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Background: Cervical squamous cell carcinoma (CESC) is one of the most frequent
malignancies in women worldwide. The level of immune cell infiltration and immune-related
genes (IRGs) can significantly affect the prognosis and immunotherapy of CESC patients.
Thus, this study aimed to identify an immune-related prognostic signature for CESC.

Methods: TCGA-CESC cohorts, obtained from TCGA database, were divided into the
training group and testing group; while GSE44001 dataset from GEO database was
viewed as external validation group. ESTIMATE algorithm was applied to evaluate the
infiltration levels of immune cells of CESC patients. IRGs were screened out through
weighted gene co-expression network analysis (WGCNA). A multi-gene prognostic
signature based on IRGs was constructed using LASSO penalized Cox proportional
hazards regression, which was validated through Kaplan–Meier, Cox, and receiver
operating characteristic curve (ROC) analyses. The abundance of immune cells was
calculated using ssGSEA algorithm in the ImmuCellAI database, and the response to
immunotherapy was evaluated using immunophenoscore (IPS) analysis and the TIDE
algorithm.

Results: In TCGA-CESC cohorts, higher levels of immune cell infiltration were closely
associated with better prognoses. Moreover, a prognostic signature was constructed
using three IRGs. Based on this given signature, Kaplan–Meier analysis suggested the
significant differences in overall survival (OS) and the ROC analysis demonstrated its robust
predictive potential for CESC prognosis, further confirmed by internal and external
validation. Additionally, multivariate Cox analysis revealed that the three IRGs signature
served as an independent prognostic factor for CESC. In the three-IRGs signature low-risk
group, the infiltrating immune cells (B cells, CD4/8 + T cells, cytotoxic T cells, macrophages
and so on) were much more abundant than that in high-risk group. Ultimately, IPS and
TIDE analyses showed that low-risk CESC patients appeared to present with a better
response to immunotherapy and a better prognosis than high-risk patients.
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Conclusion: The present prognostic signature based on three IRGs (CD3E, CD3D, LCK)
was not only reliable for survival prediction but efficient to predict the clinical response to
immunotherapy for CESC patients, which might assist in guiding more precise individual
treatment in the future.

Keywords: cervical squamous cell carcinoma, weighted gene co-expression network analysis, immune cells
infiltration, prognosis, immunotherapy sensitivity

INTRODUCTION

Cervical cancer ranks as the fourth most frequent malignancy and
the fourth leading cause of cancer-related death in women
worldwide, with approximately 570,000 new cases and 311,000
deaths reported by the International Agency for Research on
Cancer (IARC) in 2018 alone (Bray et al., 2018). Cervical
squamous cell carcinoma (CESC) comprises the primary
histological type of cervical cancer, accounting for more than
80% of cases. Although recent advances in comprehensive
treatments, including surgical resection, chemotherapy, and
radiotherapy, have been made, the overall mortality has
increased annually around the world (Jemal et al., 2011; Torre
et al., 2015; Bray et al., 2018). For instance, in China, the number
of deaths increased at an annual percentage change of 5.9% from
2001 to 2011 (Chen et al., 2016). Notably, the high risk of
metastasis and recurrence makes it challenging for CESC
patients with traditional therapies to maintain a good
prognosis; thus, the development of a reliable prognostic
assessment and novel therapeutic strategies is urgently needed
(Pfaendler and Tewari, 2016).

In recent years, immunotherapy, especially the use of immune
checkpoint inhibitors (ICIs), has made appreciable progress in
antitumor practice and is becoming the new first-line therapeutic
option in oncology (Fillon, 2020); e.g., for treatment of bladder
cancer (Patel et al., 2020), melanoma (Zaretsky et al., 2016), renal
cancer (Curti, 2018). Distinct from traditional treatments, the
clinical benefits for immunotherapy patients are achieved by
stimulating the persistent antitumor immune response
(Kennedy and Salama, 2020), which depends on
immunomodulation between the tumor microenvironment
(TME) and cancer cells. Numerous studies have reported that
infiltrating immune cells, a vital part of the TME, are closely
related to cancer progression and the efficacy of immunotherapy
(Hanahan and Coussens, 2012; Byrne et al., 2020). For instance,
the mechanism of immune checkpoint blockade (ICB) therapy is
to enhance a patient’s anti-tumor immune response by blocking
the inhibitory effect of tumor cells on immune cells. In this
process, programmed cell death 1 (PD1) and cytotoxic T
lymphocyte antigen 4 (CTLA-4) are the most common targets
of ICIs, which generally inhibit the activation and amplification of
T cells that render the anti-tumor response ineffective. Although
ICIs were expected to exhibit great potential in the
immunotherapy of CESC patients, the clinical outcomes and
prognosis were far from satisfactory, as only less than 20%
patients achieved a partial or complete response where most
had a PD-L1-positive tumors (Frenel et al., 2017; Chung et al.,
2019). Meanwhile, the heterogeneity of increased levels of tumor

infiltrating lymphocytes and tumor mutational burden in CESC
participants also gives the additional explanation for it (Otter
et al., 2019). Therefore, to achieve precise personalized decision-
making for ICI treatment, a robust prognostic signature will be
important to determine the prognosis and predict the sensitivity
of immunotherapy in CESC patients.

Although several risk models have been developed to predict
the prognosis of CESC patients (Yang et al., 2019; Liu et al., 2020),
these have been based on differentially expressed genes, which
ignored the complicated interactions of genes, as well as hub
genes that showed no significant differences between tumor and
normal tissues, but were closely linked to clinical features.
Additionally, a promising prognostic signature based on
immune-related genes (IRGs) has been confirmed great
potential to predict prognosis and immunotherapy
responsiveness in cancers but were less reported in CESC. In
the present study, weighted gene co-expression network analysis
(WGCNA) was the first time to be applied to identify significant
IRGs for CESC patients, which were highly associated with
infiltration levels of immune cells calculated by the use of
ESTIMATE algorithm. Furthermore, hub IRGs were selected
to construct a promising prognostic signature through the
least absolute shrinkage and selection operator (LASSO)
penalized Cox proportional hazards regression. Ultimately,
internal and external validations further demonstrated that
this robust prognostic signature based on IRGs in this study
was not only reliable for survival prediction but efficient to
predict the clinical response of ICIs for CESC patients, which
might facilitate personalized counseling for immunotherapy in
the future.

METHODS

Data Acquisition and Preprocessing
The RNA-seq datasets (FPKM profiles) and clinical information
of the CESC cohorts were retrieved from The Cancer Genome
Atlas (TCGA) website (https://portal.gdc.cancer.gov/). Then, the
gene expression matrix was formed via Perl script based on the
CMD command. IDs were converted to gene symbols according
to the Ensembl database (http://asia.ensembl.org/index.html).
Meanwhile, mRNA expression profiles (GSE44001) were also
downloaded from Gene Expression Omnibus (GEO) database to
be viewed as the external validation group, where the matrix
profile was conducted by Robust Multi-Array Average (RMA)
algorithm in R affyPLM package (Irizarry et al., 2003). But of
note, any patients with the follow-up time less than 1 day were
excluded. In addition, if matched with multiple IDs in two matrix
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profiles, the gene expression values were averaged. Finally, log2
processing of the matrix data was performed for further analyses.

Evaluation of Tumor Microenvironment in
The Cancer Genome Atlas-Cervical
Squamous Cell Carcinoma Cohort
ESTIMATE algorithm (Yoshihara et al., 2013) has been popularly
applied to predict infiltration levels of immune cells and stromal
cells in the TME based on specific gene expression, of which the
final results were evaluated using the immune score and stromal
score, respectively. The ESTIMATE score was also calculated to
measure the overall tumor immunity of CESC. Then, all patients
were divided into two groups (high score and low score) based on
the mean score, and survival analyses were performed to explore
whether the overall survival were related with the immune
infiltration levels.

Construction of Weighted Gene
Co-expression Networks
In the present study, the top 25% most-varying genes calculated by
the mean absolute deviation (MAD) algorithm were selected for
subsequent analysis. The outlier samples were firstly identified and
removed using the goodSamplesGenes function in the WGCNA
package. Next, Pearson correlation coefficients were calculated
between any two genes to construct the gene expression
similarity matrix with the following formula: aij �

∣
∣
∣
∣cor (Xi, Xj)

∣
∣
∣
∣

β
,

where Xi and Xj represent the expression values of gene i and j.
Furthermore, the cut-off value of scale-free R2was set at 0.9 to obtain
the lowest soft-thresholding power β that would be used to build an
adjacency matrix so that gene distribution conformed to scale-free
networks. Based on the topological overlapmatrix (TOM) converted
from the adjacency matrix, dissimilarity between genes was
employed to cluster genes with similar expression profiles by the
hierarchical clustering method, which were then cut into different
modules by dynamic shearmodule recognition and visualized by the
dendrogram with colored assignments (minimum module size was
80). Meanwhile, a cut-height of 0.35 was considered as the cut-off
value to merge similar modules.

Identification of Significant Modules and
Genes Related to Clinical Features
The clinical traits of each sample were combined with module
eigengenes (MEs) to construct the relevant clinical modules. MEs
were defined as the first principal component of the module,
representing the gene expression profile of the entire module.
The clustering modules that were the most closely associated
with immune cell infiltration were selected as the significant
modules. Gene significance (GS) and module membership (MM)
were also calculated to screen significant genes. GS represents the
correlation between gene expression and clinical traits, and MM
reflects the correlation between gene expression profile and genes
within givenmodules. Ultimately, GS> 0.4 andMM> 0.8were set as
the criteria to identify hub genes that were strongly related to the
clinically significant traits. (Zhang and Horvath, 2005).

To further screen potential genes that play an essential role in
immune cell infiltration of CESC, a total of 1811 IRGs were
obtained from the ImmPort database (https://immport.niaid.nih.
gov) (Bhattacharya et al., 2014), and these overlapping genes were
selected as hub IRGs for subsequent analysis.

Functional Enrichment and Interactions
Analyses
The functional enrichment analyses including Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes andGenomes (KEGG)
pathway analyses were performed using the R clusterProfiler package
(Yu et al., 2012). GO termswere further divided into biological process
(BP), molecular function (MF), and cellular component (CC). Adj. p.
value <0.05 were considered significant. To identify the interactive
relationships of hub genes, a protein–protein interaction (PPI)
network was constructed using the STRING database (https://
string-db.org/) with the minimum required interaction score being
0.7. In addition, the R corrplot package was applied to conduct
Pearson correlation analysis between hub IRGs.

Development and Validation of the
Prognostic Signature
CESC patients were randomly divided into training and test
groups with a 7:3 ratio (Table 1). In the training set,
univariate Cox regression analysis was performed to explore
the relationship between the expression of each key IRG and
overall survival (OS). Then, these genes with a p-value < 0.05 were
selected as hub IRGs, which were further analyzed by using
LASSO penalized Cox proportional hazards regression to find
the best risk model in the R package “glmnet” (Wang et al.,
2019a). The risk score was calculated using the following formula:
risk score � (β1pG1 + β2pG2 + β3pG3 +/ + βnpGn), where β is
the coefficient of each prognostic hub gene, G represents the
expression value of hub genes, and n denotes the number of hub
genes. Patients were classified into low-risk (<mean risk score)
and high-risk (>mean risk score) groups depending on the mean
risk score. Moreover, the survival curve was determined using the
Kaplan–Meier method in the R survminer package, where the
differences between low- and high-risk groups were calculated by
the log-rank test. Meanwhile, a time-dependent receiver
operating characteristic (ROC) curve was adopted using R
ROC package (Kamarudin et al., 2017), of which the area
under the curve (AUC) was calculated to assess the accuracy
of the prognostic risk model.

To further verify the predictive performance of the prognostic
model, the risk scores were also calculated in the testing group
and external groups using the same prognostic formula, and the
Kaplan–Meier survival curve and ROC curve were generated with
a cutoff value of the mean risk score.

Immune Infiltration Patterns with
Prognostic Signature
Immune infiltrating cells, such as T cells, B cells, and monocytes,
have been shown to be important in the TME and to significantly
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affect cancer progression. Thus, ImmuCellAI (http://bioinfo.life.
hust.edu.cn/web/ImmuCellAI/) (Miao et al., 2020), a novel and
efficient tool based on the ssGSEA algorithm that can estimate the
abundance of 24 immune infiltrate cells (18 T-cell subtypes and
B cells, natural killer cells, monocytes, macrophages, neutrophils,
and dendritic cells) from the gene expression data set (Bindea
et al., 2013), was applied to calculate the abundance of immune
cells and to compare the differences in infiltrated patterns
between low- and high-risk groups. Meanwhile, we also
employed TIMER database to explore the correlation of the
expression levels of hub IRGs with the expression of immune
checkpoint molecules and infiltrating levels of immune cells (Li
et al., 2017).

Immunogenicity and Immunotherapeutic
Sensitivity with Prognostic Signature
To further validate the predictive performance of the given
prognostic signature for the response to ICIs, two independent
methods including immunophenoscore (IPS) analysis and the
Tumor Immune Dysfunction and Exclusion (TIDE) algorithm
were employed to assess the immunogenicity and
immunotherapeutic sensitivity of CESC patients, respectively.

The immunogenicity of a patient was determined by four main
parts (effector cells, immunosuppressive cells, MHC molecules, and
immunomodulators), which could be calculated without bias using
machine learning methods by IPS analysis (Charoentong et al.,
2017). Higher IPS scores (range 0–10) represent increased
immunogenicity. The IPSs of patients with CESC were obtained
from The Cancer Immunome Atlas (TCIA) (https://tcia.at/home).

The TIDE algorithm, designed by Dr. Shirley Liu and
colleagues, was considered as highly reliable method to predict
the clinical response of patients to ICB therapy (PD1 and CTLA-4
inhibitor) in recent studies (Jiang et al., 2018). The results were
measured by TIDE score. According to the default settings, a
patient with a TIDE value <0 was defined as a responder (positive
sensitivity to immunotherapy), whereas a patient with a TIDE

value >0 was defined as a non-responder (negative sensitivity to
immunotherapy). Furthermore, a correlation analysis of CESC
samples was performed to explore the correlation between the
given prognostic signature and immune function.

Statistical Analysis
The WGCNA method and all statistical analyses were performed
in R software (3.6.1) and GraphPad Prism (8.0). The
Mann–Whitney test was applied to compare differences of
continuous data between two groups, whereas ANOVA was
used for more than two groups. A Chi square test was used to
test for differences between categorical variables. p values <0.05
were considered to be statistically significant.

RESULTS

Correlation of ESTIMATE Score and Clinical
Characteristics
The flow diagram of the present study is shown in Figure 1. A total
of 291 and 301 CESC samples were enrolled from TCGA and GEO
database according to the inclusion criteria, respectively. The
ESTIMATE score of each patient, which reflects the landscape of
the TME and overall immune-infiltration degree was calculated with
the ESTIMATE algorithm. As shown in Figure 2, patients with high
immune and ESTIMATE scores demonstrated a better OS than
those with low scores (p < 0.05). Nevertheless, all scores showed no
statistical significance between different race, age, and International
Federation of Gynecology and Obstetrics (FIGO) stage
(Supplementary Figure S1 and Supplementary Table S1).

Identification of Immune-Related Modules
and Hub Genes by Weighted Gene
Co-Expression Network Analysis
First, three outlier samples were excluded by the goodSamplesGenes
function. The dendrogram and heatmap (Supplementary Figure

TABLE 1 | Clinical variables in the training and testing sets.

Characteristic Total
n = 288

Training set
n = 201

Testing set
n = 87

p Value

Age 48.2 ± 13.8 47.7 ± 14.1 49.4 ± 13.17 0.4331
Race 0.9887
African 30 21 9
Asian 28 18 10
White 201 140 61
Unknown 29 22 7
FIGO stage 0.7656
Ⅰ 156 104 52
Ⅱ 64 51 13
Ⅲ 41 29 12
Ⅳ 21 14 7
Unknown 6 3 3
Stromal score (min, max) (−2,586.99, 778.01) (−2,586.99, 778.01) (−2,400.89, 451.87) >0.9999
Immune score (min, max) (−1,645.63, 3,295.3) (−1,645.63, 2,651.87) (−1,356.39, 3,295.3) 0.8698
ESTIMATE score (min, max) (−3,643.23, 3,744.09) (−3,643.23, 1995.06) (−3,234.1, 3,744.09) 0.8917

FIGO stage, International Federation of Gynecology and Obstetrics stage.
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FIGURE 1 | The flow diagram of this study. TCGA, the Cancer Genome Atlas; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC
curve, receiver operating characteristic curve; IPS, Immunophenoscore; TIDE, the Tumor Immune Dysfunction and Exclusion.

FIGURE 2 | Associations between immune/stromal/ESTIMATE scores and CESC patients’ prognosis.
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S2) display the distribution and clinical traits of the remaining 288
samples in detail. The soft-threshold power β � 4, the first parameter
to meet the requirements of scale-free R2 > 0.9, was selected to
construct the scale-free networks (Supplementary Figure S3).
Furthermore, after similar modules were merged with a cut-
height of 0.35, a total of 21 modules was ultimately identified for
further analyses (Figure 3). Interestingly, the green and dark

turquoise modules were found to be most associated with
immune cell infiltration levels of CESC in the TME (Figure 4A),
in which the correlation coefficients were 0.97 and 0.85, respectively.
Therefore, the green (Figure 4B) and dark turquoise (Figure 4C)
modules were considered immune-related key modules, and
significant genes were selected with cut-off criteria of GS > 0.4
and MM > 0.8.

Function Analyses of Immune-Related
Modules and Hub Genes
As shown in Figure 5A, most genes within immune-related
modules were highly enriched in the inflammatory response,
immune response, and proteolysis in the BP category, while
chemokine activity, immunoglobulin receptor binding, and
antigen binding; and plasma membrane, extracellular exosome,
and cytosol were enriched in the MF and CC categories,
respectively. Moreover, KEGG pathway analysis (Figure 5B)
indicated that virus infection, cytokine−cytokine receptor
interaction, antigen processing and presentation, and
chemokine signaling pathway were significant. Therefore, the
above results suggested that most defined genes in immune
modules positively participated in immune-related biological
processes in CESC.

Establishment and Validation of the
Prognostic Signature
A total of 31 common genes were identified between significant
module genes and IRGs obtained from the ImmPort database
(Figure 6A). Subsequently, TCGA-CESC datasets were randomly
divided into a training set (n � 201) and testing set (n � 87); basic

FIGURE 3 | The cluster dendrogram of module eigengenes.

FIGURE 4 | Analysis of key immune-relatedmodules. (A), The correlation betweenmodules and traits was displayed. (B–C) The correlation betweenGS andMM in
the green and dark-turquoise modules. GS, gene significance; MM, module membership.
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clinical information is provided in Table 1. Using univariate Cox
regression analysis in the training group, 20 genes were correlated
with CESC patient survival (p < 0.05) (Table 2). The PPI network
is shown in Figure 6B, and the results of Pearson correlation

analysis indicated that 20 hub IRGs were significantly co-
expressed in CESC samples (Figure 6C). GO analysis
(Figure 6D) illustrated that the biological process terms were
highly focused on T cell activation, positive regulation of

FIGURE 5 | GO enrichment and KEGG pathway analyses of significant module genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

FIGURE 6 | PPI network and biological process analyses of hub IRGs related to prognosis. (A) The common genes between modules genes and IRGs from
ImmPort database. (B) PPI network of 20 hub IRGs. (C)Correlation analysis of 20 hub IRGs. (D)Biological process analysis of 20 hub IRGs. PPI network, protein-protein
interaction network; IRGs, immune-related genes.
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leukocyte activation, leukocyte cell−cell adhesion, lymphocyte
differentiation, and T cell differentiation, which further
confirmed the important role of identified hub IRGs in the
activities of immune infiltration and response.

After the optimal model of prognostic prediction, the
individualized risk scores were calculated with coefficient values
extracted by LASSO Cox regression analysis. The formula was as
follows: risk score � expression of CD3E*(−0.11337) +
CD3D*(−0.01026) + LCK*(−0.0523). The LASSO plot is shown in
Supplementary Figure S4, and the distribution of patient risk scores
and survival status is shown in Figure 7A. The survival analysis
indicated that the prognosis of high-risk patients was significantly
worse than that of low-risk patients (Figure 7B). Additionally, the
time-dependent ROC showed that the AUC values of 1-, 3-, and 5-
year OS were 0.705, 0.641, and 0.662, respectively (Figure 7C).
Ultimately, the 3-IRGs prognostic signature was validated using
OS data from the testing set, of which the results remained
consistent (Figure 8D), with the AUC values of 1-, 3-, and 5-year
OS of 0.767, 0.770, and 0.702, respectively. Interestingly, the AUC
values of 1-, 3-, and 5-year OS were 0.651, 0.648, 0.612 in external
group (Figure 9), indicated the reliable predictive potential of the

TABLE 2 | Identification of 20 immune-related prognostic genes by univariate Cox
regression analysis. HR, hazard ratio; CI, Confidence interval.

Gene Coefficients HR (95% CI for HR) Wald.test p. value

TRBV28 −0.296 0.744 (0.634–0.872) 13.3 0.000267
TRBC2 −0.281 0.755 (0.643–0.886) 11.8 0.000581
CD3E −0.264 0.768 (0.645–0.915) 8.74 0.00311
CD3D −0.218 0.804 (0.692–0.933) 8.21 0.00416
LCK −0.31 0.733 (0.587–0.917) 7.41 0.00649
TRAC −0.235 0.791 (0.666–0.939) 7.2 0.00728
IGKC −0.138 0.871 (0.787–0.965) 6.98 0.00824
IL10RA −0.259 0.772 (0.631–0.945) 6.29 0.0121
CD79A −0.157 0.855 (0.749–0.975) 5.43 0.0197
CCL5 −0.191 0.826 (0.703–0.972) 5.28 0.0216
ITGB2 −0.243 0.785 (0.634–0.972) 4.95 0.0261
CD48 −0.194 0.824 (0.694–0.978) 4.91 0.0266
TNFSF13B −0.222 0.801 (0.655–0.979) 4.68 0.0305
CCR5 −0.055 0.946 (0.9–0.996) 4.56 0.0328
TYROBP −0.203 0.816 (0.674–0.988) 4.34 0.0371
CD86 −0.192 0.825 (0.687–0.992) 4.19 0.0405
PTPRC −0.107 0.898 (0.81–0.997) 4.08 0.0434
ITGAL −0.169 0.845 (0.716–0.997) 3.99 0.0458
CD8A −0.157 0.855 (0.733–0.997) 3.98 0.0461
FCER1G −0.101 0.904 (0.818–0.999) 3.94 0.0473

FIGURE 7 |Construction of prognostic signature based on four hub IRGs in training group. (A) The distribution of risk scores and survival status between low- and
high-risk groups, and mean level of risk score was set as the cut-off value. (B) The overall survival analysis of patients in two subgroups. (C) ROC curve analysis for the
prediction of 1-, 3-, and 5-year OS as the defining point of the four-hub IRGs signature. (D) Heatmap of four prognostic IRGs. IRGs, immune-related genes; ROC curve,
receiver operating characteristic curve; OS, overall survival.
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given prognostic signature. Meanwhile, the FIGO stage and
prognostic model (low/high) were confirmed as independent risk
factors for survival of CESCpatients by the univariate andmultivariate
Cox regression analyses (Table 3).

Immune Infiltration Patterns with
Prognostic Signature
As shown in Figure 10, the expression levels of CD3D, CD3E and
LCK were significantly positively correlation with the expression of
three immune checkpoint molecules, including PD1(PDCD1),
PDL1(CD274), and CTLA4, respectively. In addition, we also
found that the CD3D, CD3E and LCK expression was significantly
negatively related to tumor purity while positively associated with the
infiltrating levels of immune cells, such as B cell, CD8 + T cell, and
CD4 + T cell (Supplementary Figure S5). Thus, these results
suggested that CESC patients with higher expression of three IRGs
may had a better response to immunotherapy.

The correlation of prognostic signature and ESTIMATE score
was shown in Supplementary Figure S6. To further investigate

whether there were significant differences in immune cell
infiltration between low- and high-risk groups, the abundance
of 24 immune cells of each patient was determined using the
ssGSEA algorithm in the ImmunCellAI database. As shown in
Figure 11, the abundance of immune infiltrating cells, such as
CD4/8 naïve T cells, neutrophils, monocytes, and NK T cells, was
increased (p < 0.05) in the high risk group compared to the low
risk group; whereas the infiltrating levels of B cells, CD4/8+
T cells, Th1/2 cells, iTregs, macrophages, and Cytotoxic T cells in
the low-risk group were markedly higher than those of the high-
risk group. These results are shown in detail in Supplementary
Table S2.

Immunogenicity and Immunotherapeutic
Sensitivity with Prognostic Signature
In this work, the IPS of each CESC patient was evaluated to explore
the association between immunogenicity and the two prognostic risk
subgroups. As shown in Figures 12A–D, the IPS, IPS-CTLA4, IPS-
PD1-PD-L1-PD-L2, and IPS-PD1-PD-L1-PD-L2-CTLA4 scores in

FIGURE 8 | Validation of prognostic signature based on four hub IRGs in testing group. (A) The distribution of risk scores and survival status between low- and
high-risk groups, and mean level of risk score was set as the cut-off value. (B) The overall survival analysis of patients in two subgroups. (C) ROC curve analysis for the
prediction of 1-, 3-, and 5-year OS as the defining point of the four-hub IRGs signature. (D) Heatmap of four prognostic IRGs. IRGs, immune-related genes; ROC curve,
receiver operating characteristic curve; OS, overall survival.
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the low-risk groupwere significantly higher than those of the high-risk
group (p < 0.05), indicating a more immunogenic phenotype in the
low-risk group. In addition, according to the TIDE algorithm, the
response to ICIs of CESC patients was measured by the TIDE value
(Supplementary Figure S7). The results also indicated that risk scores

were significantly negatively correlated with IFNG, CD274 (PD-L1),
CD8+ T cells, and dysfunction, and positively correlated with
exclusion and MDSC (Figure 12E), which further confirmed our
findings; the details are provided in Supplementary Table S3.
Moreover, the number of CESC patients that exhibited a positive
response to ICIs in the low-risk group was higher than that in the
high-risk group (p < 0.05) (Figure 12F). The Kaplan–Meier survival
curve showed improved survival in the responder group compared
with the non-responder group (p � 0.036) (Figure 12G). Overall, the
results demonstrate that the low-risk group identified by the three
IRGs appeared to present with a more positive response to
immunotherapy and a better prognosis.

DISCUSSION

Although advanced diagnostic methods andmolecular anticancer
therapies have been rapidly developed, the overall prognosis of
CESC patients remains poor (McLachlan et al., 2017). ICB

FIGURE 9 | Validation of prognostic signature based on four hub IRGs in external group. (A) The distribution of risk scores and survival status between low- and
high-risk groups, and mean level of risk score was set as the cut-off value. (B) The overall survival analysis of patients in two subgroups. (C) ROC curve analysis for the
prediction of 1-, 3-, and 5-year OS as the defining point of the four-hub IRGs signature. (D) Heatmap of four prognostic IRGs. IRGs, immune-related genes; ROC curve,
receiver operating characteristic curve; OS, overall survival.

TABLE 3 | Univariable and multivariable Cox regression analyses of clinical
characteristics.

Variable Univariate analysis Multivariate analysis

HR 95% CI
for HR

P.
value

HR 95% CI
for HR

P.
value

Age 1.02 0.998–1.03 0.084 1.01 0.99–1.03 0.245
FIGO stage 1.49 1.2–1.85 <0.001 1.38 1.11–1.72 0.004
Race 1.01 0.8–1.28 0.927 — — —

Risk (low/
high)

2.44 1.49–3.99 <0.001 2.24 1.36–3.68 0.002

HR, hazard ratio; CI, Confidence interval; FIGO stage, International Federation of
Gynecology and Obstetrics stage.
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therapy was expected to be a breakthrough in CESC treatment
(Hamanishi et al., 2017). In several early-phase randomized
clinical trials, the application of pembrolizumab and
nivolumab (PD-L1/PD-1 blockage) suggested promising
clinical outcomes for CESC patients with metastasis and
recurrence (Frenel et al., 2017; Chung et al., 2019). However,
only a small portion of CESC patients showed a positive response
to ICI treatments. Therefore, we identified a robust prognostic
signature based on IRGs to forecast prognosis and
immunotherapy sensitivity for CESC patients, which may
facilitate personalized counseling.

In the present study, the abundance of immune cells and
stromal cells in the TME was first investigated using the
ESTIMATE algorithm, which was considered a clinical trait
for further analysis. The results also indicated that the high
infiltration of immune cells showed a better prognosis for
CESC patients, indicating that the TME plays an essential role
in the prognosis of CESC patients. GO enrichment and KEGG
pathway analyses demonstrated that most genes identified as
closely related to immune cell infiltration by WGCNA were
enriched in immunomodulatory activities, such as the
inflammatory response, immune response, and chemokine

signaling pathway. By performing univariate and LASSO Cox
regression analyses, three hub IRGs (CD3E, CD3D, and LCK)
were selected to establish an immune-related prognostic
signature for CESC patients, where the AUC values of 1-, 3-,
and 5-year OS were 0.705, 0.641, and 0.662 in the training group,
and 0.767, 0.770, and 0.702 in the testing group and 0.651, 0.648,
0.612 in the external validation, respectively, indicating the
reliably predictive capacity for CESC patient prognosis.

Additionally, functional annotation further suggested that
CD3E, CD3D, and LCK were involved in positive regulation of
T cell activation and leukocyte cell-cell adhesion that were known
as the chief determinant for the efficacy of tumor immunotherapy
(Ding and Chen, 2019; Alvarez et al., 2020). Meanwhile, existing
evidence has accumulated demonstrating the important role of
three hub IRGs in the regulation of immune responses of tumor
tissues. The promising tumor immunotherapy mainly depends on
the recognition of T-cell receptor (TCR) to special tumor antigens
to stimulate the activation of self T cells in order to attack cancer
cells (Kennedy and Salama, 2020). Notably, the CD3 co-receptor
complex is vital for signal transduction after specific binding of
TCR, of which the integrity is considered as the crucial factor for
cytotoxic T cell responses to tumor antigens (Fuehrer et al., 2014).

FIGURE 10 | The correlation of CD3D, CD3E, LCK expression with immune checked molecular, including PDCD1(PD1), CD274(PD-L1), and CTLA4.
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CD3E usually participates in encoding the CD3ε chain, one of the
major components (γ-, δ-, ε- and ζ-chain) of the CD3 co-receptor
complex, whose deficiency will cause the severe combined
immunodeficiency (Firtina et al., 2017; Erman et al., 2020).
Hart et al. has reported that a reduced cell surface abundance
of CD3E could lead to a significant inhibition of T cell killing
capacity (Hart et al., 2019). In contrast, the increased expression of
CD3E was found markedly related to the effective response in 31
cancer types patients who received anti-PD1 immunotherapy
(Gaffney et al., 2019). CD3D has been reported as a potential
biomarker for the response to ICIs and prognosis in cancers,
including colon cancer and muscle-invasive bladder cancer
(Klintman et al., 2016; Shi et al., 2019; Yang et al., 2020).
Homozygous mutations in the CD3D gene can lead to
markedly abnormal T-cell development, and thus, to early-
onset immunodeficiency (Fischer et al., 2005; Gil et al., 2011).
Moreover, high expression of CD3E and CD3D gene were
reported significantly related to positive OS in CESC (Wang
et al., 2019b). LCK, also known as lymphocyte-specific protein

tyrosine kinase p56, was found as a key molecule in T cell
activation by phosphorylating the TCR/CD3 complex to initiate
TCR signaling (Wei et al., 2020). Recent studies showed that the
improved LCK activity was contributed to improve the efficacy of
chimeric antigen receptors (CARs) immunotherapy in cancers
(Gulati et al., 2018; Bommhardt et al., 2019; Suryadevara et al.,
2019). In contrast, the inhibited targeted drugs of LCK was
reported that could cause the loss of T-cell immune response
and result in immunosuppression for patients cancer (Zhao et al.,
2008). Therefore, these defined three hub IRGs were expected as
immunotherapeutic biomarkers and potential therapeutic targets
for CESC patients; this will be the subject of future studies.

The number and proportion of infiltrating immune cells in the
TME are recognized as important factors affecting cancer
progression and immunotherapy response. To further
elucidate the role of the TME associated with this given
prognostic signature, the ImmunCellAI database based on
ssGSEA algorithm was the first time to be employed to
analyze the immune cell infiltrating landscape in CESC

FIGURE 11 | Comparison of immune infiltration patterns of CESC patients between low- and high-risk groups. CESC, cervical squamous cell carcinoma.
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patients. We found that most immune cells in low risk groups
were more abundant than in high risk group, such as cytotoxic
T cell, exhausted T cells, Th1/2 cells, and NK cells, suggesting a
more potent immune defense in low risk CESC patients.
Additionally, the increased B cells, CD4+ T cell, and CD8+
T cell infiltration indicated that better therapeutic outcomes
may be achieved with ICI immunotherapy in low risk groups
compared to high risk groups (Liu et al., 2019b; Matsuzaki et al.,
2019). Dr. Joy et al. (Hsu et al., 2018) reported that NK cells, in
addition to T cells, could enhance the effect of ICI
immunotherapy, whereas that efficacy may be weakened due
to competition between NK cells and T cells shown in a recent
study (Alvarez et al., 2020). In contrast, Tregs and tumor-related
macrophages have been reported to be immunosuppressive cells
that can form an immunosuppressive atmosphere to facilitate
tumor progression by disrupting the adaptive immune response
(Milowsky et al., 2016).

Ultimately, to further explore the predictive value of the
prognostic signature in ICI immunotherapy, two independent
methods, IPS analysis and TIDE algorithm, were applied to
calculate the response of CESC patients to ICIs. The results
showed that IPS, IPS-CTLA4, IPS-PD1/PD-L1/PD-L2, and
IPS/PD1/PD-L1/PD-L2 + CTLA4 scores were significantly
increased in this prognostic signature low-risk group. And
TIDE algorithm indicated that low risk patients appeared to
present with more positive response to anti-ICIs
immunotherapy. Both of these founding further support the
potential of this given immune-related prognostic signature to
determine the immunotherapy sensitivity for CESC patients.

This study represents the first application of WGCNA to identify
hub IRGs linked to immune cell infiltration in an effort to develop a
prognostic signature for predicting CESC patients prognosis. And it is
the first study that employs ImmunCellAI and TIDE algorithm to

analyze the immune cell infiltrating landscape and predict
immunotherapy sensitivity for CESC, respectively. Compared with
individual biomarkers (e.g., PD1 and PDL1) that were more
susceptible to interference, the multiple genes signature showed a
more reliable stability. In addition, the performance of our three IRGs
signature to predict the progression and immune response was better
than that in previous study (Liu et al., 2020). Importantly, the versatility
of this prognostic model was further verified using external validation,
which was less reported in previous study. Nevertheless, some
limitations in this work still remain. Firstly, the relative values of
gene expression and the difference of FIGO stages between TCGA and
GEO database may contribute to the discrepancies in verification
groups (e.g., the limited performance in external validation) or in
further clinical trails. Secondly, the prognostic signature of CESC
patients was developed based on the OS rate, but some external
factors such as the TMNdegrees were not extensively evaluated due to
a lack of relevant data. Thirdly, although bioinformatics tools are
helpful to display the interaction of hub IRGs, the external experiments
are also important to further elucidate the molecular mechanisms.
Finally, TCGA-CESC patients have not received relevant
immunotherapy, and the response to ICI treatment was calculated
by cutting-edge bioinformatics technologies. Although the potential of
this prognostic signature to stratify CESC patients with different
immune response was verified reliable by the consistent results of
two independent and powerful approaches, a multicenter and large-
scale study is still needed to evaluate its practicality in clinical tests and
to strengthen its the clinical evidence.

CONCLUSION

In the present study, we have identified hub genes related to the
immune infiltration in CESC microenvironment and

FIGURE 12 | Immunogenicity and immunotherapeutic sensitivity with prognostic signature. (A–D) the IPS, IPS-CTLA4 blocker, IPS-PD1-PD-L1-PD-L2 blocker,
and IPS-PD1-PD-L1-PD-L2-CTLA4 blocker scores between low- and high-risk groups. (E) Immune infiltrating cell profile of tumor microenvironment of CESC patients.
(F) The differences of immunotherapy sensitivity between low- and high-risk groups. (G) Survival analysis of different immunotherapy sensitivity. IPS,
Immunophenoscore; ICIs, immune check inhibitors; CESC, cervical squamous cell carcinoma.
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constructed a robust three IRGs (CD3E, CD3D, and LCK)
signature to predict the prognosis of CESC patients.
Meanwhile, the versatility of the signature was verified by
using internal and external validation groups. In the further
exploration, we also found that this model had a reliable
potential to forecast the sensitivity to ICI immunotherapy for
CESC patients, which was able to facilitate personalized
counseling for immunotherapy. Further testing of this model
in clinical practice will be necessary for prognostic stratification
and treatment management in the future.
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