tensile strength of the 4 wt.% specimens studied being marginally lower than the
pure PP material, indicating a threshold in the filler loading at this concentration.

Table 1. Summarizing of mechanical properties measured and/or calculated through tests conducted.

Silicon Dioxide Percentage (wt.%)

Mechanical property 0 0.5 1 2 4
Tensile strength (MPa) 32.22 34.99 33.86 34.83 31.32
Tensile Modulus of elasticity (MPa) 138.21 139.59 139.04 140.01 148.58
Flexural strength (MPa) 41.54 40.13 47.11 46.69 43.28
Flexural Modulus of elasticity (MPa) 815.11 785.77 926.78 921.89 849.34
Impact Resistance (kJ/m2) 3.72 3.94 4.01 3.79 3.85
Microhardness (HV) 12.60 12.71 12.75 12.44 13.34
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4.2. DMA Analysis

Storage modulus at low temperatures corresponds to flexural stiffness. As it can be
seen from Figure 6, all apart from the 0.5 wt.% filler loading case, resulted into higher
stiffness than the reference case, with the 1.0 wt.% and 2.0 wt.% filler loading exhibiting
the highest values, among others. For the 4.0 wt.% filler fraction, storage modulus at low
temperatures diminished, compared to 1.0 wt.% and 2.0 wt.%, respectively, exhibiting
material brittleness due to high filler inclusion. The above corroborates the findings of the
static mechanical tests.

With respect to damping, tanδ curves revealed a generally similar trend, that is an
increasing tendency that loses intensity at approximately 70 ◦C. Filler loading caused a
damping effect of similar fashion to storage modulus, Tanδ values exhibited a peak value
around the temperature value of 90 ◦C, whilst above 110 ◦C, tanδ values started to drop,
reaching their lowest value, at approximately 120 ◦C. As aforementioned, an oscillating
trend is observed at high temperatures that corresponds to a softening effect.
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4.3. Spectroscopic and Microstructural Analysis

For all nanocomposites, characteristic PP Raman peaks could be seen, as has been
reported elsewhere [39]. More specific, the characteristic fingerprints of PP are located at ca.
385, 810, 868, 967, 1036, 1168 and 1221 cm−1 (C–C stretching vibration), 1250 and 1320 cm−1

(CH deformation vibration), 1334 and 1454 cm−1 (–CH2 of the PP backbone macromolecular
chains), 1361–1385 cm−1 (–CH3 deformation vibrations of PP chains, as well as the –CH3
side group rocking vibration) [39], and 2721, 2837, 2875 and 2962 cm−1 (CH3 symmetric
and asymmetric stretching vibration) [40]. The spectra of PP/SiO2 nanocomposites at the
different SiO2 wt.% filler loading exhibit some peaks attributed to the incorporated SiO2
NP vibrational modes, indicated more clearly in Figure 7b. Namely, peaks at ca. 363 cm−1,
451 cm−1, 582 cm−1 and 609 cm−1 correspond to SiO2 NPs, being in good agreement with
the typical SiO2 NP vibrational modes reported elsewhere [41]. It is worth mentioning and
it can be observed that the corresponding SiO2 NP peaks’ intensity is slightly increasing
with the increased SiO2 wt.% filler loading.

SEM was utilized to characterize the external microstructural characteristics of the
specimens, as well as the fractured surfaces of tensile test specimens also elucidating the
internal structure of the 3D printed specimens. As shown in Figure 8, a high-quality 3D
printing process is validated by the good interlayer fusion visible through the side captures.
Also, layer height seems to be perfectly in accordance with the settings specified in the FFF
process, at approximately 200 microns. Some slight defects are shown in PP/SiO2 4.0 wt.%,
which were possibly generated due to high filler concentration.

Adequate 3D printing, and indirectly extrusion, processes, are validated through
the fracture area SEM micrographs. Visible gaps on the fractured surface are common
case in 3D printed thermoplastic structures. Even 100% infill setup most times is not
enough to minimize an anisotropic behavior of 3D printed parts. In the current study,
both PP/SiO2 0.5 wt.% (Figure 9a,b) and 2.0 wt.% (Figure 9c,d) fractured areas reveal
that the 3D printed nanocomposite objects are almost perfectly fused. PP/SiO2 4.0 wt.%
fractured surface slightly differs (Figure 9e,f), as fusion between shells and infill of 3D
printed specimen seems to be slightly worse. This can possibly be justified by the increase
in the viscosity of the polymer melt, due to the increase of the silica concentration that
hinders the PP macromolecular chains mobility in the melt state. It should be mentioned
that this change in flow ratio did not cause any challenges during the extrusion or the 3D
printing manufacturing process. Considering the surface micrographs and the fractured
areas of the specimens, it could be postulated that no intense agglomeration occurred even
at the highest filler loading i.e., the 4.0 wt.%, and high quality SiO2 NP dispersion in the PP
matrix was achieved.

Regarding the extruded filament surface topography revealed in the AFM images,
increasing silica loading in the PP led to a rather high effect in the filament’s surface
roughness. Almost 1 µm roughness was measured for the case of PP/SiO2 4.0 wt.%
filament, which is almost 65% higher than the roughness of the PP/SiO2 2.0 wt.% filament.

4.4. Melt Flow Index Analysis

MFI analysis was conducted to quantify the effect of filler loading on the rheology of
the studied polymer. MVR indicates the ease of flow, which is a crucial factor for extrusion
in melt-mixing and for the FFF manufacturing procedure. As aforementioned, and shown
in Figure 11b, filler loading caused a lowering effect on MVR values, which denotes
increase in viscosity. Increase in viscosity is an expected outcome that is attributed to the
presence of particles within the polymer melt. Specifically, a drop of approximately 20%
was exhibited for the case of PP/SiO2 4.0 wt.% compared to neat PP. Interesting enough,
after a first recorded drop of MVR values at 0.5 wt.% filler loading, MVR values exhibited
a slight increase for the cases of 1.0wt.% and 2.0 wt.%, respectively, before lessening to the
minimum MVR value, for the case of 4.0 wt.%. This successive alteration of MVR values
was also observed for the static and viscoelastic response of the material to filler loading.
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5. Conclusions

In this study, the effect of SiO2 filler loading on the mechanical, viscoelastic, rheological,
and microstructural properties of isotactic PP homopolymer was studied. Silica loading
appears to affect the mechanical behavior of the matrix material, even at low concentrations.
Highest values of the tensile modulus of elasticity were recorded at PP/SiO2 4.0 wt.%, while
nanocomposites of 2.0 wt.% and 1.0 wt.% developed a similar behavior. Flexural strength
follows a similar trend, while in this case PP/SiO2 1.0 wt.% exhibits the highest values,
also with low differences to 4.0 wt.%. Impact strength and microhardness were marginally
affected by the SiO2 additive in the PP polymer matrix material. So, the introduction of
silica to the PP polymer enhances its mechanical response in all concentrations studied.

DMA testing revealed a stiff behavior for PP/SiO2 1.0 wt.% compared to other cases,
which is in accordance with flexure testing. Finally, in total an improved performance is
reported when using silicon dioxide as a filler material additive melt mixed with polypropy-
lene. Specifically, an addition of 1.0–2.0 wt.% leads to improved mechanical behavior,
without compromising processability of the material. SEM images from the side of the
tensile test specimens showed that the specimens manufactured with the process followed
in this work are of high-quality, ensuring that the process itself is reliable to be adapted
in industrial environments and the quality of the specimens did not affect the results
of the mechanical tests performed. Possible defects and discontinuities in the interlayer
fusion could affect the mechanical properties of the specimens tested, due to low cohesion
between the specimens’ strands. SEM images from the fracture surface of the tensile test
specimens revealed an expected behavior for 3D printed specimens, with the development
of visible gaps between the strands at failure. The increase of the viscosity at the highest
filler loading studied, seems to have an effect on these phenomena on the fracture area of
the specimen, since the fusion between the strand was found to be worsen in this case.

PP enhanced with silica shows a potential for applications in FFF AM technology as
it has been found to be quite promising in increasing the mechanical and the dynamic
thermomechanical properties of PP, as well as SiO2 nanocomposites was found to coun-
terbalance wrapping effect during 3D printing, without compromising the 3D printing
extrusion filamentous processing/deposition.
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