
Integrative random forest for gene regulatory

network inference

Francesca Petralia, Pei Wang, Jialiang Yang and Zhidong Tu*

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Gene regulatory network (GRN) inference based on genomic data is one of the most

actively pursued computational biological problems. Because different types of biological data usu-

ally provide complementary information regarding the underlying GRN, a model that integrates

big data of diverse types is expected to increase both the power and accuracy of GRN inference.

Towards this goal, we propose a novel algorithm named iRafNet: integrative random forest for

gene regulatory network inference.

Results: iRafNet is a flexible, unified integrative framework that allows information from heteroge-

neous data, such as protein–protein interactions, transcription factor (TF)-DNA-binding, gene

knock-down, to be jointly considered for GRN inference. Using test data from the DREAM4 and

DREAM5 challenges, we demonstrate that iRafNet outperforms the original random forest based

network inference algorithm (GENIE3), and is highly comparable to the community learning ap-

proach. We apply iRafNet to construct GRN in Saccharomyces cerevisiae and demonstrate that it

improves the performance in predicting TF-target gene regulations and provides additional func-

tional insights to the predicted gene regulations.

Availability and implementation: The R code of iRafNet implementation and a tutorial are available

at: http://research.mssm.edu/tulab/software/irafnet.html

Contact: zhidong.tu@mssm.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the complex gene regulatory network (GRN) has an

important role in current biomedical research. With the advent of

high-throughput technologies such as transcriptomic and proteomic

profiling, computational inference of GRN at genome scale are feas-

ible and a large number of models have emerged (Karlebach and

Shamir, 2008). Common challenges exist for inferring GRNs, includ-

ing the non-linearity of regulatory relationships among genes, the in-

completeness and noisiness characterizing genomic data, the presence

of relatively fewer samples compared with the number of genes (the

‘large p small n problem’). Therefore, successful GRN inference algo-

rithms need to be sensitive to capture the non-linearity among genes,

robust to avoid over-fitting and resilient to the limited number of sam-

ples. Among the various approaches developed so far, random forest

has emerged as a strong player. As an ensemble learning algorithm,

random forest performs extensive bootstrap sampling and random

feature selection and relies on combining the outputs from a collection

of non-linear learners to derive the final model. Such practice allows

the delivery of excellent performance with moderate sample size re-

quirement. Random forest has been used as an efficient and flexible

tool to predict disease phenotypes (Bureau, 2005; Sun, 2009) and its

utility has been demonstrated in a variety of biological applications

(Yang et al., 2010). Recently, Huynh-Thu et al. (2009) introduced

GENIE3, a random forest based algorithm for the construction of

GRN. The performance of GENIE3 was evaluated on the DREAM 4

in-silico size 100 challenge, the DREAM 4 in-silico multifactorial

challenge, and the DREAM 5 network inference challenge. In particu-

lar, GENIE3 was the best performer in both the DREAM 4 in-silico

multifactorial challenge (Greenfield et al., 2010) and DREAM 5 net-

work inference challenge (Marbach et al., 2012). In order to better

capture the direction of regulatory relationships, Maduranga et al.

(2013) proposed a random forest based algorithm which infers GRN

from time-series data. In particular, they demonstrated the superior

performance of their algorithm over other existing methods such as

dynamic Bayesian network and ordinary differential equations mod-

els. Although being very successful, these random forest based models

derive GRN from a single data type, namely, the gene expression

data. There is no direct way to integrate multiple genomics data such

as protein–protein interactions and expression from perturbation ex-

periments in current implementations.
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The importance of integrating multiple genomics information

has been well recognized by the research community. One reason of

doing so is that different data types usually provide non-redundant

information about regulatory relationships; e.g. protein–protein

interactions are particularly informative for the topological structure

of the network and the functions of neighboring genes (Deng et al.,

2004; Jeong et al., 2001; Maslov and Sneppen, 2002); while gene

expressions from perturbation and time-series experiments often

provide more insights on the directionality or the causality of regula-

tory relationships. Multiple integrative models have been developed

so far, such as Bayesian networks models (Bernard and Hartemink,

2005; Werhli and Husmeier, 2007; Zhu et al., 2003, 2008), sparse

structural equation models (Cai et al., 2012; Logsdon and Mezey,

2010), and consensus techniques (Shojaie et al., 2014; Yip et al.,

2010). The limitations of many existing methods are the linearity

and normality assumptions often made on gene regulations. For ex-

ample, due to the computational complexity of the models, gene de-

pendence structure is often approximated via a linear regression,

which may not perform well under the presence of higher-order

interactions in the data. On the other hand, algorithms making no

assumption on the linearity or normality can easily become

computationally intractable when the number of genes significantly

increases and, therefore, their applicability is limited to the construc-

tion of relatively small networks (Friedman and Goldszmidt, 1996;

Imoto et al., 2003; Kim et al., 2004).

In this article, we propose iRafNet–—a new algorithm in which

different data types are integrated under a unified random forest

framework. The key idea of iRafNet is to introduce a weighted sam-

pling scheme within random forest to incorporate information from

other source of data. Specifically, the model considers the expression

of each gene as a function of the expression of other genes. For each

node in the tree ensemble, instead of randomly sampling N genes

from the entire gene set as done by GENIE3 (Huynh-Thu et al.,

2009), iRafNet samples genes (the potential regulators) according to

the information provided by other data such as protein–protein

interactions or expression data from perturbation experiments, so

that genes supported by other data as potential regulators will be fa-

vorably sampled. By doing so, information embedded in other data-

sets is integrated into the network construction, while the effective

search space of potential regulators is significantly reduced.

To demonstrate the advantage of integrating multiple data in the

construction of GRN, we consider synthetic data from the DREAM

4 (Greenfield et al., 2010) and the DREAM 5 (Marbach et al., 2012)

challenges, which have been used as gold test data sets for

objectively comparing the performance of various GRN inference

models. We show that iRafNet performs better than previous mod-

els in most considerations. As a real data application, we apply

iRafNet to the inference of yeast GRN by integrating multiple public

data sets. We show that our new approach has an improved per-

formance in predicting transcription factor (TF) regulations and it

also provides additional functional insights to the predicted gene

regulations.

2 Methods

2.1 Overview of random forest-based GRN inference
Random forest is an ensemble algorithm based on learning a collec-

tion of decision trees. Each decision tree is learned independently on

a group of bootstrapped samples. Starting from the root node con-

taining all observations, each tree recursively splits observations into

more homogeneous subsets. This allocation process is obtained by

determining and applying certain splitting rules depending on the

predictor variables. Specifically, at each node in the tree ensemble,

N candidate predictors (N<p, with p being the number of all genes)

are randomly sampled and the final predictor to be used for the

splitting rule is chosen to minimize a certain cost function (Breiman

et al., 1984). Finally, outputs from individual trees are averaged to

obtain the ultimate outcome.

Recently, Huynh-Thu et al. (2009) introduced GENIE3, a random

forest based model which infers GRN by solving p independent re-

gression problems. Specifically, the expression of a particular gene gj

is modeled as a function of the expression of other genes via random

forest and genes that are strong predictors for the expression of gj are

considered as gj’s regulators. Genes are ranked based on the measure

of importance resulting from random forest. The importance score Sk,j

of gene gk for predicting gene gj is defined as the total decrease in

node impurity due to splitting the samples based on gene gj (Breiman

et al., 1984). Let s denote a node in the tree ensemble and let (sL, sR)

denote its left and right children nodes. Then, the decrease in node im-

purity I(s) from splitting s based on gene gk is defined as

IðsÞ ¼ csvðsÞ � csL
vðsLÞ � csR

vðsRÞ;

where v(s), v(sL) and v(sR) are the variances of observations allo-

cated to s, sL and sR; while cs, csL
and csR

are the number of samples

allocated to s, sL and sR. Let Vk be the set of nodes in the tree ensem-

ble that use gk for the splitting rule. Then, the importance score Sk,j

of gene gk for predicting gene gj is calculated as the average of node

impurities across all trees, i.e. Sk;j ¼
P

s2Vk
IðsÞ=T where T is the

number of trees.

2.2 iRafNet algorithm design
In this article, we introduce a weighted sampling scheme under the

framework of random forest to allow the integration of heteroge-

neous data types. As shown in Figure 1, first, iRafNet processes sup-

porting data to derive the prior belief of regulatory relationships

among genes, then, it integrates such prior information to the main

dataset via random forest to construct the final GRN. We consider

different genomic data including gene expression data from steady-

state experiments, time-series experiments, knockout experiments

and other biological data such as protein–protein interactions. As

shown in Figure 1, one data source is considered as main input data

for random forest inference while other D datasets (supporting data)

are utilized to derive prior information. iRafNet can be summarized

in the following major steps, and detailed information regarding

each step is provided in later sections:

Step A1. For the dth supporting data, with d 2 f1; :::;Dg, we de-

rive scores fsd
k!jg which measure the likelihood of regula-

tory events fgk ! gjg based on the dth genomic data. Then, scores

fsd
k!jg are transformed into sampling weights fwd

k!jg, which are

utilized in the next step for data integration;

Step A2. For each target gene gj, with j ¼ f1; :::; pg, we model the

expression value of gene gj as a function of the expression value of

potential regulators via random forest using the main input data-

set. Particularly, at each node, we randomly choose an integer I

2 f1; :::;Dg with equal probability and sample N potential regula-

tors according to weights fwI
k!jg;

Step A3. Potential regulators are ranked based on the importance

score resulting from random forest (see Section 2.1).

In Step A1, sampling weights are derived from fsd
k!jg which can

be any score measuring how likely regulatory relationships fgk ! gjg
are based on the dth genomic data. In particular, when scores fsd

k!jg
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consist of P-values, weights are calculated as wd
k!j ¼ ð1=sd

k!j � 1Þ.
The procedure utilized to sample potential regulators in Step A2 is an

extension of the one introduced by Amaratunga et al. (2008). As we

described in Section 2.1, the importance score for a given predictor is

derived by averaging the decrease in node impurities across all trees.

Under the standard random forest algorithm, at each node, N poten-

tial regulators are proposed as candidates for the splitting rule via ran-

dom sampling. When the number of potential regulators is large,

relevant variables will less likely be sampled as candidates for estab-

lishing splitting rules. Consequently, for each tree, the total decrease

in node impurity of relevant variables will be reduced. iRafNet over-

comes this problem by sampling potential regulators according to

prior information so that variables supported as relevant by other

data will be more frequently sampled as candidates for the splitting

procedure.

Generally, potential regulators of a target gene gj consist of any

other gene gk with k 6¼ j; in some cases, the set of potential regulators

may be set as a smaller subset based on certain prior knowledge. It

is worth noting that Step A2 can be performed using either steady-

state (Huynh-Thu et al., 2009) or time-series gene expression data

(Maduranga et al., 2013). Because steady-state gene expression data

usually contains more samples than time-series data, we use the for-

mer as main dataset for random forest construction and the latter to

derive prior weights in Step A1.

2.3 Construction of sampling weights
One key step of iRafNet is to transform information embedded in

supporting data into indicators of potential gene regulations. In this

section, we focus on some commonly used data types which include

steady-state gene expression, time-series gene expression, protein-

protein interactions and gene expression from knockout experi-

ments. For each data type, we provide detailed information on how

weights are derived.

2.3.1 Weights based on protein–protein interactions

We use diffusion kernel to capture and transform the protein–pro-

tein interaction information (Lee et al., 2005). We define the

diffusion matrix as F ¼ eH with H being a p�p symmetric matrix

with:

a. hj, k equals one if genes gj and gk interact, and zero otherwise for

j 6¼ k(off-diagonal element)

b. hk,k¼�ik, where ik is the total number of interactions of gene gk

(diagonal element).

Given the diffusion matrix F, regulatory weights are constructed

as wPPI
k!j ¼ Fk;j, i.e. the element (k, j) of F. Because protein–protein

interactions are bi-directional, the following identity holds

wPPI
k!j ¼ wPPI

j!k ¼ Fk;j ¼ Fj;k.

2.3.2 Weights based on time-series gene expression

In contrast to protein–protein interactions, time series data can pro-

vide information on the directionality of regulatory relationships.

According to the definition of Granger causality, a gene gk is causal

for gene gj if past values of gk are predictive for future values of gj

(Lozano et al., 2009). For a pair of genes (gj, gk), the expression

value of gene gj at future time (tþ1) is modeled as a linear function

of the expression value of gene gk at current time (t) and the signifi-

cance of regulation gk ! gj is tested via a standard t-test. The result-

ing P-values fPTS
k!jg are, then, utilized to derive sampling weights as

follows wTS
k!j ¼ ð1=pTS

k!j � 1Þ.

2.3.3 Weights based on knockout data

We denote xwt
j the expression of gene gj in wild-type condition,

and xKO
k!j the expression of gene gj after knocking out gene

gk. Similarly to time-series data, weights wKO
k!j are derived as wKO

k!j ¼
ð1=PKO

k!j � 1Þ with PKO
k!j being the P-value testing the regulatory re-

lationship gk ! gj based on knockout data. Specifically, PKO
k!j is

computed via a two-tailed t-test on the difference ðxwt
j �wKO

k!jÞ. In

real world applications, only a small subset of genes is generally

knocked-out and only some regulatory relationships could be inferred

by this approach. To overcome this problem, we propose a method

that imputes causal relationships by borrowing information from

other knocked-out genes. Let R be the set of knocked-out genes; then,

missing causal relationships are inferred based on the following steps:

Step B1. For any gene gk with gk 2 R, we derive P-values fPKO
k!jg

and we consider the regulatory event gk ! gj true if PKO
k!j is smaller

than 0.01;

Step B2. For each pair of genes (gh, gk), a measure of similarity is ob-

tained as follows:

• We derive the sets of genes which are functionally related to

genes gh and gk based on knockout data. In particular,

a. when both gh and gk belong to R, we compute (Eh, Ek),

the sets of genes affected by knocking-out genes (gh, gk),

and (Ch, Ck), the sets of knocked-out genes which affect

genes (gh, gk);

b. otherwise, we compute only (Ch, Ck), the sets of

knocked-out genes which affect genes (gh, gk);
• Letting J(A, B) be the Jaccard index between sets A and B,

the similarity measure Gh,k between genes gh and gk is

derived as

a. Gh;k ¼ ðJðEh;EkÞ þ JðCh;CkÞÞ=2;

b. Gh;k ¼ JðCh;CkÞ;
Step B3. For genes fgs; s62 Rg, we impute missing weights as follows:

wKO
s!j ¼

P
‘2RGs;‘w

KO
‘!jP

‘2RGs;‘
(1)

Fig. 1. iRafNet schematics. For each gene gj 2 f1; :::;pg, we determine a

ranked list of potential regulators via iRafNet. Based on each data

d 2 f1; :::;Dg, we derive weights fwd
k!jg measuring the prior belief of regula-

tory relationships fgk ! gjg. Using expression data, we run random forest to

find genes regulating gj. At each node, instead of sampling a random sub-

set of genes from the entire set of genes; we randomly choose an integer I

2 f1; :::;Dg and we sample genes according to weights fw I
k!jg. The final net-

work is derived by ranking potential regulators based on the random forest

importance score
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According to Equation (1), missing weights fwKO
s!jg are found via

a weighted average of scores fwKO
‘!jg‘2R

with weights proportional

to the corresponding similarity measures. The similarity measure

derived in Step B3 is based on the assumption that when two genes

are functionally related they are more likely to be affected by a simi-

lar set of genes (Peleg et al., 2010).

2.4 iRafNet implementation and availability
iRafNet package is an extension of the original package Random

Forest available in R Cran (Liaw and Wiener, 2002). Specifically,

the original random forest code was modified to allow weighted ran-

dom sampling. The computational complexity of iRafNet is the

same as GENIE3, i.e. OðpTNnlog ðnÞÞ, where n is the sample size, p

is the number of genes, N is the number of variables sampled at each

node and T is the number of trees. iRafNet can be easily parallelized

as the network inference consists of p independent sub-problems.

iRafNet requires users to specify T, the number of trees and N, the

number of potential regulators to be sampled at each node. As the

number of trees increases, the tree ensemble generally provides more

accurate results. For this reason, the number of trees is usually

chosen sufficiently large (T>500). The choice of N is less straight-

forward, since large values of N usually result in predictions with

high-bias; while low values result in predictions with high-variance

(Breiman et al., 1984). However, it is a common practice to set

N¼ r1/2 with r being the number of potential regulators (either the

number of genes �1, or a customized smaller number) (Shi and

Horvath, 2006).

3 Results

3.1 Application of iRafNet to the DREAM 4 and DREAM

5 network inference challenges
To evaluate the performance of iRafNet, experiments from the

DREAM 4 (Greenfield et al., 2010) in-silico size 100 and the

DREAM 5 (Marbach et al., 2012) challenge are considered. Both

challenges provide gene expression and other biological data such as

time-series and perturbation data. Each team participating in the

challenge had access to all different data types, and the exact data to

be used for GRN inference was a decision made by each team. For

each synthetic data, iRafNet was compared with GENIE3. In par-

ticular, GENIE3 results were obtained directly from The Dream

Project website (http://www.the-dream-project.org/).

The DREAM 4 in-silico size 100 challenge consists of five net-

works involving p¼100 genes. For all experiments, sampling

weights were computed from P-values as described in Methods sec-

tion. For each network, knockout data and time-series expression

were provided. In particular, time-series data consisted of ten differ-

ent experiments with 21 time points each; while knockout data

included wild-type gene expression and gene expression after knock-

ing out each one of the p genes. iRafNet infers the five networks

from time-series data utilizing knockout data as prior information.

Because knockout data are based on one experiment, P-values could

not be computed via standard t-test. Alternatively, we derived P-val-

ues PKO
k!j as PKO

k!j ¼ 2ð1� UðjxKO
k!j � xwt

j j=rjÞÞ, where U is the distri-

bution function of the standard normal distribution with mean of 0

and SD of 1; and rj is the SD of the expression of gene gj based on all

samples in the knockout data. Following the original algorithm

GENIE3, random forest parameters are set as T¼1000 and N¼ r1/2,

with r being the total number of genes minus one, i.e. r¼99.

Table 1 compares GENIE3 and iRafNet in terms of the area

under the receiver operating characteristic curve (AUC) and the pre-

cision-recall curve (AUPR). Both GENIE3 and iRafNet provide a

ranking of regulatory relationships based on importance scores re-

sulting from random forest. For different thresholds on the import-

ance scores, we computed receiver operating characteristic and

precision-recall curves using the R package ‘ROCR’. For each net-

work, knockout data and time-series gene expression are provided.

GENIE3 is implemented using only time-series gene expression; the

best performer utilizes only knockout data; while iRafNet integrates

both knockout data and time-series gene expression. For iRafNet,

we provide 95% confidence intervals for both AUC and AUPR val-

ues. The confidence interval for AUC was derived using ‘ci.auc()’

function in R package ‘pROC’ (Robin et al., 2011), which imple-

ments a method developed by DeLong et al. (1988). The confidence

interval for AUPR was computed using a logit transformation ap-

proach (Boyd et al., 2013).

As shown in Table 1, our algorithm achieves better predictive

performance compared with GENIE3 in terms of both AUC and

AUPR for all the five networks involved in the DREAM 4 challenge.

Furthermore, as shown in Table 1, iRafNet performs similarly to the

best performer in the DREAM4 in-silico size 100 challenge, which

inferred GRN from knock-out data alone (Pinna et al., 2010).

The DREAM 5 challenge consists of four networks with one

being derived by in–silico simulation and the other three being ob-

tained experimentally from three species. We report results concern-

ing Network 1 and Network 3, involving 1643 and 4511 genes,

respectively. We decided to focus on these two networks mainly be-

cause limited knockout data are provided for Network 2 and

Network 4. In addition, Network 1 and Network 3 are the networks

where teams participating in the challenge scored the highest pre-

dictive performance. Incomplete knockout data, time-series expres-

sion and steady-state gene expression are available for both

Network 1 and Network 3. The total number of knocked out genes

was 19 and 15 for Network 1 and Network 3, respectively; and

missing knockout relationships were inferred using the method

described in Methods section. As mentioned in Methods section,

since time-series data is usually characterized by small sample sizes,

Table 1. Comparison between iRafNet, GENIE3 and the best performer in the challenge in terms of the AUC and AUPR for experiments

from the DREAM 4 in-silico size 100 challenge

Method GENIE3 iRafNet Pinna et al. (2010)

AUC AUPR AUC AUPR AUC AUPR

Net 1 0.864 0.338 0.901 (0.870,0.932) 0.552 (0.548,0.556) 0.914 0.536

Net 2 0.748 0.309 0.799 (0.765,0.834) 0.337 (0.333,0.341) 0.801 0.377

Net 3 0.782 0.277 0.835 (0.798,0.873) 0.414 (0.410,0.418) 0.833 0.39

Net 4 0.808 0.267 0.847 (0.813,0.881) 0.421 (0.417,0.426) 0.842 0.349

Net 5 0.720 0.114 0.792 (0.751,0.832) 0.298 (0.294,0.301) 0.759 0.213

For iRafNet, 95% confidence intervals are provided under the corresponding AUC and AUPR values in brackets.
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when both time-series and steady-state expression are available we

suggest using the former to compute sampling weights in Step A1

and the latter to implement Step A2. Therefore, for networks

involved in the DREAM 5 challenge, iRafNet estimated GRN from

steady-state expression utilizing knockout and time-series data as

prior information. The list of potential regulators was pre-deter-

mined by the DREAM 5 and contained r¼195 genes under

Network 1 and r¼334 genes under Network 3.

Similarly to the comparison procedure used by the DREAM5 chal-

lenge, for each model, receiver operating characteristic and precision-

recall curves were computed considering the top 100 000 regulations.

Table 2 compares iRafNet, GENIE3 and COMMUNITY in terms of

AUC and AUPR. COMMUNITY is a more generalized ensemble

model, which derives a consensus network by combining the results of

all 35 teams participating in the challenge (Marbach et al., 2012). The

DREAM 5 challenge provides predicted networks for all teams partic-

ipating in the challenge; based on this information, we compute confi-

dence intervals of the area under the ROC and precision recall curve

for all models and include the results in Table 2. Although

COMMUNITY outperformed each single team participating in the

challenge, iRafNet results in better AUPR than both GENIE 3 and

COMMUNITY. Specifically, the AUPR of iRafNet is �9% larger

than that of COMMUNITY and �21% larger than that of GENIE3

for Network 1. For Network 3, the AUPR of iRafNet is �11% larger

than that of COMMUNITY and GENIE3. The three methods scored

similar performance in terms of AUC; however, as shown in Figure 2,

iRafNet outperforms the other two methods in the most critical region

of the ROC curve characterized by small values of false positive rates.

It is worth noting that the DREAM4 challenge is based on in-sil-

ico data and provides complete knockout data. As illustrated in

Table 1, for this challenge, the performance of Pinna et al. (2010) is

comparable to iRafNet. However, with data input more similar to

real-world applications (i.e. only a small set of genes are knocked

out), the model that estimates GRN solely from knockout data may

perform poorly. As an illustration, we reported in Table 2 the results

from a team participating in the DREAM 5 challenge who con-

sidered only knockout data for GRN inference. This algorithm is

referred to as Meta 1 by Marbach et al. (2012) and resembles

the best performing algorithms from the DREAM 4 challenge

(Greenfield et al., 2010). As shown in Table 2, iRafNet outperforms

this algorithm in terms of both AUC and AUPR.

3.2 Application of iRafNet to GRN inference in

Saccharomyces cerevisiae
To further demonstrate the applicability of iRafNet to real biolo-

gical data, we apply iRafNet to construct GRN in S. cerevisiae. In

particular, we considered knockout data from Hu et al. (2007), pro-

tein–protein interactions from three databases [BioGRID (Chatr-

Aryamontri et al., 2012), DIP (Xenarios et al., 2000) and MINT

(Zanzoni et al., 2002)], time-series data (Spellman et al., 1998), and

steady-state expression for p¼3665 genes from Zhu et al. (2008).

iRafNet constructed GRN from steady-state gene expression data

and used protein–protein interactions, knockout gene expression

and time-series gene expression as prior information. For testing

purposes, iRafNet was compared to GENIE3 which estimates GRN

from gene expression data alone.

Table 2. Comparison between iRafNet, GENIE3, Meta 1 and COMMUNITY in terms of the AUC and AUPR with corresponding 95% confi-

dence intervals for synthetic experiments from the DREAM 5 challenge

Method Data Network 1 Network 3

GENIE3 Exp 0.815 (0.807,0.823) 0.291 (0.289,0.295) 0.617 (0.607,0.627) 0.093 (0.091,0.106)

Meta 1 KO 0.736 (0.727,0.745) 0.276 (0.274,0.277) 0.614 (0.604,0.624) 0.087 (0.085,0.089)

Community Exp, KO, TS 0.809 (0.801,0.817) 0.327 (0.326,0.329) 0.65 (0.639,0.660) 0.09 (0.090,0.105)

iRafNet Exp, KO 0.812 (0.804,0.82) 0.364 (0.361,0.364) 0.638 (0.629,0.651) 0.113 (0.110,0.115)

Exp, KO, TS 0.813 (0.804,0.819) 0.364 (0.360,0.366) 0.641 (0.63,0.651) 0.112 (0.109,0.114)

Fig. 2. ROC curves resulting from various methods for the estimation of Network

1 and Network 3 from the DREAM 5 challenge. Community is an ensemble algo-

rithm which derives a consensus network by integrating predictions of GENIE3

and the other 34 teams participating in the challenge. iRafNet infers GRN by inte-

grating all knockout, time-series and steady-state gene expression data
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For the time-series data (Spellman et al., 1998), we selected time-

course gene expression data from cdc28 cell cycle arrest which

consists of 17 time points. For the knockout data, we considered

P-values provided by Hu et al. (2007). The total number of knock-

out genes from this experiment was 169 and missing causal relation-

ships were inferred as described in Methods section. Further details

on how sampling weights were derived are provided in Methods

section. The random forest parameters were set as T¼1000 and

N¼ r1/2, respectively, where r¼3664. In order to evaluate the per-

formance of both models, the following criteria were considered:

GO terms enrichment and prediction of TF regulations.

3.2.1 iRafNet results in more enriched GO categories

We compared networks resulting from GENIE3 and iRafNet based

on GO terms enrichment. We focused on 58 GO Slim terms ob-

tained from the Saccharomyces Genome Database (Cherry et al.,

1998) containing from 20 to 200 genes. For each model, importance

scores for all regulatory relationships were derived and we focused

on the 200 000 highest scored regulatory relationships (in the

DREAM5 challenge, only the first 100 000 predicted regulations

were considered for the competition, we relax the cutoff so that true

predictions are less likely to be excluded due to this parameter

setting). For each GO term, the enrichment score was computed

via a one-sided Kolmogorov-Smirnov test (Aravind et al., 2005).

Specifically, for each GO term, we considered every undirected edge

between all pairs of genes contained in the GO category and calcu-

lated the Kolmogorov-Smirnov statistics based on importance scores

of undirected edges resulting from each method.

The importance score of each undirected edge (gs� gk) was

defined as the mean between importance scores of the two directed

edges gs ! gkð Þ and ðgs  gkÞ. The Kolmogorov-Smirnov statistics

reflects the degree to which a gene ontology (GO) category is overre-

presented at the top of the ranked list of importance scores. Table 3

shows the number of GO terms with significant enrichment. As

shown, iRafNet results in more enriched GO categories than the ori-

ginal algorithm which relies on a single data type. Supplementary

Table S1 in the supplementary material shows the list of GO catego-

ries and corresponding P-values under each method.

3.2.2 iRafNet better predicts TF regulations

In this section, we evaluate the ability of our model to predict TF

regulations. For this purpose, we consider results from Lee et al.

(2002) which used chromatin immuno-precipitation techniques to

detect TF-gene interactions and provided P-values of regulations be-

tween 72 TFs and 3644 genes. Based on these P-values, we

derive the ‘true’ network. Specifically, an edge between TF gk and

gene gj ðgk ! gjÞ is considered true if the corresponding P-value is

smaller than 0.01; while the edge of the opposite direction ðgj ! gkÞ
is used as negative control. Table 4 shows the AUC and AUPR for

GENIE3 and iRafNet. Specifically, for iRafNet, we used different

set of weights derived from either knockout, time-series or protein–

protein interactions data, as well as used all these weights

simultaneously.

Overall, iRafNet results in better predictive performance than

GENIE3. The best predictive performance is achieved when sam-

pling weights were obtained from knockout data alone. This result

is not completely surprising since knockout data is considered one

of the most informative data for inferring regulatory relationships

(Marbach et al., 2012). The slightly less optimal performance result-

ing from integrating all data types may be due to the inconsistency

among different datasets (e.g. some datasets could have less optimal

quality). This result suggests that a careful selection of input data is

very important regardless the underlying algorithms.

We perform another comparison based on the ability to predict

TF regulations. Let Rth
be the top th directed regulations with the

largest importance scores. Then, we derive Re � Rth
, defined as the

set of directed edges belonging to set Rth
which were found to be sig-

nificant (P<0.01) by Lee et al. (2002) and Rd � Re, defined as the

set of directed edges for which the opposite direction is not included

in set Rth
. A higher cardinality of Re indicates that the algorithm is

more capable of revealing the regulatory relationships as detected by

Lee et al. (2002); while the higher cardinality of Rd indicates the al-

gorithm is more accurate in excluding the ‘wrong’ directed edges. As

shown in Table 5, for different values of th, iRafNet consistently

identifies larger Re and Rd than GENIE3. Supplementary Table S2

in the supplementary material provides a list of regulations identi-

fied by iRafNet but not recovered by GENIE3. Multiple regulations

are supported by independent experiments, suggesting the validity

of the predictions. For example, Chou et al. (2006) showed that

Dig1 forms a complex with Ste12, Tec1 or Dig2. Dig1 knockout

caused up-regulation of Fus1 gene expression, the effect was particu-

larly significant when both Dig1 and Dig2 were knocked out (Chou

et al., 2006). As another example, Santangelo and Tornow (1990)

showed that the transcription of ADH1 was sensitive to GCR1 dis-

ruption, which is consistent with our prediction.

4 Discussion

In this article, we develop iRafNet, a unified framework based on

random forest which constructs GRNs by integrating information

from multiple data types. Specifically, information from different

data sources is used to derive a series of weights, which, then, are

utilized for sampling potential regulators during the tree construc-

tion. This weighting scheme provides multiple benefits compared

with the sampling procedure adopted by the standard random

Table 3. Networks output from GENIE3 and iRafNet

No of

edges

No of

directed

edges

No of

shared

edges

No of

shared

directed

edges

No of

enriched

GO terms

0.05 0.01

GENIE3 156 359 200 000 102 501 126 009 51 44

iRafNet 163 886 200 000 102 501 126 009 61 51

For both GENIE3 and iRafNet, we consider the set of 200 000 highest

scored directed edges, referred to as D. As shown, the number of unique un-

directed edges a � b was 156 359 and 163 886 for GENIE3 and iRafNet, re-

spectively. For each method, we show the number of GO categories with

significant enrichment for different P-value thresholds (0.05 and 0.01).

Table 4. Prediction performance of TF regulations

Method Data AUC AUPR

GENIE3 Expression 0.547 (0.537,0.566) 0.542 (0.537,0.548)

iRafNet Multiple weights 0.624 (0.613,0.636) 0.565 (0.561,0.569)

Expression and KO 0.657 (0.645,0.673) 0.567 (0.562,0.574)

Expression and TS 0.543 (0.528,0.557) 0.536 (0.530,0.541)

Expression and PPI 0.574 (0.562,0.591) 0.557 (0.551,0.561)

For each model, the AUC and the AUPR and corresponding 95% confi-

dence intervals are reported.
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forest. In the original random forest algorithm, at each node, sam-

pling is done by randomly selecting N potential regulators and,

among them, the predictor maximizing the decrease in node impur-

ity is chosen for the splitting rule. This strategy may be less effective

when the number of informative predictors is small compared with

the total number of genes; in such case, informative predictors have

small chance of being chosen as candidates for the splitting rules.

This will cause the importance scores of informative predictors to be

lower compared to the cases when they have larger chance of being

chosen as potential regulators.

Simply increasing the number of trees may not resolve the afore-

mentioned problem. In order to better illustrate this point, we

applied GENIE3 to infer Network 1 from the DREAM 5 challenge

using different tree numbers. As shown in Table 6, the predictive

performance is relatively unchanged when we increase the tree num-

ber from 500 to 5000. This result is not surprising since a larger tree

number is not going to significantly change the average score of a

feature across all trees when T is already large. Our approach of

weighted sampling allows potential regulators identified as inform-

ative by other genomic data to be more favorably selected. As a re-

sult, the corresponding importance score will be more favorably

measured compared with other regulators with no prior support.

The importance of appropriate prioritizing relevant features in high-

dimensional learning has been recognized by multiple works. For ex-

ample, a recent work showed that using a bootstrap ranking to

derive a robust prioritization of SNPs could significantly increase

the performance of disease risk prediction (Manor and Segal, 2013).

Our work provides another demonstration on this concept and

points out a direction to further improve the prediction performance

under random forest framework.

Besides reducing the curse of dimensionality, iRafNet is expected

to increase accuracy and coverage of GRN inference through inte-

grating diverse information using its weighting scheme. Of course,

this may not always be the case, as we have seen that when datasets

of different quality and different origin are combined, the overall

performance may actually reduce. In this work, we only illustrate

the integration of limited types of genomic data. However, iRafNet

can be utilized to integrate almost any data type as long as its infor-

mation can be transformed into prior knowledge regarding potential

regulatory relationships.

When compared with other integrative models like Bayesian

network, the advantage of iRafNet relies on its computational effi-

ciency and the robust predictive performance resulting from its non-

parametric nature. In fact, a limitation of many existing methods

such as Bayesian networks are the linearity and normality assump-

tions often made to reduce the computational complexity of the al-

gorithm. Although non-parametric Bayesian networks have been

proposed in literature (Friedman and Goldszmidt, 1996; Imoto

et al., 2003; Kim et al., 2004), they are computationally intensive

and generally require very large sample size. The computational

complexity of Bayesian networks is amplified by the difficulties en-

countered in parallelizing the algorithm. In contrast to Bayesian net-

works, iRafNet can flexibly model non-linearity and higher-order

interactions while being efficient on large-scale applications as it can

be easily executed with parallelization. Moreover, the performance

of iRafNet is in general robust to the number of trees in the random

forest model upon our investigation.

One open question in the estimation of GRN is whether the best

performance is achieved by single models or by COMMUNITY

methods which derive a consensus network combining results from

different models (Shojaie et al., 2014; Yip et al., 2010). Recently,

Marbach et al. (2012) claimed that COMMUNITY methods

perform better than single methods. Despite their predictive per-

formance, COMMUNITY methods remain computationally de-

manding algorithms which require the estimation of many different

models followed by the estimation of the consensus network. For

the DREAM5 challenge, our algorithm was compared to

COMMUNITY, which integrated the predictions of 35 teams par-

ticipating in the challenge (Marbach et al., 2012). As we showed in

the manuscript, iRafNet is comparable to if not better than the

COMMUNITY and, therefore, represents an efficient alternative

(for the datasets used in this work, iRafNet can finish in less than an

hour on a cluster running in parallel).

In our implementation of iRafNet, we treated time-series and

steady-state gene expression data separately, one for deriving prior

information regarding potential regulators, while the other as main

input for random forest construction. Alternatively, they could be

combined as a single dataset and be used as input for a single

source-based random forest algorithm. Although combining the two

datasets would increase the sample size and generally provide

greater power in detecting regulations; problems may arise when the

sample sizes of the two data sets are imbalanced. In such situation,

the construction of tree ensemble may be largely driven by the data-

set with more samples while the signals embedded in the smaller

dataset may be concealed. This would be less an issue when the two

datasets are used separately to train different models. For this rea-

son, we decided to integrate time-series and steady-state gene ex-

pression in two stages. A rigorous test should be considered to

evaluate and compare the performance of either combining datasets

or treating them separately in a two-stage learning procedure.

It is also worth noting that prior weights may be computed using

alternative methods. For example, in Section 2.3.3, instead of using

the Jaccard index, other methods may be utilized to measure the

similarity between genes. Because the ‘best’ methods for prior

weights calculation may depend on the data inputs, users are

encouraged to explore different options when calculating the prior

information.

Additional work is needed to improve the way that different

data types are integrated. In its current implementation, prior biolo-

gical data, such as protein–protein interactions and expression from

Table 6. GRN inference performance using different numbers of

trees in random forest learning

Number of trees 500 1000 5000

AUC 0.810 0.815 0.813

AUPR 0.290 0.291 0.294

Network 1 from the DREAM 5 challenge is considered and performance

measured in terms of AUC and the AUPR.

Table 5. Prediction of TF regulations using different cutoffs

tk¼ 60 000 tk¼ 80 000 tk¼ 1000 000

Method ne nd ne nd ne nd

iRafNet 64 49 85 64 103 77

GENIE3 28 7 34 11 44 13

Cardinality (ne, nd) of sets (Re, Rd). Let Rtk
be the set of the first th directed

edges with highest scores, with th¼ {60 000; 80 000; 100 000}. Then, Re

� Rth
is defined as the set of directed edges found to be significant (P< 0.01)

by Lee et al. (2002), while Rd � Re is defined as the set of directed edges in Re

for which the opposite direction is not included in set Rtk
.
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perturbation experiments, are equally weighted. This characteristic

is appealing when different source of data provide equally important

information about regulatory relationships. However, in real world

applications, some experiments may be less informative about the

network structure and an equal weighting procedure may penalize

the overall performance. To overcome this problem, as future work,

we consider to design a new model where the contribution of each

data source is estimated and appropriately weighted within the uni-

fied random forest framework.
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