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The human respiratory tract microbial community structures
in healthy and cystic fibrosis infants
Marie-Madlen Pust 1,2, Lutz Wiehlmann3, Colin Davenport3, Isa Rudolf1,2, Anna-Maria Dittrich1,2 and Burkhard Tümmler 1,2✉

The metagenome development of the human respiratory tract was investigated by shotgun metagenome metagenomic
sequencing of cough swabs from healthy children and children with cystic fibrosis (CF) between 3 weeks and 6 years of age.
A healthy microbial community signature was associated with increased absolute abundances in terms of bacterial–human cell
ratios of core and rare species across all age groups, with a higher diversity of rare species and a tightly interconnected species
co-occurrence network, in which individual members were found in close proximity to each other and negative correlations
were absent. Even without typical CF pathogens, the CF infant co-occurrence network was found to be less stable and prone to
fragmentation due to fewer connections between species, a higher number of bridging species and the presence of negative
species correlations. Detection of low-abundant DNA of the CF hallmark pathogen Pseudomonas aeruginosa was neither
disease- nor age-associated in our cohort. Healthy and CF children come into contact with P. aeruginosa on a regular basis and
from early on.
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INTRODUCTION
Until recently the human lower airways have been considered to
be sterile and consequently most studies investigated the lung
microbiology in conditions of acute infections or chronic lung
disease, such as cystic fibrosis (CF)1–10. Meanwhile, we know that
the lower respiratory tract microbiome is shaped by transient
microbial colonisation based on regular migration of microorgan-
isms from the upper to the lower respiratory tract through
microaspiration and inhalation with the subsequent clearance of
invaders by host defence mechanisms11–14.
However, to our knowledge information is not available on the

healthy lower respiratory tract metagenome, and its development
in terms of microbial biodiversity and species co-occurrence
networks in the early years of life.
Hence, we set up a microbial metagenome study based on

shotgun metagenomic sequencing and collected cough swabs of
healthy (n= 52) children with no history of pulmonary disease,
and children with CF (n= 41) between 3 weeks and 6 years of age.
CF is the most common severe autosomal recessive genetic
disorder in Caucasians with chronic bacterial airway infections
being the major life-limiting morbidity15–18. A personalised
metagenome signature with many low-abundant and a few
dominant pulmonary pathogens, such as Staphylococcus aureus
and Pseudomonas aeruginosa has been described for adult CF
patients and patients with end-stage lung disease19–21. It is
currently unknown when this typical CF metagenome signature
emerges. In addition, the literature suggests that the first time
point of P. aeruginosa observation in culture corresponds to the
first time point of P. aeruginosa airway colonisation22,23. We have
observed in a previous metagenome study that P. aeruginosa-DNA
was present in the respiratory secretions of all pancreatic
insufficient (PI) CF patients aged 6 years or older in at least
minute amounts, while P. aeruginosa was not detectable by
culture-dependent diagnostics19. Here again, it remains unknown

when the CF children come into contact with the CF hallmark
pathogen for the first time.
So, on the one hand, we set out to investigate the early

development of the healthy and CF respiratory tract metagenome
in terms of microbial biodiversity and species co-occurrence
patterns. On the other hand, we aimed to identify the first time
point at which a typical CF signature becomes apparent and
P. aeruginosa-DNA can be isolated from cough swabs of CF
patients for the first time.
In order to undertake these investigations, we utilised a deep

sequencing strategy with single-end and short reads (75 base
pairs, bp), which were obtained from human and microbial DNA of
patients’ cough swabs. The human DNA was exploited as natural
spike-in control to normalise the bacterial reads to human reads,
and obtain insights into the absolute abundance patterns of
bacterial airway inhabitants19. The absolute abundance estima-
tions enabled us to approach a broad range of statistical tools for
comparative microbial community analyses, including ordination,
clustering and network analysis24–30. We probed the maximum
number of bacterial genome positions by generating single-end
instead of paired-end reads and consequently, were able to cover
the rare species of the airway habitat in our metagenome
investigation.
We found that the early healthy and CF airway metagenomes

were not distinct in alpha and beta diversity of core and rare
species in the first 3 years of life. Supervised and unsupervised
clustering algorithms failed to identify a CF-specific microbial
community profile in newborns and preschool children. However,
the early healthy and CF airway metagenomes were distinct in the
absolute abundance of core and rare species, and the evolution of
their species co-occurrence networks. Surprisingly, trace amounts
of P. aeruginosa-DNA were stochastically detected with equal
shares in both cohorts, healthy and CF.
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RESULTS
Study participants
CF patients were sampled exclusively at our outpatient clinic,
while healthy controls were sampled at various locations in
Hannover, Germany. We collected cough swabs from 41 patients
with CF and 52 healthy controls between 0 and 6 years of age
(Table 1). At sampling, children had a median age of 26 months
(CF) vs. 11 months (healthy controls). Our study was conducted 3
years after the introduction of the CF newborn screening in
Germany (2016). Thus, we included a longitudinal cohort of 11 CF
patients identified by newborn screening from whom we
collected 36 consecutive samples with a mean number of
3.2 samples per patient over a period of 13 months (Supplemen-
tary Table 1).

Quality control measures
DNA background contamination can profoundly affect metagen-
ome analyses of low-biomass environments31–35, precautions in
terms of appropriate negative controls must therefore be
implemented. Contamination was continuously tracked by pre-
paring, and sequencing blank cotton swabs and water controls in
parallel with patient samples. Analyses of these controls revealed
that on average 96% of DNA reads per sample either aligned to
the human reference genome or were of low quality leading to
exclusion (Supplementary Fig. 1). We observed a typical microbial
pattern in these experimental controls consisting of Cutibacterium
acnes, Ralstonia pickettii and Achromobacter xylosoxidans. We
could ascribe the ‘contamination’ of A. xylosoxidans (accession
number: CP006958.1, Achromobacter xylosoxidans NBRC) to
erroneous inclusion of sequence adapters into the reference
genome. Neither P. aeruginosa nor other typical inhabitants of the
respiratory tract were detected.

The early development of microbial biodiversity in the airway
metagenome from birth to 6 years of age
Relative and absolute abundance of species. In the first year of life,
the healthy and CF respiratory tract was dominated by bacteria
from the genus Streptococcus with relative abundances of 77%
and 89%, respectively (Fig. 1 and Supplementary Table 2). In both
groups, the most abundant non-Streptococcus species was Rothia
mucilaginosa with relative abundances of 16% in healthy and 10%
in CF infants (Fig. 1 and Supplementary Table 2). While Prevotella
melaninogenica and Prevotella jejuni were absent in the first year of
CF infants (0%, Supplementary Table 2), those species started to
emerge already slightly in the healthy respiratory tract metagen-
ome (1.3%, Supplementary Table 2), though the difference was
not found to be statistically significant. Minor amounts of bacteria

Table 1. Metadata of healthy and CF-diagnosed participants.

Variable of interest Healthy cohort Patient cohort

Number of subjects (n) 52 41

Number of subjects in
longitudinal cohort

0 11

Agea

Median age at sample collection in
months (age range)

11 (1–75) 26 (0–82)

Median age at diagnosis in months
(age range)

Not applicable 8 (0–39)

Number of subjects in age groups:
0, 1–3, 4–6 years

28, 9, 15 5, 20, 16

Genderb

Number of female subjects (in %) 21 (40%) 14 (34%)

Number of male subjects (in %) 31 (60%) 27 (66%)

Number of samples collected at different locations

Kindergarten 17 (33%) 0

Local paediatrician (preventive
medical check-up)

16 (31%) 0

Parent–child groups 19 (36%) 0

CF outpatient clinic 0 41 (100%)

First clinical indication for CF

CF newborn screening Not applicable 15 (37%)c

Family history Not applicable 4 (10%)

Meconium ileus Not applicable 4 (10%)

Gastrointestinal and/or pulmonary
symptoms

Not applicable 18 (43%)

Pancreatic state

Pancreatic insufficient (PI) 0 33 (80%)

Pancreatic sufficient (PS) 52 (100%) 8 (20%)

Class of CFTR mutation

II/II Not applicable 20 (49%)

I/I Not applicable 1 (2%)

I/II Not applicable 13 (32%)

IV/otherd or V/otherd Not applicable 7 (17%)

aAge (in months) was different between CF and healthy (Wilcoxon p value
= 0.003, r= 0.31, CI= 0.12–0.48).
bGender distribution of healthy and CF was not different (Fisher’s exact test
for count data, p value > 0.05).
cEleven of the 15 newborns were recruited for the longitudinal study. Only
one sample is currently available from the other four infants.
dKnown class I, II or III PI mutation

Fig. 1 Stacked barplot of median relative abundance (in %) across
age groups in healthy and CF children. Relative abundance was
calculated from bacterial to human cell ratios. The bars and legend
are sorted alphabetically. The colours represent taxonomic classifi-
cation at genus level. The white lines, which are separating blocks of
the same colour depict median relative abundances of species. The
order of species per colour bar is alphabetic. The numerical data and
statistically significant differences based on species levels are listed
in Supplementary Table 2. The total number of children (n) in each
group is stated on top of the bar.
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from the genus Veillonella were observed in both cohorts from
the very beginning (Supplementary Table 2). In the first 4 years of
life, the relative abundance patterns of core species were similar
between CF and healthy children. Overall, relative abundances of
Streptococcus spp. decreased with age and relative abundances of
P. melaninogenica, P. jejuni, Veillonella parvula, Veillonella atypica,
Neisseria spp. and Haemophilus spp. increased (Fig. 1 and
Supplementary Table 2). After the age of 4 years, the number of
species with significantly higher relative abundances in healthy
children increased. No bacterial species were detected with higher
relative abundances in CF compared to healthy infants.
When assessing absolute abundances19, we could demonstrate

that healthy children consistently harboured more bacterial cells
per human cell of all core species than CF children, regardless of
age (Fig. 2 and Supplementary Fig. 2).

Alpha diversity. We analysed Shannon diversity indices (SDI) of
the core (the 95% most abundant species) and rare (the 5% least
abundant) species across different age groups of our healthy and
CF probands. No significant difference in core species diversity
was detected in the first 3 years of life (Supplementary Fig. 3, left).
By the age of 4 years, a significant difference in core species
diversity was observed. While the diversity of core species in
healthy children constantly increased over time with a significant
difference of diversity between healthy infants (first year of life)
and healthy preschool children (fourth to sixth year of life), the
diversity of core species in the CF metagenome remained almost
unchanged (Supplementary Fig. 3, left). Investigations of the 5%
least abundant species in the respiratory tract metagenome of

healthy and CF infants revealed no significant differences between
healthy and CF children with age. In both cohorts, however, the
interquartile range was large, suggesting high age-independent
variability of rare species diversity in health and CF (Supplemen-
tary Fig. 3, right).

Beta diversity. Next, we performed non-metric multidimensional
scaling (nmds) to assess the effect of clinical and environmental
variables on the core respiratory tract community structure.
Therefore, we fitted known parameters onto the ordination,
including age group and disease state (CF vs. healthy), season of
sampling, antimicrobial therapy in the month of sample collection,
sampling of siblings and the presence of P. aeruginosa-DNA.
Whereas the core community structure was slightly influenced by
age group and disease state (Table 2), other aspects had no
significant effect on the core community structures (Table 2).
Instead, a massive overlap between microbial community profiles
of healthy and CF children was visible (Fig. 3a). However, a spare
sampling test (Hopkins statistic, H)36 was applied to measure the
cluster tendency of the dataset, and a strong non-random cluster
structure was observed (H= 0.85). Since no cluster behaviour was
apparent by investigating the clinical or environmental variables
known to us (Table 2), we approached unsupervised hierarchical
clustering and principal component analysis (Supplementary
Table 3) to identify the hidden clusters of microbial community
profiles in all children regardless of disease state. Unsupervised
clustering revealed three distinct groups (k1–k3) of microbial
community profiles between 0 and 6 years of age (Fig. 3b, c).
Between those three profiles, we compared P. aeruginosa-DNA
detection, disease state and antibiotic therapy. Both k1 and k2
groups comprised healthy and CF children with and without
P. aeruginosa-DNA detection, and children receiving antibiotics
and antibiotic-free children (Fig. 4a). Group k1 and k2 overlapped,
but k1 comprised less healthy children and more children
receiving antibiotics than k2. In k3, all children were healthy and
reported no antibiotic usage. SDI of the three groups were similar
for the core metagenome. For the rare species, however, we found
significantly lower diversity in group k1 relative to k2 and k3
(Fig. 4b). When considering bacterial abundance of the core and
rare species, group k1 showed the lowest bacterial load, followed
by groups k2 and k3 (Fig. 4c, d).

Fig. 2 Bubble plot of the median absolute abundance of core
species in the respiratory tract of CF children (left) and healthy
children (right) across age groups. CF children display lower
absolute abundances of all core species in the respiratory tract
compared to healthy controls across all age groups. The absolute
abundance was calculated as described by Losada et al.19, where the
length of the diploid human genome is divided by a million to
account for the bacterial count scale. The quotient is multiplied by
the normalised bacterial read count (normalised to a million
reference base pairs) and the final product is divided by the human
read count. The statistically significant differences in absolute
abundances are confirmed in Supplementary Fig. 2. In the CF
cohort, there were 5 infants below the age of one, 20 between 1 and
3 years of age and 16 children between 4 and 6 years of age. In the
healthy cohort, there were 28 infants below the age of one, 9
children between 1 and 3 years of age and 15 preschool children
were 4 and 6 years of age.

Table 2. Non-metric multidimensional scaling based on the
Bray–Curtis dissimilarity matricesa.

Parameters Goodness of fit, r2 Goodness of fit, p

Antimicrobial therapy 0.05 0.11

Siblings 0.02 0.99

Season of sampling 0.06 0.15

Disease state 0.16 0.001***

P. aeruginosa-DNA 0.002 0.78

Age group 0.08 0.01*

Shannon diversity (core
species)

0.12 0.006**

Shannon diversity (rare
species)

0.43 0.001***

Absolute abundance (core
species)

0.32 0.001***

Absolute abundance (rare
species)

0.39 0.001***

aA good representation in reduced dimensions was observed (stress=
0.07). The significance of known factors fitted to the ordination was assed
using a permutation test (n= 999, R vegan package, envfit).
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Establishments of species co-occurrence networks in the first 3
years of life
We investigated species co-occurrence development of the 99%
most abundant species in the first 3 years of life in health and CF
by ecological network analysis37, with a continuous graph layout
algorithm38. We focused on the following three parameters:
degree centrality, closeness centrality and betweenness centrality.
Degree centrality measures the numbers of connections of a node.
Closeness centrality calculates the shortest distance of a node to
all other nodes in the network37, where a high value refers to a
more central node. Betweenness centrality measures how often a
node is bridged by the shortest pathway of two other nodes37.
In the first years of life, strong positive species correlation

networks were detected in healthy infants (Fig. 5). Negative
species correlations were exclusively detected in CF infants. In
healthy infants, degree centrality was significantly higher
compared to age-matched CF infants but in both groups,
degree centrality increased with age (Table 3). In healthy infants,
closeness centrality was significantly higher than in age-
matched CF infants (Table 3). Betweenness centrality was
significantly lower in healthy compared to age-matched CF
children. When comparing the three centrality network statistics
between younger healthy infants and older CF infants, a
significant difference was noted for betweenness centrality
(Table 3).

An intermediate window of opportunity of close-to-healthy
metagenomes in CF toddlers
After an initial postnatal period of instability characterised by
negative species correlations and a more loosely organised
species co-occurrence network, the CF microbial community
structure stabilised during the following years two and three of
age, and became similar to that of healthy infants. This
intermediate period of an apparently healthy metagenome
emerged in all CF infants irrespective of CFTR genotype, exocrine
pancreatic status, anthropometry, lung function, the detection of
P. aeruginosa (Supplementary Fig. 4 and Supplementary Table 4)
or S. aureus-DNA (Supplementary Fig. 5).

Stochastic detection of P. aeruginosa-DNA in healthy and CF
airways
Given the crucial effects of P. aeruginosa colonisation on the
clinical course in CF lung disease, we performed detailed analysis
of the detection of P. aeruginosa-DNA in healthy and CF children,
and its impact on the respiratory microbial structure. In the first
year of life, genetic material of P. aeruginosa was observed in
healthy and CF infants, with the youngest P. aeruginosa-positive
child being 3 weeks old (Fig. 6a). In that line, the detection of
P. aeruginosa-DNA was not associated with disease state
(Supplementary Fig. 6, left), i.e., both CF and healthy children
showed similar detection rates of P. aeruginosa. Furthermore,
neither age group (Supplementary Fig. 6, centre) nor season of
sampling (Supplementary Fig. 6, right) were associated with P.
aeruginosa detection. P. aeruginosa was always part of the 5%
least abundant species. Detection of P. aeruginosa-DNA had
neither a significant effect on diversity nor on absolute abundance
of core and rare species (Fig. 6b–e). Longitudinally sampled CF
infants received routine culture-dependent microbiological ana-
lyses as part of their clinical follow-ups, and we observed three
different patterns of P. aeruginosa-DNA detection in this cohort: (1)
the constant detection of P. aeruginosa-specific reads via
metagenomics in culture-negative infants, (2) the complete
absence of P. aeruginosa-specific reads via metagenomics and
no culture-dependent detection of P. aeruginosa and (3) the
absence of P. aeruginosa-specific reads via metagenomics until the
child became culture-positive for the first time (Supplementary
Fig. 7).

DISCUSSION
A range of CF respiratory tract microbiome studies has been
published to investigate the microbial communities inhabiting the
diseased respiratory tract in children2–10. These studies have
applied partial 16 S 16S ribosomal RNA gene sequencing for
taxonomic classification, which can lead to various taxonomic
outcomes depending on the hypervariable region of amplifica-
tion39–41. In this study, we applied deep shotgun metagenomic
sequencing based on single-end reads of 75 bp length. For
functional annotation it is currently recommended to generate
long reads (>200 bp) and paired-end data, so that de novo
assembly and subsequently alignment of the contigs against
protein family databases is feasible42,43. We have consciously
decided to forego the functional annotation because large
numbers of protein families and bacterial genes remain annotated
as ‘domain of unknown function’ and ‘hypothetical proteins’,
respectively44. This has led to poor data reproducibility in past
studies, especially when approaching different database ver-
sions45. However, our methodological approach enabled us to
obtain quantitative information on core and rare bacteria, down to
the species level by aligning reads against a curated reference
database and by probing the maximum number of genome
positions. In addition, we processed and sequenced negative
controls, and included children with no history of pulmonary

Fig. 3 Clustering analyses to identify known and unknown
patterns, which influence microbial community profiles in
children. a Non-metric multidimensional scaling based on
Bray–Curtis dissimilarity matrices identified massive overlap
between healthy and CF microbial community profiles. The bacterial
load (absolute abundance) indicates the number of bacterial cells
per human cell. b Hierarchical clustering (Ward’s clustering
algorithm) based on Euclidean distances revealed three main
groups of microbial community profiles in children between 0 and
6 years of age. c The group pattern was confirmed by principal
component analysis (PCA). The PCA plot contains the first and
second principal components as x- and y-axis, respectively. All core
species contribute equally to the variance observed in the PCA, for
example Streptococcus oralis explains 4.8% of the variance, R.
mucilaginosa 4.7%, V. parvula 4.7%, Streptococcus parasanguinis
4.7%, Fusobacterium periodonticum 4.6% and so on (Supplementary
Table 3).
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disease. This experimental set-up provided insights into the early
community structure of the transient respiratory tract metagen-
ome in health and CF. However, the major limitation of this study
was the use of cough swabs to screen the respiratory tract
metagenome. Whereas bronchoalveolar lavage (BAL) or induced
sputum are gold standards for diagnosing lower airway infection,
and investigating the lower respiratory tract metagenome46,47,
throat swabs were often assigned as unsuitable for studying
bacterial conditions in the CF lung due to a low test sensitivity
(34–36%)48,49. While newborns and infants do not produce
sputum, BAL is an invasive technique and inappropriate for use
in longitudinal studies with short sampling intervals or for
including a sufficient number of healthy controls. As a compro-
mise, cough swabs were collected by trained CF paediatricians
and sampling was accompanied by an obligate cough of the
participant.
The healthy respiratory tract metagenome consists of core and

rare species, which were here defined by the 95% of most
abundant and the 5% of least abundant species, respectively. We
found that the diversity of core species in the healthy microbial
community developed gradually over a period of 4–6 years.
Consequently, core species diversity was significantly higher in
healthy preschool children (4–6 years of age) compared to healthy
infants (first year of life). Interestingly, the diversity of rare species
in a healthy microbial community was not found to change with
age, suggesting that in the first year of life the rare species
diversity has already been fully developed. However, a large
interquartile range was apparent in each age group, indicating
high variability of rare species diversity between the healthy
infants in each age group.
It is also noteworthy that the healthy respiratory tract

harboured more bacterial cells per human cells than the CF
respiratory tract in all age groups. The increased absolute
abundance of bacteria was not confined to specific species, but
included all core and rare species equally. When microbial
community profiles of children in terms of beta diversity were
assessed, no disease-specific signature was recognisable in the
early years of life. However, unsupervised learning algorithms

revealed the patterns of a healthy microbial community profile
(k3). The microbial community profiles in k3 were unique and
completely distinct from members of the two other groups
(k1–k2), but also from each other. The healthy cluster was
characterised by increased bacterial loads of core and rare species
and a higher diversity of rare species. The role of rare species
colonising the human respiratory tract is still underestimated due
to incomplete taxonomic databases and many metagenomic
pipelines, which eliminate low-abundant taxa immediately50–52.
The rare species community in the respiratory tract harbours more
different species than the core respiratory tract community, and
hence provides the microbial gene repertoire of the respiratory
tract with tremendous functional flexibility50. Since increased
diversity and bacterial load of rare species defined a unique and
healthy microbial signature, the rare species of the respiratory
tract could be subject for analysis in future studies.
Ecological network analysis is rarely applied to study species co-

occurrence in the human host because the overall specificity of
networks suffers when relative abundance data is used26,28–30,53.
Since we were able to calculate absolute abundances of species
from shotgun metagenomic sequencing data, robust co-
occurrence network analysis was feasible. We found that degree
centrality increased in the first years of life in healthy and CF
infants, but there were always more connections per node in
healthy than in age-matched CF infants. Ecologists commonly
argue that the stability of a system increases as the number of
links increases54,55. One could hence suggest that in terms of co-
occurrence patterns, the healthy microbial community is more
stable than the CF community and that stability increases with
age. This suggestion is backed up by the discovery that in co-
occurrence networks of healthy infants the closeness centrality
was high, but betweenness centrality was low. If species in the
healthy respiratory tract of infants get cleared by host defence
mechanisms or go extinct, the linkage of the remaining positively
correlating species in the respiratory tract is not affected and the
single large cluster will be maintained. In CF infants, the exact
opposite pattern was apparent. The number of bridging species
was high, the number of central species was low. If bridging

Fig. 4 Cluster characteristics based on clinical and microbial community data. a Proportion of children in each cluster who were diagnosed
with CF (red), considered as P. aeruginosa-DNA positive (red), received antibiotics in the month of sampling (red) and those who did not
(green). b Bacterial load of core species in terms of bacterial cells per human cell (Kruskal–Wallis p value < 0.0001, e2= 0.60, CI= 0.45–0.72).
c Shannon diversity indices (SDI) of rare species (Kruskal–Wallis p value= 0.0005, e2= 0.17, CI= 0.05–0.34) and d bacterial load of rare species
across the three cluster groups (Kruskal–Wallis p value < 0.0001, e2= 0.55, CI= 0.39–0.69). Pairwise comparison was done using the
Conover–Iman test and Benjamini–Hochberg adjustment (pairwise p values are given in the diagram with *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001). The centre line of the boxplot depicts the median (50th percentile). The lower and upper boundary of the box represent the
first (25th percentile) and third (75th percentile) quartile, and hence define the interquartile range (IQR). Whiskers extend from the box to the
largest/smallest non-outlier data point (1.5 × IQR).
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species get lost, there is a high risk of network fragmentation into
independent clusters of co-occurrences, even in the absence of
typical CF pathogens. In the second and third years of life, the
number of bridging species in CF infants decreased, but remained
high compared to age-matched healthy infants. In spite of
permanent differences in betweenness centrality and with a
significant time delay, we showed that the co-occurrence network
of the early CF respiratory tract caught up and became similar to a
healthy co-occurrence network over time.
While a personalised metagenome signature with many low-

abundant and few dominant pulmonary pathogens has been
described for adult CF patients and patients with end-stage lung
disease19–21, we found no unique core microbial signature in the
early respiratory tract of CF infants. On the contrary, in terms of
relative species abundance and diversity of core and rare species,
the CF metagenome was found to be highly similar to a healthy
metagenome in the first 4 years of life. The main differences in the
early years were the lower absolute abundance of bacteria and the
prolonged instability of the microbial community after birth.
Thereafter, an ~2-year period followed in which the CF airway
microbial communities almost matched those of healthy infants.
Then by ~4 years of age, the CF typical signature started to

emerge. If this finding can be replicated in further geographically
distant CF care settings9,18,56,57, we could develop an optimistic
view that we have a time window58 of ~2 years to prevent the
irreversible downhill course of the establishment of the CF typical
airway metagenome. At the time of writing, the encouraging
outcome of phase 3 clinical trials with CFTR modulators59–61

suggests that the early start of CFTR modulation may be the
adequate preventive measure to acquire and retain a healthy
airway metagenome in the CF airways.
P. aeruginosa is one of the hallmark pathogens of chronic airway

infections in CF22,23,62,63. Losada and colleagues observed P.
aeruginosa-DNA in all PI CF school children by DNA sequencing,
even though some of the patients remained P. aeruginosa-
negative in culture19. They suggested that P. aeruginosa acquisi-
tion may occur earlier than previously assumed but at low
numbers. Deep shotgun metagenomic sequencing backed up by
quality control measures now unravelled that not only CF, but also
healthy infants come into contact with the environmental
organism P. aeruginosa on a regular basis and from the very
beginning. In the first year of life, trace amounts of P. aeruginosa-
DNA were constantly tracked in a subgroup of CF and healthy
infants. In some longitudinal CF samples, P. aeruginosa-specific
DNA was always present, even though the samples remained P.
aeruginosa negative in culture. Other longitudinal samples
contained no P. aeruginosa-specific DNA until the pathogen grew
in culture for the first time. It remains unknown whether different
patterns of detection play a role in disease progression because
the amount of P. aeruginosa-DNA was insufficient for estimating
growth dynamics. Therefore, no statements can be made whether
the pathogen was surviving at low numbers in the respiratory
tract or whether residual DNA fragments were detected after
elimination by host defences. Since the early eradication of P.
aeruginosa is of importance to decrease morbidity and mortality in
CF patients22,23,62,63, the scientific community strives to bring
sensitive DNA sequencing tools into the clinic as diagnostic tool.
Our novel finding of P. aeruginosa-DNA in a subset of healthy
children emphasises the need to define detection thresholds and
study their association with clinical course in future. Treatment is

Fig. 5 Ecological network analysis of species Spearman’s correla-
tion matrices in healthy and diseased infants. The ForceAtlas
algorithm was applied to Spearman’s rank correlation matrices,
which were calculated from absolute species abundance tables of
shotgun metagenomic sequencing data. Directed networks were
generated by including only significant and strong positive
correlations (p < 0.05, Spearman’s rank correlation coefficient >
0.60) and all significant negative correlations (p < 0.05), which are
represented by grey and yellow nodes, respectively. Coloured edges
visualise correlations that involve one of the four genera that
explain most of the correlations (Streptococcus, Veillonella, Actino-
myces and Neisseria), whereas all other edges are shown in grey.
The size of network nodes refers to the corresponding betweenness
centrality.

Table 3. Centrality statistics of species co-occurrence network analysis
for infants in the first year of life (A) and infants in the second and third
year of life (B).

Healthy A Healthy B CF A CF B

Number of nodes 94 95 92 96

Number of edges 5506 6382 2456 5256

Number of negative
correlations

0 0 56 12

Closeness
centrality

Betweenness
centrality

Degree
centrality

Healthy A (median) 0.7 15.5 118.0

Healthy B (median) 0.8 27.9 152.0

Healthy A vs. Healthy B
Mann–Whitney p value

0.0001 0.18 0.00003

CF A (median) 0.5 68.1 47.0

CF B (median) 0.7 34.3 112.0

CF A vs. CF B
Mann–Whitney p value

<0.00001 <0.00001 <0.00001

Healthy A vs. CF A
Mann–Whitney p value

<0.00001 <0.00001 <0.00001

Healthy B vs. CF B
Mann–Whitney p value

<0.00001 0.009 <0.00001

Healthy A vs. CF B
Mann–Whitney p value

0.27 0.03 0.73
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warranted when clinically relevant thresholds are exceeded. A
further challenge is that the interpretation and quality of next-
generation sequencing results depend on sample type, quality of
sample collection, sampling device, method of sample processing,
sequencing and the in silico pipeline, as well as the cleanliness of
the laboratory and clinical environment32–35,64,65. As long as the
scientific community does not agree on uniform practices and
clinically relevant thresholds, quality-controlled culture-dependent
diagnostics remains an irreplaceable tool to distinguish the regular
encounter of children with the environmental organism from
harmful P. aeruginosa airway colonisation, which requires immedi-
ate medical intervention.
In conclusion, deep shotgun metagenomic sequencing of

carefully collected cough swabs of CF and healthy children at a
very early age provided unprecedented insights into the early
community structure of the transient respiratory tract metagen-
ome in health and CF. It became evident that in the first years of
life, the CF and healthy microbial community structures are similar.
Based on the diversity of core species, a significant difference was
apparent only by the age of 4 years. In terms of beta diversity, no
CF-specific signature was apparent. We could associate a healthy
microbial community signature with increased bacterial loads of
core and rare species, a higher diversity of the rare species, a
strong positive species correlation network with high degree
centrality, high closeness centrality and low betweenness
centrality, and the complete absence of negative species
correlations. Species co-occurrence patterns in CF infants were
defined by the presence of negative species correlations, high
betweenness centrality but low degree and closeness centrality.
The CF correlation network in the early years of life was assumed
to be prone to network fragmentation due to the high number of
bridging species.

The presence of low-abundant P. aeruginosa-DNA did neither
influence alpha nor beta diversity metrics and was not disease
associated. Children seem to come into contact with the
environmental organism P. aeruginosa on a regular basis without
requiring medical intervention. It is hence critical to agree on
detection thresholds to distinguish medical relevant pathogens
from harmless background patterns. Until then, culture-
dependent microbiology remains an irreplaceable tool in CF
clinical microbiology.

METHODS
Participants
Fifty-two deep cough swabs from healthy children between 0 and 6 years
of age, with no medical history or suspicion of pulmonary diseases were
collected by trained paediatricians, during the regular preventive medical
examination or at kindergartens and local parent–child meetings in
Hannover, Germany. Forty-one children with CF were recruited from the
Cystic Fibrosis Outpatient Clinic at Hannover Medical School (MHH),
Germany. Eleven CF participants were screened longitudinally after
diagnosis following the CF newborn screening (Table 1 and Supplementary
Table 1). All CF participants were regularly seen and monitored by CF
specialists at the MHH since the age of diagnosis. The clinical study was
approved by the ethics committee of MHH (No. 7674). The parents or legal
guardians gave written consent prior to sample collection.

Sample collection
Deep cough swabs were collected with sterile cotton swabs (6.0 × 6.0 mm)
from specialised CF paediatricians. Sampling was accompanied by an
obligate cough of the participant. Swabs were placed directly into DNA
LoBind Tubes (Eppendorf, #022431021); tips facing downwards. Swab
handles were cut with sterile scissors and samples were immediately

Fig. 6 Impact of P. aeruginosa-DNA detection on the respiratory tract metagenome of CF and healthy infants. a Proportion of
P. aeruginosa-DNA-positive and P. aeruginosa-DNA-negative children per age group and disease state. In the CF cohort, there were 5 infants
below the age of 1, 20 between 1 and 3 years of age and 16 children between 4 and 6 years of age. In the healthy cohort, there were 28 infants
below the age of 1, 9 children between 1 and 3 years of age and 15 preschool children were 4 and 6 years of age. b–e Shannon diversity
indices (SDI) (b, d) and bacterial load of core (c) and rare species (e) based on the presence (right) and absence (left) of P. aeruginosa-DNA in
cough swabs. The Mann–Whitney U test was applied to calculate significant differences between the two groups. No statistical differences
were observed (p > 0.05). The centre line of the boxplot depicts the median (50th percentile). The lower and upper boundary of the box
represent the first (25th percentile) and third (75th percentile) quartile, and hence define the interquartile range (IQR). Whiskers extend from
the box to the largest/smallest non-outlier data point (1.5 × IQR).

M.-M. Pust et al.

7

Published in partnership with Nanyang Technological University npj Biofilms and Microbiomes (2020)    61 



stored at −80 °C until further processed. The latent period between sample
collection and quick freezing was 15–30 s.

Preparation of a clean environment
Since the type and extent of contamination varies between laboratory
environments, and within one laboratory over time31–33, we established a
standard cleaning procedure of the laboratory environment which was
uniformly conducted before sample processing. Before sample processing,
aliquots for use in all biological samples and negative controls were
prepared simultaneously in a UV PCR workstation, then sealed with
Parafilm and stored as required, so that all samples were treated with the
same kits by lot number. The day before sample processing, the
workstation and laboratory equipment were cleaned with 5% sodium
hypochlorite solution (w/v) and left for overnight exposure. During
preparation and sample processing in the UV PCR workstation, disposable
laboratory coats, sterile gloves, mouth and hair protection were worn.
Negative controls (blank swabs and empty water controls) were stored,
processed and sequenced in parallel with patient samples for a constant
quality control of experiments.

DNA extraction and fragmentation
Cotton swabs were soaked in TE buffer (200 µl, 0.1×), placed in a dry-ice-
absolute-ethanol mixture for 4 min and then in a heating block (65 °C,
3 min). Freezing–heating cycles were repeated three times. The tubes were
sealed with Parafilm and loaded onto the S220 Focused-ultrasonicator
(Covaris, programme 1, Supplementary Table 5). Sterile syringes were used
for pricking holes into the bottom of sterile 0.5-ml Eppendorf tubes, which
were then stacked on top of 1.5-ml Eppendorf tubes. Solution and swab tip
were transferred into the manipulated 0.5-ml Eppendorf tube. A quick spin
was performed (30 s) and the 0.5-ml Eppendorf tubes were discarded. The
flow-through solution (130 µl) was pipetted in a Covaris microTUBE. The
tube was sealed with Parafilm. The Covaris (programme 2, Supplementary
Table 5) was started, yielding DNA fragments of 200 bp length. The
solution was centrifuged (3 min, 13,200 × g, 25 °C). The supernatant (130 µl)
was mixed with AMPure XP Beads (156 µl) and incubated (25 °C, 5 min).
The tube was placed on a magnetic rack. The clear supernatant was
discarded and the pellet was washed with ethanol (80%) three times. The
pellet was resuspended in TE buffer (30 µl, 0.1×). The solution was
incubated (25 °C, 2 min) and placed on the magnetic rack. The clear
solution was pipetted in a PCR tube for library preparation.

Library preparation and DNA sequencing
The protocol for use with NEBNext Ultra II DNA Library Prep Kit for Illumina
(E7645, E7103) was followed without size selection, with NEBNext unique
dual index primer pairs and a maximum number of 12 PCR cycles. The
Illumina NextSeq 500/550 platform was used for sequencing (High Output
Kit v2.5, 75 cycles, single-end reads, #20024906). The flow cell was under
clustered (1.3 pM instead of default 1.5 pM) to prevent cluster overlaps.

Taxonomic classification
The whole metagenomic sequencing alignment pipeline version 1.1 of
Davenport and Scheithauer66 was employed for taxonomic classification
with default adjustments. An in-house reference database (see ‘Data
availability’ section) was created for the alignment process with complete
reference genomes of bacteria (n= 2598), DNA viruses (n= 38) and human
chromosomes (n= 23), which were extracted from the NCBI RefSeq
database. Raw microbial reads were normalised to human reads as
described by Losada et al.19. The 95% of most abundant bacterial species
(core species) and the 5% of least abundant species (rare species) were
obtained separately from CF and healthy samples. The detection of core
species in the respiratory tract was verified by the k-mer and marker gene-
based tools Centrifuge67 and Metaphlan251, respectively.

Statistical analysis
For comparing two independent groups and more than two groups, the
non-parametric Mann–Whitney U test and the Kruskal–Wallis rank test were
applied, respectively. For two groups, the effect size r was calculated, which
is the Mann–Whitney U test statistics divided by the square-rooted sample
size. For more than two groups, the epsilon-squared effect size (e2) was
obtained. Confidence intervals (CI) were identified. The Conover–Iman test
with Benjamini–Hochberg adjustment68 was used for multiple comparisons

between group levels. Fisher’s exact test was employed for statistical
evaluation of count data with small sample sizes. For hierarchical clustering
(Ward’s method), the dataset’s clustering tendency was evaluated with the
Hopkins statistic36 and a Euclidean distance matrix was built. Bray–Curtis
dissimilarity indices were obtained for nmds69 (without autotransform
adjustment, k= 3, stress= 0.07). A permutation test (envfit69, permutations
= 1000) was used to establish relationships between the nmds plot and
metadata variables. For predicting the presence or absence of P. aeruginosa
in samples with low numbers of reads (<1× coverage), the tool raspir70 was
approached to study the read distribution across the bacterial genome. R
statistical software was used for data analyses, including the vegan
package69 for community ecology analysis and the rcompanion package for
statistical testing71. All the scripts and input tables are publicly available
(see ‘Code availability’ section). For ecological network analysis, the best
practice guidelines for co-occurrence network construction were fol-
lowed53. Spearman’s rank correlation matrices were generated from
absolute abundance tables of the 99% most abundant species and
correlations with p values < 0.05 were extracted. For positive correlations,
only strong correlations were included (Spearman’s rank correlation
coefficient > 0.60). The open-source software Gephi72 (https://gephi.org/)
was utilised for directed network analyses with the continuous graph layout
algorithm ForceAtlas38 (inertia= 0.1, repulsion= 10,000.0, attraction= 10.0,
maximum= 10.0, auto stabilisation= TRUE, gravity= 30.0). The network
parameters degree centrality, closeness centrality and betweenness
centrality were obtained. Degree centrality measures the numbers of
connections of a node. Closeness centrality calculates the shortest distance
of a node to all other nodes in the network37, where a high value refers to a
more central node. Betweenness centrality measures how often a node is
bridged by the shortest pathway of two other nodes37.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The microbial sequencing data are stored in the European Nucleotide Archive (study
accession number PRJEB38221). The reference database, R scripts and input files
(absolute abundance estimations of species per sample, metadata) are available from
https://github.com/mmpust/airway-metagenome-infants.
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