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Abstract: Astrocytes regulate fundamentally important functions to maintain central 

nervous system (CNS) homeostasis. Altered astrocytic function is now recognized as a 

primary contributing factor to an increasing number of neurological diseases. In this 

review, we provide an overview of our rapidly developing understanding of the basal and 

inflammatory functions of astrocytes as mediators of CNS responsiveness to inflammation 

and injury. Specifically, we elaborate on ways that astrocytes actively participate in the 

pathogenesis of demyelinating diseases of the CNS through their immunomodulatory roles 

as CNS antigen presenting cells, modulators of blood brain barrier function and as a source 

of chemokines and cytokines. We also outline how changes in the extracellular matrix can 

modulate astrocytes phenotypically, resulting in dysregulation of astrocytic responses 

during inflammatory injury. We also relate recent studies describing newly identified roles 

for astrocytes in leukodystrophies. Finally, we describe recent advances in how adapting 

this increasing breadth of knowledge on astrocytes has fostered new ways of thinking 

about human diseases, which offer potential to modulate astrocytic heterogeneity and 

plasticity towards therapeutic gain. In summary, recent studies have provided improved 

insight in a wide variety of neuroinflammatory and demyelinating diseases, and future 

research on astrocyte pathophysiology is expected to provide new perspectives on these 

diseases, for which new treatment modalities are increasingly necessary. 
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1. Introductions 

Multiple sclerosis (MS) is the most common demyelinating disease of the CNS [1]. It is also the 

most common neurological disease among young adults affecting approximately 2.5 million people 

worldwide [2]. MS is a heterogeneous central nervous system (CNS) disorder associated with 

components of autoimmunity, genetic predisposition, and environmental factors. The clinical course of 

MS can vary between individuals, although periodic exacerbations of disability (relapses) punctuated 

by spontaneous improvements (remissions) represent the most prevalent form of this disease. It is 

important to note that while the immune system plays an important role in mediating the clinical 

exacerbations among patients with relapsing-remitting MS (RR-MS), disease progression is not 

modified by current immunomodulatory therapies and indicates that key aspects of disease 

pathogenesis are independent of autoimmunity [3]. In a recent clinical study, a comparison between 

RR-MS patients receiving interferon (IFN)-β immunomodulatory treatment and RR-MS patients not 

receiving this treatment were found to have the same progression of disability [3]. This finding 

indicates that our current understanding on the etiology of MS and its pathogenesis are incomplete and 

that dysfunction of non-hematopoietic cells, such as astrocytes, may play a more prominent role in the 

progression of MS than previously recognized [4–6].  

Astrocytes have been long identified as reactive components within and surrounding demyelinated 

lesions in MS. Astrogliosis was one of the pathological hallmarks in the earliest descriptions of this 

disease pathology [7]; yet, until recently, the highly reactive state of astrocytes at white matter lesions 

was considered a secondary response to the primary immune response and followed demyelination. In 

this review, we outline how the role of astrocytes in MS is changing with recent advances in 

understanding of these cells.  

Astrocytes are the most numerous cell type in the CNS, which represents their potential to impact a 

wide range of homeostatic and pathological functions [8]. Astrocytes are typically identified by their 

expression of intermediate filament proteins, such as glial fibrillary acidic protein (GFAP) and 

vimentin [9]. Astrocytes exhibit significant morphological diversity, which also reflects inherent 

functional specialization among this population of cells. In the naive CNS, astrocytes can be broadly 

categorized into five distinct types based on their anatomical locations: (1) white matter astrocytes, 

which have numerous fine membranous projections giving them a star-like appearance; (2) gray matter 

astrocytes, which have a less complex shape and are often referred to as “protoplasmic”,  

(3) ependymal astrocytes, which are GFAP+ cells found within the stem cell niches of the brain that 

may be a form of progenitor cell; (4) radial glia found within the deep layers of the cerebral cortex that 

send projections toward the pial membrane and provide a scaffold for migrating neurons during brain 

development, and (5) perivascular astrocytes, which are GFAP+ cells with specialized projections 

called “vascular feet” that surround the neurovasculature. Increasingly recognized for their diverse 

functions in CNS homeostasis, astrocytes can serve many functions including acting as guards to CNS 

injury and inflammation. 
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Given the ubiquitous responsiveness of astrocytes to brain disease or trauma, in this review we will 

address the following questions; how do astrocytes contribute to immune-mediated demyelinating 

diseases? What determines the function of astrogliosis? And, how can our current answers to these 

questions be adapted toward increasing our understanding of MS pathology for therapeutic benefit to 

treat MS?  

2. Astrocytic Regulation of Adaptive Immune Responses 

There are many hypotheses on the initiation and development of autoimmunity in MS, in which the 

erroneous recognition of self-antigens may result from pathogen infections [10] or an a priori 

neurodegenerative condition [5,6]. Given the prominent association of T-cell mediated immunity with 

MS, there are several plausible means by which astrocytes could foster autoimmunity. First, astrocytes 

may facilitate immune cell extravasation into the CNS by releasing chemoattractant cytokines  

(i.e., chemokines). Secondly, they may promote autoimmunity through antigen presentation. And 

lastly, astrocytes enhance T cell activation through modulating the activity of innate immune cells  

(i.e., microglia). When considering the potential for astrocytes to inflammation within the CNS during 

MS, the pathogenic potential of these actions may also represent potential mechanisms by which 

astrocytes could also dampen inflammation to promote remyelination. 

One critical function of astrocytes is acting as sentinels and monitoring of the neuro-vasculature 

called the blood-brain barrier (BBB). This specialized multi-cellular unit is organized in a  

multi-laminal structure of the blood vessels within in the CNS affording strict regulation of trafficking 

of water, ions, nutrients, and cells from peripheral circulation into and out of the brain parenchyma. 

The BBB offers an anatomical mechanism for highly selective passage into the CNS compartment and 

astrocytes play an important function in modulating its function. This selectivity was historically 

considered to foster an immunoprivileged environment for the brain, although the notion has been 

revised as immune cells and immune surveillance of the CNS is now recognized as a requirement for 

health and homeostasis [11]. It is well established that under inflammatory conditions, the integrity and 

function of the BBB is modified and enables greater leukocyte passage into the CNS. Using loss of 

function studies, Voskuhl et al. [12] showed that astrocytes play a critical role in shielding the CNS 

during inflammatory responses through their actions at the perivascular interface. Another study by 

Owens and colleagues also indicate that astrocyte ablation results in enhanced inflammatory monocyte 

cell migration into the CNS [13]. Interestingly, another cell type tightly associated with BBB 

physiology is the pericyte [14,15]; however, the functional interaction between pericytes and 

astrocytes in the context of CNS inflammation is an area of active study.  

The extent of astrocytic diversity described above has broad implications in many roles. For 

instance, astrocytes secrete co-stimulatory factors for T cell activation, which can play a regulatory 

role in reactivation of autoreactive immune cells as they enter the CNS [16]. It has also been reported 

that subpopulations of astrocytes have phagocytic activity that represents their immunomodulatory 

function as de facto antigen presenting cells (APCs) [17]. In this capacity, astrocytes could foster 

adaptive immune responses and ultimately exacerbate autoimmune diseases of the CNS, such as MS. 

As the most abundant glial cell type exposed to early T cell infiltration, astrocytes likely serve 

immune-related purposes. In addition to their ability to express major histocompatibility class II  
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(MHC II) antigens in murine model and human MS upon IFN-γ stimulation [17,18], preliminary 

evidence of CNS cells as effective antigen presenters arose when myelin-specific T cells localized to 

and remained within the CNS following activation in vitro [19]. Astrocytes also express CD80 and 

CD86, cell surface proteins potently associated with T cell activation, and blockade of these proteins 

hampers T cell activation [20]. Also, when astrocytes are exposed to interferon-gamma (IFN-γ),  

a pro-inflammatory cytokine made by the T cells, they can enhance the proliferation rate of myelin 

oligodendrocyte glycoprotein (MOG)- and proteolipid protein (PLP)-specific T cells [21,22]. These 

findings are consistent with previous finding that activated astrocytes upregulate intercellular adhesion 

molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) that promote cell-cell 

interactions with surrounding leukocytes [23]. Together these findings indicate that astrocytes contain 

the cellular machinery necessary to deliver signals required for T cell activation and may support a 

pro-inflammatory function for astrocytes in T cell mediated CNS injury.  

Another possible way that astrocytes may promote T cell mediated CNS injury is to serve as 

antigen presenting cells (APCs). One plausible mechanism by which antigen presentation by astrocytes 

may contribute to pathology in MS is the β2 adrenergic receptor. Functionally, these receptors 

constitutively suppress MHC II expression by increasing intracellular cAMP levels through PKA 

activation [24]. Once activated, PKA phosphorylates the MHC II transactivator (CIITA), which in turn 

inhibits MHC II transcriptionally, thereby regulating global antigen presentation activity. This 

regulatory pathway of APC function has also been analyzed in EAE models [25]. Importantly, 

astrocytes in white matter lesions in MS patients have also been reported to express significantly lower 

level of β2 adrenergic receptors suggesting potential for greater APC activity [26]. Co-factors for  

MHC II function, including CD80, CD86, and CD40, which are critical for T cell receptor (TCR) 

binding, can also be expressed by astrocytes [17,23,27]. Like better known “professional APCs”, 

including macrophages and dendritic cells (DCs) that constitutively express MHC II molecules, 

astrocytes also express MHC II [17]. Cytokines shown to be expressed during immune-mediated 

myelin injury, including IFN-γ and tumor necrosis factor-alpha (TNF-α), have been reported to induce 

an upregulation of MHC II genes in astrocytes [23,28,29]. Thus, within the inflammatory milieu of the 

MS brain, and as modeled in mice by EAE, astrocytes are capable of expressing all of the essential 

subunits required for antigen presentation functions [30].  

Despite compelling experimental in vitro and in vivo findings, the contribution of astrocytic APC 

functions toward autoreactivity in MS remains controversial. Even if astrocytes do not present antigen 

directly, they undoubtedly expedite the process by secreting chemokines that attract DCs to damaged 

myelin [31]. For instance, Hassan-Zahraee et al. [32] explored the potential for human astrocyte 

cultures to generate non-specific inflammatory responses to “superantigens”, which result in T cell 

activation. Another facilitatory role of astrocytes is that they may serve as secondary APCs based on 

their ability to efficiently present epitopes of MOG but not the full-length MOG protein [22]. In the 

latter scenario, unlike conventional APCs that promote Th1 phenotype in T cells, astrocytic APC 

functions promote mixed Th1 and Th2 T cell phenotypes. Thus, astrocytic APC functions may 

modulate the overall inflammatory environment of the CNS in MS by promoting a Th2 repertoire of 

cytokines. The contribution of astrocytes toward specific regulation of additional T cell subtypes in 

MS, such as regulatory T cells, is less clear. However, not all reported actions of astrocytes are to 

facilitate autoreactivity; a recent study by Schlüter and colleagues suggest a potentially important role 
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for astrocytic expression of Fas, an inducer of programmed cell death, in the activation of autoreactive 

T cell apoptosis [33]. Thus, astrocytes may also limit T cell survival within the CNS. Collectively, 

these data indicate that astrocytes play potentially central roles by serving as professional APCs within 

the CNS and thereby act to regulate autoreactive T cell functions. 

Accumulating evidence also indicates that astrocyte functions may underlie the susceptibility to 

chronic infections. This concept is best illustrated by studies exploring the cellular basis for strain 

difference susceptibility to Theiler’s murine encephalomyelitis virus (TMEV)-induced demyelination. 

For instance, bone marrow chimera studies between susceptible and resistant strains of mice have 

shown that strain susceptibility to infection and demyelination is accountable to cells of non-hematopoietic 

origin [34]. To address the involvement of non-hematopoietic stem cells within the brain that have 

immunocompetence, Carpentier et al. [35] proposed astrocytic regulation of virally-induced CNS 

infection as a factor in strain susceptibility of TMEV-induced demyelinating disease (TMEV-IDD). A 

current hypothesis suggests that differential astrocytic expression of cytokines, chemokines, and 

adhesion molecules underlies the susceptibility of mouse strains to TMEV since both susceptible and 

resistant mouse strains mount efficient antiviral T cell responses [35]. The nature of this complex, 

astrocyte-regulated immunity requires further research to expand our current understanding how these 

differences manage the differential susceptibility to CNS virus infections related to demyelinating diseases. 

3. Astrocytic Regulation of Innate Immune Responses 

Regulation of innate immunity in the CNS may represent a fundamental role of astrocytes to 

maintain homeostasis. Recent studies indicate a prerequisite for innate immune responses  

(i.e., microglia) in the development of adaptive autoreactive T cell-mediated demyelination [36,37]. 

Microglia represent only 5%–20% of the CNS cell population but are responsible for CNS surveillance 

for detection of foreign pathogens [38]. For example, microglial activation is tightly regulated via 

multiple mechanisms. One such, mechanism involves the cell-surface protein-protein interaction 

between CD200 on astrocytes and its cognate receptor CD200R expressed by microglia [39,40]. 

Disruption of this physical interaction between astrocytes and microglia, results in a loss of 

constitutive inhibition and in activation of the microglial cells [39]. Numerous studies now support a 

prominent role for microglia on disease progression and myelin pathology [41–43]. It was reported 

that astrocytes physically communicate with microglia and oligodendrocytes through several 

connexins. For instance, dysfunction of connexin 43/47 and connexin 30/32 in astrocytic gap junctions 

has been implicated to play a role in pathogenesis in several demyelinating disease models [44–46]. 

Also, indirect mode of interactions between astrocytes and oligodendrocytes, specifically through 

secreted molecules, has been reported [47,48]. 

In addition to many findings of microglia activating astrocytes, microglial activation by astrocytes 

has been evident in multiple studies. For instance, Davalos and colleagues reported that activated 

astrocytes in response to focal traumatic insults in the CNS releases adenosine 5′-triphosphate (ATP), 

resulting in immediate activation of microglia through purinergic receptors both morphologically and 

functionally [49]. Activated microglia then secrete many immunomodulatory factors, such as 

interleukin (IL)-1β, IL-6, plasminogen, and TNF-α [50–53]. In other CNS disease models, such as 

neonatal Borna disease virus infection, astrocytic activation proceeds and contributes to microglial 
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activation in vitro through an unknown secreted protein, which is heat-resistant and has a low 

molecular weight [54]. In RR-MS case where they develop permanent and progressive disability 

(secondary progressive MS), astrocytic chemokines, including CCL2 and CXCL10 that are 

predominantly produced by reactive astrocytes, may be a major activator of microglia at the rim of the 

plaque and demyelinating sites [55]. 

Also, it has been suggested that astrocytes modulate microglial activation. For instance, microglia 

exposed to pro-inflammatory stimuli, such as IL-1β, are activated and increase production of reactive 

oxygen species. Interestingly, using an in vitro system, isolated microglia pre-treated with  

astrocyte-conditioned media prior to challenge with hydrogen peroxide increased the production of 

antioxidants, indicative of a counteracting response to microglial activation [56]. Together, 

maintaining the intricate balance of activation/modulation between astrocytes and microglia may be 

critical in determining the predominance of processes mediating either disease or tissue repair. 

4. Regulation of Astrocytic Phenotype Influences Oligodendrocyte Differentiation 

What factors are most important in determining the phenotype of astrocytes? One possibility that 

has garnered increasing attention from a series of recent reports is the extracellular matrix (ECM). The 

ECM is well known to influence the behavior of many cell types, and the potent impact of ECM 

proteins is now highlighted as modifiers of astrocyte function. In vitro studies have shown that 

astrocytes behave and function differently depending upon the ECM protein on which they are grown. 

For instance, Barnett and colleagues recently explored the idea that astrocyte activation is an ECM 

substrate-dependent phenomenon [48]. There are many common ECM proteins, including laminin, 

vitronectin, fibronectin (Fn), and tenascin-c (TnC). Nash et al. examined whether astrocytes grown on 

different ECM proteins would have differing activity levels, as indicated by immunoreactivity of 

GFAP, but also have an effect on astrocytic gene expression [48]. Specifically, they found that 

astrocytes grown on TnC exhibited a quiescent phenotype and were unable to support myelination in 

culture. In contrast, astrocytes grown on poly-L-lysine (PLL), a standard culture coating protein, were 

able to support myelination and exhibited an active phenotype [48]. Microarray analysis of gene 

expression determined that TnC evoked differential gene expression from the PLL astrocytes, with 

significantly more CXCL10 chemokine expressed by astrocytes grown on TnC than their PLL 

counterparts [48]. These data suggests that CXCL10 may prevent the myelination in culture [48]. 

Thus, not only does the ECM impact the overt appearance of astrocytes, but it also has the potential to 

alter the immunomodulatory function of astrocytes [57] and their propensity to support remyelination [48]. 

Coincidently, astrocytes are prominent producers of ECM molecules that can impact oligodendrocyte 

maturation [58]. With reference to TnC as a potent inhibitory ECM substrate for astrocytes and 

oligodendrocyte progenitor cells (OPCs), astrocytes are also recognized as a source of TnC in chronic 

myelin lesions in MS [59]. In the acute setting, however, the production of Fn by astrocytes has also 

been demonstrated to have a negative impact of OPC differentiation. Baron and colleagues have very 

recently reported that astrocytic expression of Fn is induced robustly in models of immune-mediated 

myelin injury and its expression by astrocytes can be upregulated in culture in response to 

inflammatory stimulation (e.g., lipopolysaccharide) [60]. Astrocytic Fn, while not directly toxic to 

OPCs or oligodendrocytes, was reported to markedly attenuate OPC differentiation in vitro. When 
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astrocytic Fn aggregates were injected into experimental white matter lesions induced by lysolecithin, 

remyelination was impaired [60]. The idea that ECM modifies the functional phenotype of astrocytes 

proposes an interesting model to better understand how the complex milieu of myelin lesions in MS 

affects the role of astrocytes in this disease. These findings also implicate intergrins, ECM receptors, 

as plausible targets for modulating the negative effects of ECM proteins on specific cell types. 

It is also worth noting that in addition to ECM proteins, astrocytes secrete a myriad of factors that 

can have wide-ranging effects on OPC differentiation and remyelination [61]. Other examples of 

astrocyte-derived proteins associated with the extracellular matrix that can have a dramatic effect on 

impairing remyelination include high molecular weight hyaluronan (HA) [62]. Accumulation of HA in 

inflammatory lesions in both MS and mouse models has been implicated in remyelination failure. 

Interestingly, CD44, an HA receptor, is expressed on “reactive” astrocytes, which has been associated 

with loss of cell-cell contact and implicated in neuropathology [63]. Thus, astrocytic dysfunction may 

contribute to the consequences of inflammatory HA accumulation in white matter pathology. 

Moreover, these studies point to an interesting role for modifications in the local environment of 

myelin lesions as important regulators of astrocytic potential and astrocyte function(s). It is now 

accepted that what we refer to as “reactive” astrocytes is not a consequence of a single factor produced 

only when astrocytes are activated. Indeed, the profile of the many factors produced by reactive 

astrocytes is uniquely different from resting, protoplasmic astrocytes [64]. Understanding these profile 

changes, in combination with an understanding of how the ECM regulates these differences, would be 

expected to provide additional bases for interrogating the functional impact of astrocytes in specific 

disease states. 

5. Phenotypic Plasticity of Astrocytes as Regulated by Inflammation 

As described earlier, astrocytes undergo a spectrum of shapes, which can reflect their functional 

phenotypes; quiescent, as seen in the normal uninjured CNS, to reactive, as seen after injury or disease. 

The activity level is associated with cellular hypertrophy, proliferation, process extension, and 

increased production of GFAP, vimentin, nestin, heparan sulfate proteoglycans, chondroitin sulfate 

proteoglycans, and growth factors [65–69]. One question regarding the generalized function of reactive 

gliosis is that of functional heterogeneity. Given its prominent role in a variety of neurodegenerative 

conditions, and its pleiotropic activation of astrocytes, the response to the pro-inflammatory cytokine 

IL-1β has become a practical model for study of astrocytic behaviors [27]. 

IL-1β is an important component for the initiation of an astrocytic response to injury and for the 

formation of astrocytic scar after CNS injury. For instance, IL-1β has been shown to up-regulate 

certain genes associated with neuronal and glial growth and survival, such as IL-6, ciliary neurotrophic 

factor, and nerve growth factor in primary astrocyte cultures [70]. Other up-regulated genes are those 

from the TNF superfamily, which activate signaling pathways involved in cell survival, death, 

differentiation, development, organization and homeostasis. IL-1β also induces the expression of 

members of the chemokine family, or chemoattractant cytokines, including the CXC, CX3C, and CC 

subfamilies. The astrocytes within the glial scar undergo a dramatic change in phenotype resulting in a 

reactive phenotype described by up-regulation of GFAP, vimentin, and hypertrophy; however, the 

mechanism by which IL-1 evokes this reactive phenotype has remained elusive. One intracellular 
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pathway, the Rho GTPase-Rho kinase (ROCK) pathway, has been shown to mediate some of the 

astrocytic phenotype in response to IL-1β. This well studied pathway has been shown to be involved in 

modulating changes in cellular morphology and cellular migration through F-actin and its interactions 

with focal adhesions, non-muscle myosin, and microvillar adapter proteins of the ezrin-radixin-moesin 

(ERM) family [27]. Also, microglial IL-1β is reported to activate astrocytes through a connexin  

43-dependant gap junction between astrocytes [71,72], which also relates these effects to 

gliotransmission [8]. 

Important questions stemming from these findings include what factors contribute to the control 

astrocyte activation? And, what influences the functional phenotype of astrocytes to perform beneficial 

or detrimental functions? One candidate protein we have been studying that has a potentially important 

regulating activity on astrocyte function is tissue inhibitor of metalloproteinase-1 (TIMP-1). This 

extracellular dual function protein is predominantly expressed by astrocytes in the CNS in response to 

stress, injury or inflammation [73]. Induction of TIMP-1 expression from astrocytes is not a ubiquitous 

response to a broad range of stimuli, rather, robust and regulated TIMP-1 expression can be observed 

in response to a limited number of factors that include IL-1β [74–76]. We have shown that TIMP-1 is 

itself a potent astrocyte mitogen [47]. In EAE, astrocytic expression of TIMP-1 is spatially associated 

with white matter lesions [77], and we have determined that TIMP-1 deficient mice exhibit delayed 

developmental myelination and failure to remyelinate when myelin is injured as adults [47,78]. 

Importantly, expression of TIMP-1 by astrocytes is labile; it is robustly induced by IL-1β but then 

repressed with “chronic” exposure to this cytokine [74,79]. Coincidently, analysis of TIMP-1 

expression in acute demyelinating diseases that also show remyelination has shown robust expression 

of TIMP-1 [80], whereas cerebrospinal levels of TIMP-1 across multiple clinical phenotypes of MS 

indicate no induction of TIMP-1 in this chronic inflammatory disease [81]. These clinical data provide 

an interesting correlate with animal studies showing a positive correlation between TIMP-1 levels and 

the propensity for remyelination in the CNS. Study into the dysregulation of astrocytic TIMP-1 expression 

and how its secretion by astrocytes modulates their function in white matter repair is ongoing. 

6. Astrocyte Dysfunction in Leukodystrophies 

An emerging trend in our understanding of neurodegenerative diseases of the CNS is the increasing 

prominence of the role of astrocytes, no longer a passive support network for neurons, the abundant 

population of astrocytes in the CNS has been documented to have a primary role in a variety of 

neurological conditions. This topic has been well described in a very recent review [82]. Thus, we 

elaborate on the overall notion that dysfunction of astrocytes underlies development of CNS 

inflammation [83]. The development of pathological astrocytic functions, whether through loss of 

essential basal trophic actions or gain of specific toxic functions, leads to a condition we refer to as 

“gliodystrophy” [84]. Indeed, the primary role of astrocytes in an increasing number of degenerative 

CNS diseases has prompted a revised nomenclature for these types of neurological conditions, 

gliopathy [82]. In the following section, we turn our attention to the role of astrocytes in a class of 

demyelinating diseases called leukodystrophies; a group of predominantly fatal demyelinating diseases 

with genetic causes. Specifically, we focus on a newly described role of astrocytes in a rare but fatal 

leukodystrophy, called Krabbe disease. 
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Krabbe disease, also known as globoid cell leukodystrophy (GLD) is a well-characterized genetic 

demyelinating disease, caused by genetic mutations in a lysosomal enzyme, resulting in accumulation 

of a cytotoxic lipid, psychosine. It has been hypothesized that the toxicity of supraphysiologic level of 

psychosine kills oligodendrocytes, resulting in severe demyelination. However, when oligodendrocytes 

from twitcher mice, a murine model of GLD, were transplanted to shiverer mice, another mouse model 

for demyelination, the twitcher oligodendrocytes were capable of myelinating the shiverer axons [85]. 

This suggests that demyelination in GLD is not exclusively attributable to oligodendrocytes dying 

from lipid accumulation, based on its capability to myelinate axons in different cellular environment.  

We have recently implicated astrocytes in the pathogenesis of neuropathology in GLD. We 

determined that astrocytic expression of matrix metalloproteinase (MMP)-3, an extracellular protease, 

is dramatically increased at the time of clinical disease onset in the twitcher mice. Furthermore, its 

expression continues to elevate with disease progression [86]. This astrocytic MMP-3, which 

potentially targets myelin protein proteolytically, is a primary mediator of the formation of 

multinucleated globoid cells, highly activated phagocytes and a hallmark of GLD pathology [86]. In 

addition, it was reported that the production of hematopoietic prostaglandin synthase (HPGDS) and 

PGD2 in microglia is significantly increased along with elevated expression of astrocytic PGD2 

receptors, DP1 and DP2 [87]. Pharmacological blockade of HPGDS or genetic ablation of DP1 in the 

twitcher mouse resulted in decreased astrogliosis and microgliosis, accompanying by less 

demyelination [87]. Thus, astrocytic reactivity in the CNS of GLD may not represent a secondary 

response to demyelination, but rather may be a primary response to accumulated psychosine in this 

disease that may contribute significantly to the pathogenesis of GLD (Figure 1). Further study on the 

regulation of astrocyte reactivity in this disease may represent a new avenue for understanding the 

etiology of neuropathology in GLD. 

Figure 1. Widespread astrogliosis is a prominent neuropathological feature of the twitcher 

mouse brain. Representative pictures show immunohistochemically labeled glial fibrillary 

acidic protein (GFAP)+ astrocytes (red) in several regions of the brain, including 

cerebellum, midbrain, thalamus, and cortex in wildtype C57BL/6 (upper row) and in  

age-matched twitcher mice (bottom row). Note that highly fibrous GFAP immunoreactivity 

is observed with greater intensity throughout the twitcher mouse brain, compared to 

wildtype mouse. Scare bar = 250 μm. 
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Another example of astrocyte involvement in a leukodystrophy is shown in vanishing white matter 

disease (VWM), also known as childhood ataxia with diffuse CNS hypomyelination [88,89]. Early 

neuroimaging studies examining the cortex of patients with VWM identified significant reduction in 

white matter [90]. Genetic mutations identified in the gene encoding translation initiation factor 2B 

(eIF2B) have been attributed to the cause of this disease [91,92]. Interestingly, neither neuronal nor 

oligodendrocyte cultures from VWM patients exhibited any remarkable abnormalities in proliferation, 

differentiation or maturation, when compared to cells derived from non-disease cases [93]. In contrast, 

patient-derived astrocytes from VWM were fewer in number and exhibited greatly reduced 

proliferation rates even when stimulated with bone morphogenic protein 4 (BMP4) when compared to 

control human astrocyte cultures [93]. In fact, reactive astrocytes in the cortex of VWM patients are 

not as fibrous as those in healthy control [94]. These findings suggest that a key pathological 

difference in the CNS of VWM is associated with a deficiency of astrocytic support during early 

development or homeostasis in postnatal maturation. To date, the specific mechanism underlying this 

hypotrophy of astrocytes in VWM and their putative contribution to the pathogenesis of VWM has yet 

to be determined. 

These examples suggest that astrocytes are considerably involved in the demyelinating process of 

leukodystrophies. The specific nature of astrocytic participation in each condition given the disparity 

of genetic causes, clinical courses and altered metabolism, would suggest that the role(s) of astrocytes 

likely differs in each demyelinating condition. Moreover, in contradiction with our discussion on the 

role of astrocytes in adaptive immunity, the non-T cell mediated nature of myelin perturbation in 

leukodystrophies may also indicate that astroglial changes fundamentally differ from their putative 

roles in myelin destruction or repair process in RR-MS in which adaptive immune response appears to 

drive the primary process. On the other hand, primary-progressive form of MS (PPMS), in which 

immuno-modulatory treatments are not effective, unlike RR-MS patients, resembles leukodystrophies 

in the context of the pattern of disease course and pathological findings, including the involvement of 

CNS innate immune system and astrocytic abnormality. This suggests that the pathogenic mechanism 

of PPMS and leukodystrophies may greatly overlap, despite the fact that these diseases are known to 

be entirely different entities. Understanding astrocytic contribution to each disease process, either 

positively or negatively, may reveal a full range of astrocytic functions in the CNS. 

7. Conclusions 

The manifold functions of astrocytes has prompted increased awareness on the potential of these 

cells both to maintain CNS homeostasis and their contribution(s) to CNS pathology. Herein, we have 

outlined current data and understanding on the roles and actions of astrocytes related to demyelinating 

diseases of the CNS that include inflammatory modulation, antigen presentation, and gliotransmission. 

A central theme of this field is the awareness that astrocytic responses are intimately linked to changes 

in their environment that then contribute to astrocyte heterogeneity both in form and function. We 

provided examples from studies on MS, and recent work on leukodystrophies, which have revealed 

that astrocytes contribute significantly to the pathology of demyelinating diseases. Therapeutic 

adaptation of astrocyte plasticity may hold promise to foster remyelination in neurodegenerative 

diseases by coaxing astrocytic functions toward repair and homeostasis.  
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8. Therapeutic Potential of Astrocytes 

Is astrocytic inflammation sufficient? We and others have previously described how factors 

secreted by astrocytes have the potential to either promote or impair the differentiation of 

oligodendrocytes which may either foster remyelination or its failure in demyelinating disease like 

MS. In a series of seminal studies, Campbell and others have demonstrated the pathological potential 

of astrocyte derived cytokines and chemokines [95]. For example, by adopting astrocyte-specific 

(GFAP promoter-driven) transgenic expression of IL-17A, IL-6, IL-12 or CXCL10 they have 

demonstrated that astrocytic production of these potent inflammatory factors are sufficient to elicit 

glial activation [96,97]. While in many cases the singular production of these factors can result in mild 

neuroinflammation with recruitment of peripheral immune cells, these changes set the stage for 

profound neuropathology in response to a variety of infectious, inflammatory or injurious  

treatments [98–100]. Thus, these studies lend further support to the notion that early initiating steps of 

pathology within the MS brain, perhaps by astrocytes, may precede the pathogenic development of 

peripheral adaptive immune response in this disease. Moreover, cytokines and chemokines represent 

only a small sampling of the full repertoire of extracellular proteins made by astrocytes [101,102]. 

Ongoing studies to further interrogate the astrocyte secretome to determine how it is modified by 

disease, genetic mutations and/or inflammation would be expected to provide important insights into 

the range of biological roles astrocytes play in neurodegenerative illnesses. 

How can we harness our current knowledge to provide therapeutic benefit for individuals with 

neurological diseases? One avenue of intensive investigation is the notion of astrocyte transplantation. 

Compelling findings from Proschel and others have eloquently demonstrated that a priori modification 

of astrocyte phenotype has a marked effect on the success and outcome of astrocytes transplanted into 

spinal contusion injury models. One of their studies demonstrated that exposure of human glial 

progenitor cells to BMP prior to transplantation into rats with focal spinal transection injuries 

promoted neurite outgrowth and recovery of locomotor functions [103]. In essence, these results 

demonstrate the potential utility of exploiting astrocytic heterogeneity for therapeutic gain [104].  

On potential drawback to such a transplant approach for how one might view treating MS is the 

random, widespread, unpredictable and recurrent nature of myelin lesions. Nevertheless, knowledge 

gleaned from these types of studies would be expected to elucidate fundamental differences between 

positive and negative astrocytic phenotypes, which could then be targeted by other, possibly 

pharmacological means. 

Importantly, more rigorous study of human astrocytes may be warranted as it has long been 

recognized that human astrocytes are larger and more complex than that of the rattus or mus genera. 

Recently, Han et al. [105] reported that human astrocytes when transplanted into the early postnatal 

CNS of mice integrate into the host nervous tissues and resulted in a dramatic improvement in 

cognitive function. When considered in the context of the discussion of this review, one might 

consider the potential of this approach to explore how disease-specific induced pluripotent stem cell 

(iPSC)-derived astrocytes when transplanted into naive recipient mice might impact the pathological 

outcomes among widely used models of neurodegenerative and demyelinating diseases. For instance, 

it is known that astrocytes derived from amyotrophic lateral sclerosis (ALS) cases, when transplanted 

into naive rodents, elicit neurodegenerative changes that recapitulate many aspects of this dreadful 
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disease [106]. While the astrocytic-source of neurotoxicity for ALS is well recognized, the potential 

role for astrocyte-driven pathology among more enigmatic diseases, including Parkinson’s disease or 

MS, has not been explored in this way. Future studies examining the disease modifying potential of 

human astrocytes in murine models may provide interesting new insights into whether disease-specific 

astrocytes influence disease processes modeled in vivo. Findings from the many lines of investigation 

mentioned in this review are expected to advance our understanding on the contribution of astrocytes 

to the pathogenesis of myelin injury and repair in diseases like MS. It is expected that accumulating 

evidence supporting fundamental roles for astrocytes in neurodegenerative diseases will also lead to an 

increased need for therapeutic targeting of astrocytes that may address an ever-increasing need for new 

treatments for diseases. 
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