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Abstract 
How the human brain integrates internally- (i.e., mnemonic) and externally-oriented (i.e., 
perceptual) information is a long-standing puzzle in neuroscience. In particular, the internally-
oriented networks like the default network (DN) and externally-oriented dorsal attention networks 
(dATNs) are thought to be globally competitive, which implies DN disengagement during cognitive 
states that drive the dATNs and vice versa.  If these networks are globally opposed, how is internal 
and external information integrated across these networks? Here, using precision neuroimaging 
methods, we show that these internal/external networks are not as dissociated as traditionally 
thought. Using densely sampled high-resolution fMRI data, we defined individualized whole-brain 
networks from participants at rest, and the retinotopic preferences of individual voxels within these 
networks during an independent visual mapping task. We show that while the overall network 
activity between the DN and dATN is opponent at rest, a latent retinotopic code structures this 
global opponency. Specifically, the anti-correlation (i.e., global opponency) between the DN and 
dATN at rest is structured at the voxel-level by each voxel’s retinotopic preferences, such that the 
spontaneous activity of voxels preferring similar visual field locations are more anti-correlated 
than those that prefer different visual field locations. Further, this retinotopic scaffold integrates 
with the domain-specific preferences of subregions within these networks, enabling efficient, 
parallel processing of retinotopic and domain-specific information. Thus, DN and dATN dynamics 
are opponent, but not competitive: voxel-scale anti-correlation between these networks preserves 
and encodes information in the negative BOLD responses, even in the absence of visual input or 
task demands. These findings suggest that retinotopic coding may serve as a fundamental 
organizing principle for brain-wide communication, providing a new framework for understanding 
how the brain balances and integrates internal cognition with external perception. 

Main text 
A fundamental goal of neuroscience is to understand how activity distributed across the brain’s 
functional networks gives rise to cognition 1–8. Central to this aim is understanding principles that 
govern interactions between different brain networks, particularly those involved in externally-
oriented attention (e.g., processing sensory input) and internally-oriented attention (e.g., 
introspection and memory) 9–12. This knowledge gap confounds our understanding of human 
cognition: the interaction between internally- and externally-oriented neural systems is 
foundational to how we perceive, remember, and navigate our world, yet the 'common language' 
facilitating their communication remains a mystery.  

One reason this knowledge gap exists is that the neural systems that subserve internally- and 
externally-oriented attention, such as the Default Network (DN) and dorsal attention network 
(dATN) respectively, are typically considered in competition9–11. Seminal neuroimaging studies 
investigating externally-oriented attention (visual processing, working memory, etc.) showed that 
visual tasks reliably activate brain areas in lateral occipital temporal cortex, dorsal parietal cortex, 
and prefrontal cortex, now collectively referred to as the dATN9,13,14. In contrast, visual tasks 
reliably deactivate regions in the internally-oriented DN, including lateral and medial parietal 
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cortex, anterior temporal lobe, and medial prefrontal cortex12,15. This pattern reverses during 
introspective tasks, e.g., scene construction or theory of mind tasks: the DN systematically 
activates and the dATN deactivates6,16–20. Together, this is thought to reflect a network-level 
opponency: these networks are thought to globally inhibit each other, possibly to facilitate 
attending to external stimuli without competition from internal mnemonic representations, and vice 
versa 9,11,21,22. However, if internally- and externally-oriented networks compete, it is not clear how 
the brain accomplishes tasks that require integrating perceptual and mnemonic information (e.g., 
anticipatory saccades, memory-based attention tasks, and mental imagery).  

Two recent findings have shed light on this question. First, while the internally-oriented DN is 
traditionally thought to use an abstract or semantic neural code 2,22–24, recent work suggests that 
a neural code that is typically associated with externally-oriented processing -- retinotopy -- also 
manifests in the DN 25–28. Crucially, compared to classic visually responsive areas, including the 
posterior portion of the dATN, the visual response of DN is an “inverted retinotopic code.” 
Specifically, while stimulation of the retina causes typical visual areas to increase neural activity 
in a position-dependent manner, the DN exhibits position-specific decreases in activity 25,27,28. 
Thus, the DN’s deactivation reflects specific properties of the attended external stimulus and is 
informative during visual attention tasks.  
 
Second, an inverted retinotopic code has recently been shown to play a functional role in 
structuring mnemonic-perceptual interactions at the cortical apex28. During familiar scene 
processing, activity in brain areas specialized for scene perception and memory differentially 
increases during perception and recall tasks, respectively. However, at the voxel level, these 
areas exhibit an interlocked retinotopically-specific opponent dynamic. In other words, stimuli in 
a specific visual field location activate perception voxels and suppress memory area voxels 
monitoring that location. This pattern reverses during memory tasks. This challenges the 
traditional view of internally- and externally-oriented brain networks as functionally-opposed via 
global opponent dynamics, suggesting instead that they are mutually engaged in a common 
information processing stream. It also emphasizes the importance of voxel-wise activity patterns 
in uncovering neural codes that underpin global opponent dynamics. 
 
Based on these findings, we reasoned that opponent retinotopic coding could be a widespread 
mechanism that scaffolds global opponent interactions across large-scale internally- and 
externally-oriented brain networks29. We leveraged a high-resolution 7T fMRI dataset30 and voxel-
wise modeling to test whether retinotopic coding structures the global opponent dynamic between 
the DN and dATN. We tested three hypotheses. First, the voxel-wise retinotopic push-pull 
dynamic observed in the highly-specialized subareas of the DN/dATN during visual tasks28 will 
generalize to the overall networks’ spontaneous neural activity, even in the absence of 
experimenter-imposed task demands. Second, among subareas of the DN/dATN, retinotopic 
coding will be integrated (multiplexed) with an areas’ functional domain to allow fine-grained 
control of information exchange across cortex. Finally, retinotopy should be intrinsic throughout 
the brain, even in areas of the brain associated with internal attention. So, the retinotopic code 
will be evident in both top-down and bottom-up interactions between perceptual and mnemonic 
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areas. Together, these results would suggest retinotopy is a unifying framework organizing brain-
wide information processing and internal versus external attention dynamics. 
 

Retinotopic coding in internally and externally oriented networks 
To investigate the role of retinotopic coding in structuring activity between internally- and 
externally-oriented brain networks, we used voxel-wise visual population receptive field (pRF) 
modeling and resting-state fMRI data from the Natural Scenes Dataset30 (Fig. 1A). We assessed 
the retinotopic responsiveness of all voxels in the brain by modeling BOLD activity in response to 
a sweeping bar stimulus 31. Then, we used resting-state fMRI data to identify each participant's 
individually parcellated cortical networks 8,32 and assess the retinotopic biases of voxels within 
these networks (Fig. 1B; Fig. S1). We considered any voxel with >8% variance explained by our 
pRF model to be exhibiting a retinotopic code, and hereafter we refer to these voxels as “pRFs”.  
PRF amplitude maps for all participants are shown in Fig. S2. Because we did not observe any 
hemispheric differences in any pRF features or subsequent analyses (ps > 0.55), data are 
presented collapsed across hemispheres.  

Consistent with prior reports25, we observed a strong distinction in the visual response of 
canonical internally- and externally-oriented brain networks, the Default Networks A-B and the 
Dorsal Attention Networks A-B, respectively (hereafter, DNs and dATNs) (Fig. 1C). On average, 
55.3% of dATN voxels were retinotopic and 26.95% of DN voxels were retinotopic, consistent with 
their role as externally- and internally-oriented networks, respectively. However, the nature of 
retinotopy in these two networks differed mainly on amplitude (i.e. whether a stimulus in their 
preferred visual field location evoked a positive or a negative BOLD response) (Fig 1C). On 
average more than half of pRFs in the DNs were inverted (i.e., had a negative BOLD response to 
visual stimulation in their population receptive field, -pRFs). In contrast, less than 20% of the 
voxels in the dATN were -pRFs (i.e., the majority of the voxels had positive BOLD responses to 
visual stimulation in their receptive field, +pRFs)). This distinction is particularly remarkable given 
the proximity of the dATN and DN clusters in posterior cerebral cortex (Fig. 1B). The response 
amplitude of these pRF populations was reliable (Fig. S3). Together, these results establish the 
necessary foundation to assess whether the voxel-wise retinotopic code structures the global 
opponent dynamic between the internally- and externally-oriented networks. 
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Fig. 1. Inversion of retinotopic coding between externally- and internally- oriented networks in the 
human brain. A. Population receptive field (pRF) modeling with fMRI. A visual pRF model was fit 
for all participants to establish visual responsiveness and visual field preferences for each voxel. 
Voxels with positive BOLD responses to the visual stimulus are referred to as positive pRFs 
(+pRFs), and those with negative BOLD responses to visual stimulation are referred to as 
negative pRFs (-pRFs). B. Individualized resting-state network parcellation. Resting-state fMRI 
was collected in all participants and used to derive individualized cortical network parcellations. 
Participants (N=7) had between 34-102 minutes of resting-state data. Networks were parcellated 
33using the multi-session hierarchical Bayesian modelling approach8,32 with the Yeo 15 HCP 
atlas33 as a prior. C. Task-negative and task-positive (internally/externally oriented) brain 
networks contain differential concentrations of +/-pRFs. Bars show the concentration of -pRFs 
within each individual’s cortical networks. The Default Networks A and B (DN-A/B), canonically 
internally-oriented, contained the highest proportion of -pRFs, while the Dorsal Attention Networks 
(dATN-A/B), canonical externally-oriented, contained the highest proportion of +pRFs. 

To test whether the retinotopic code structured the opponent interaction between the internally- 
and externally-oriented brain networks at a voxel level, we examined whether the visual field 
preferences of individual voxels within these networks predicted their anti-correlation at rest. In 
other words, would the opponent dynamic between voxels in the DNs and dATNs be stronger for 
voxels with similar visual field preferences? During resting-state fMRI, participants simply fixate 
with not externally imposed stimulus (aside from a fixation cross)34. This allowed us to examine 
whether the retinotopic code structures the intrinsic organization of neural interactions absent an 
experimentally imposed external or internal task4,35. Resting-state data were preprocessed using 
ICA with manual noise component selection36,37, and no global signal regression was performed38. 

For each pRF in the DNs and dATNs, we calculated the pairwise distance between the RF center 
position (x, y parameter estimates) of -pRFs in the DNs and +pRFs in dATNs (Fig.2A). For each 
DN -pRF, we found the 10 closest (Matched) and furthest (Anti-matched) dATN +pRF centers. 
Interestingly, matched pRFs were distributed across the dATN, spanning posterior areas in 
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retinotopic cortex through prefrontal cortical regions not typically associated with visual analysis 
(Fig. S4). We then averaged these matched and antimatched pRF’s resting-state time series 
together, and we compared the correlation of these matched/antimatched timeseries with the time 
series from the DN -pRFs (see methods). This resulted in two correlation values per resting-state 
run, which represented the correlation of the average matched and anti-matched pRF’s time 
series between these areas. Importantly, the primary statistics relevant to the conclusions in the 
manuscript replicated when considering randomly sampled pRF pairs, and therefore our 
conclusions do not depend on matching only the bottom 10 voxels in a specific region or network 
(See Supplemental methods and results) 

Retinotopic coding scaffolds DN and dATN interactions 
If the -DN and +dATN opponent interaction is scaffolded by a retinotopic code, the correlation 
between spatially matched pRFs should be significantly more negative than the anti-matched 
pRFs. Our results were consistent with this hypothesis. We observed a negative correlation 
between both matched and anti-matched -DN and +dATN pRFs in the overwhelming majority of 
resting state runs (Fig. 2B, left). Critically, the distribution of matched +dATN and -DN pRFs was 
significantly shifted compared to unmatched pRFs (D(392)=0.22, p<0.001), confirming an overall 
stronger negative correlation, and thus a stronger opponent interaction, between matched 
compared to unmatched pRFs. The stronger opponent interaction for matched versus anti-
matched pRFs was clear when resting-state runs were averaged within each participant (7/7 
participants; t(6)=3.63, p=0.010, Fig.2B, right). Interestingly, retinotopy played a similarly strong 
role in structuring the opponent dynamic between the dATN and both subnetworks of the DN (DN-
A: t(6)=3.02, p=0.023, DN-B: t(6)=2.72, p=0.034; DN-A vs. DN-B: t(6)=1.511, p<0.182), although 
the opponency was stronger overall in DN-A compared to DN-B (t(6)=5.532, p=0.002). 
Importantly, tSNR of the matched and anti-matched pRF’s resting-state time series did not differ 
(t(6)=1.007, p=0.353), suggesting that differences in signal quality did not underlie the difference 
in correlation. Together, these results suggest that the retinotopic code plays a role in structuring 
the opponent dynamic between the brain’s internally- and externally-oriented cortical networks. 
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Fig. 2. Retinotopic coding organizes spontaneous interaction between internally and externally 
oriented brain networks. A. Spatially-matched pRFs in dATNs and DNs. We assessed the 
influence of retinotopic coding on the interaction between internally- and externally-oriented brain 
areas’ spontaneous activity during resting-state fMRI, by comparing the correlation in activation 
between pRFs in these networks that represent similar regions of visual space. For each -DN 
pRF, we established the top 10 closest +dATN pRF voxels’ centers (“matched”) and the 10 
furthest pRF centers (“antimatched”). In each resting-state fMRI scan, we extracted the average 
time series from -DN pRFs and correlated that time series with the average time series from the 
+dATN matched and antimatched pRFs. We repeated this procedure for all resting-state runs in 
all participants. Plot shows one example resting-state time series from a participant’s -DN, +dATN 
matched and +dATN antimatched pRFs and the associated correlation values. B. Spatially 
matched -DN/+dATN pRFs have a greater opponent interaction than anti-matched pRFs, showing 
that opponent dynamics depend on retinotopic preferences. Histogram shows the distribution in 
correlation values between matched (dark green) and antimatched (light green) pRF pairs for 
each resting-state run in all participants, which were significantly different (matched versus 
antimatched: D(392)=0.245, p<0.001). Bar plot shows the average correlation for each participant 
(matched versus anti-matched: t(6)=3.49, p=0.011). C. DN subnetworks A and B both evidenced 
a retinotopic opponent interaction (DN-A: t(6)=3.02, p=0.023, DN-B: t(6)=2.72, p=0.034; DN-A vs. 
DN-B: t(6)=1.64, p<0.15), although the opponency was stronger overall in DN-A compared to DN-
B (difference in average correlation between -DN/+dATN pRFs: t(6)=5.41, p=0.002). 
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Retinotopic coding organizes activity within functional domains 
Our results so far clearly establish that retinotopic coding structures spontaneous interactions 
between internally- and externally-oriented neural systems in the absence of task demands. 
However, high-level cortical areas generally associate into networks based on their functional 
domain. For example, within the visual system, brain areas with differing retinotopic preferences 
(e.g., the scene-selective areas on the lateral and ventral surfaces of the brain) 39,40 nevertheless 
form functional networks based on their apparent preference for specific visual categories (e.g., 
faces, objects, or scenes)41,42. This raises a crucial question: do retinotopic and domain-specific 
organizational principles interact to facilitate or constrain information flow across internally- and 
externally-oriented networks? Addressing this question would shed light on mechanisms that 
enable the brain to integrate information while maintaining functional specialization. 

To address this question, we focused on the functional interplay between a set of areas in 
posterior cerebral cortex that are established models for mnemonic and visual processing in the 
domains of scene and face perception. Specifically, we considered the mnemonic lateral place 
memory area (LPMA43,44), an area on the brain’s lateral surface that is implicated in processing 
mnemonic information relevant to visual scenes at the border between DN-A and the dATNs (Fig 
2A). We examined how LPMA activation co-fluctuates with the adjacent, scene-perception area 
“occipital place area” on the brain’s lateral surface (OPA45,46) compared to two face-perception 
regions on the lateral and ventral surfaces, the occipital and fusiform face areas (OFA and FFA 
47,48). At a group level, these perceptual regions are situated within the dATNs and are at the same 
level of the visual hierarchy (Fig. 3A), but they are differentially associated with the domains of 
scene (OPA) and face (OFA, FFA) processing, making them ideal model systems to examine the 
impact of domain-specificity and retinotopic coding in organizing neural activity.  

We defined the mnemonic area LPMA in the NSD participants using resting-state data by 
contrasting functional connectivity between the anterior and posterior halves of the 
parahippocampal place area49,50 (Fig. 3B), which revealed a cluster in lateral parietal cortex with 
a similar topographic profile as LPMA based on a group analysis from our prior work 43 (Fig.3C). 
Replicating our previous findings28, this connectivity-defined LPMA had a higher concentration of 
robust -pRFs compared to OPA (t(7)=5.26, p=0.002) (Fig.3D, Supplemental Fig. S3, S5) and 
exhibited a similar lower visual field bias as OPA (OPA: 8/8 t(7)=3.13, p=0.016; LPMA: 7/8 
participants, t(7)=2.11, p=0.07; OPA v LPMA: t(7)=0.441, p=0.67) (Fig. 3E). 

We first considered whether the retinotopic opponent dynamic we have previously shown in the 
domain of scenes (i.e., between -LPMA and +OPA pRFs) during perceptual and mnemonic 
tasks28 was also present at rest (Fig. 3F). Like the overall DN and dATN networks, we found that 
-LPMA and +OPA pRFs are interlocked in a retinotopically-grounded opponent interaction. 
Resting-state activity of -LPMA and +OPA pRFs was reliably negatively correlated, and this 
negative correlation was stronger for matched compared with anti-matched pRFs (K-S test: 
D(392)=0.22, p<0.001; t(6)=4.45, p=0.004) (Fig.3-I; Fig. S6). This pattern was consistent when 
matched/anti-matched pRFs were equated for eccentricity and size (matched vs. anti-matched: 
D(392)=0.148, p=0.028; t(6)=2.03,p=0.087; 5/7 participants) (Fig. S7). Importantly, matched and 
anti-matched +OPA pRFs resting-state tSNR (t(6)=1.922, p=0.103) and variance explained by 
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the pRF model (t(6)=0.47, p=0.65) did not differ, suggesting that idiosyncratic voxels did not drive 
these results. Additionally, the opponent interaction was specific to -pRFs in LPMA: the activity of 
the best matched +pRFs in LPMA and OPA was positively correlated, and significantly more so 
than anti-matched +pRFs in LPMA and OPA (t(6)=3.22, p=0.018; Supplementary Fig. S8). Taken 
together, these results show that the retinotopic code scaffolds the spontaneous interaction 
between perceptual and mnemonic brain areas within a functional domain, conceptually 
replicating our previous findings from task-fMRI 28.  

Having established that the retinotopic opponent dynamic is present among functionally-paired 
brain areas within the domain of scenes, we next tested whether this opponent dynamic was 
modified by functional domain (i.e., the scene memory area LPMA paired with the face perception 
areas FFA and OFA). Remarkably, we observed no significant difference between the distribution 
of correlation values for matched and anti-matched pRFs across functional domains (Matched 
versus anti-matched pRFs – -LPMA x +OFA: D(392)=0.09,p=0.44, t(6)=1.04, p=0.34; FFA: 
D(392)=0.11,p=0.15, t(6)=1.48, p=0.18; Fig. 2G-I), and retinotopic-opponency was greater within- 
compared to across-domain matching (scene-memory x scene-perception versus average scene-
memory x face-perception: t(6)=2.46, p=0.049). Importantly, matched pRFs within domain had a 
significantly stronger opponent interaction than across domains (within vs across domains – -
LPMAx+OPA v -LPMAx+FFA: t(6)=5.94, p=0.001; -LPMAx+OPA v -LPMAx+OFA: t(6)=7.03, 
p<0.0005). These results indicate that retinotopic coding does not structure the interaction 
between pairs of regions associated with distinct functional domains. Instead, retinotopic 
scaffolding appears to be selective, operating only within a given functional domain. This coding 
scheme could allow for efficient, parallel processing of domain-specific information (e.g., faces, 
scenes) that can be flexibly adapted depending on task demands.  

 

Fig. 3. Retinotopic coding structures the spontaneous opponent interaction between functionally-
coupled mnemonic and perceptual areas during resting-state fMRI. A. Isolating functionally 
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coupled internally- and externally-oriented brain areas within the DNs and dATNs. We established 
brain areas relevant to two cognitive domains, visual analysis of 1) scenes and 2) faces. 
Specifically, we focused on a memory area in the domain of scene perception (the lateral place 
memory area (LPMA; from 43), white) at the posterior edge of the DN-A (purple; from 33). We 
examined LPMA’s relationship to a set of perceptual areas in the dATN (green; from 33), 1) the 
occipital place area (OPA; from 43), an area within the domain of scene perception, along with 2) 
the occipital face area (OFA) and 3) the fusiform face area (FFA), two areas involved in the 
domain of face perception (white; from 51). B-C. We localized LPMA in all participants by 
contrasting the correlation in resting-state activity between anterior and posterior 
parahippocampal place area (PPA) (B). This yielded a region in lateral occipital-parietal cortex 
that overlapped with the LPMA defined in an independent group of participants (C). D-E. 
Consistent with prior work, the connectivity-defined LPMA had greater concentration of -pRFs 
compared to OPA (D), and exhibited a lower visual field bias to OPA (E), consistent with an 
opponent interaction between these areas during perception. F. We assessed the influence of 
retinotopic coding on the interaction between -pRFs in mnemonic and +pRFs in perceptual areas 
using the same pRF matching and correlation procedure described above. We compared pRFs 
within functional domain (scene memory x perception – LPMA to OPA) as well as across domains 
(scene memory x face perception – LPMA to the occipital face area (OFA) and fusiform face area 
(FFA)). G. Within functional domain opponent interaction reflects voxel-wise retinotopic coding. 
We observed a stronger negative correlation between matched compared to anti-matched -
LPMA/+OPA pRFs (-LPMA x +OPA matched versus anti-matched pRFs: D(392)=0.22, p<0.001). 
H. Retinotopic coding did not impact the interaction between areas across functional domains. 
We found no significant difference between matched and anti-matched pRFs between the scene 
memory area LPMA and the face perception areas FFA and OFA (-LPMA x +OFA: D(392)=0.09, 
p=0.44; -LPMA x +FFA: D(392)=0.11, p=0.15). Histograms depict the distribution of correlation 
values between matched (dark) and antimatched (light) pRFs for all runs in all participants. I. 
Retinotopic coding organizes interactions within a domain, but not across domains. When the 
correlation values were averaged within each participant, we observed a significant difference 
between matched versus anti-matched pRFs within functional domain (-LPMA x +OPA: t(6)=4.45, 
p=0.004) but not across domains (-LPMA x +OFA: t(6)=1.04, p=0.34; -LPMA x +FFA: t(6)=1.48, 
p=0.188). 

Retinotopic coding is inherent to internally-oriented areas 

Our findings support the crucial role of retinotopic coding in scaffolding spontaneous interactions 
between functionally-coupled mnemonic and perceptual brain areas. However, a fundamental 
question remains: is retinotopy intrinsic to mnemonic cortical areas or merely adopted in response 
to perceptual input? Resolving this distinction is critical to understanding if the retinotopic scaffold 
is a general purpose mechanism for cross-network interaction that transcends specific task 
demands and cognitive domains (i.e,. memory vs. perception). 

To address this question, we developed an analytical approach to disambiguate bottom-up 
perceptual signals from top-down mnemonic signals, in which we identified spontaneous neural 
"events" at individual -LPMA (top-down) or +OPA (bottom-up) pRFs and examined the co-
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activation of the target area at the event time. We defined an "event" as any time point where the 
z-scored BOLD signal of a given voxel exceeded the 99th percentile of activity in a given resting-
state run. We then analyzed the peri-event activation in the target area's matched and anti-
matched pRFs (Fig. 3A). Importantly, because participants do not have any experimentally 
imposed task demands during resting-state fMRI, any structured interaction between areas will 
reflect these regions’ spontaneous dynamics.  

Our analysis detected 20,958 top-down events and 7,193 bottom-up events. Top-down and 
bottom-up events occurred at the same rate per pRF (t(6)=0.71, p=0.50). Individual participants 
averaged 116±70.4 top-down and 32±11.76 bottom up (mean±sd) events per run. All pRFs had 
between 0 and 4 events per run (Fig. S8A-C). The wide distribution of events in time suggested 
that individual pRF-level correlation could be isolated from global fluctuations in regional activity 
(Fig. S8A), making this approach suitable for evaluating distinct interactions at the individual voxel 
level. 

We found that both top-down and bottom-up events tended to reduce target area activity via a 
retinotopic code, supporting the hypothesis that retinotopic coding is intrinsic to mnemonic cortical 
areas. During top-down events, +OPA pRFs showed significant deactivation that was more 
pronounced in matched compared to anti-matched pRFs (Fig. 3B). On the other hand, -LPMA 
pRFs had elevated activity during bottom-up events, but, crucially, the activation of matched pRFs 
was significantly reduced compared to anti-matched pRFs. Thus, bottom-up events also showed 
evidence of an inhibitory, retinotopic influence: the elevated activity in -LPMA (e.g., due to 
mentation and mind wandering during rest) is reduced after input from retinotopically-matched 
+OPA pRFs. This is clear evidence that both top-down and bottom-up events evoke 
retinotopically-specific inhibitory responses in the target region, suggesting that retinotopic coding 
is intrinsic to memory areas, even in the absence of task demands or overt visual input.  

Importantly, the influence of retinotopic coding was similar for both bottom-up and top-down 
events, indicating a symmetric opponent interaction. Target area activity was significantly lower 
for matched compared to anti-matched pRFs in both directions (top-down: t(6)=4.13, p=0.006; 
bottom-up: t(6)=3.17, p=0.02), with no difference between event types (t(6)=0.86, p=0.42). The 
balanced dynamic between -LPMA and +OPA pRFs mirrors other nervous system interactions 52–

55, extending this well-established framework in these sensory/motor domains to higher-order 
cognitive functions.  
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Fig. 4. Top-down vs. bottom-up neural events detected in spontaneous resting-state dynamics 
show evidence for retinotopically-specific suppression. A. Event detection and analysis procedure 
and example events from a single resting-state run. To detect events, we extracted the time series 
from each pRF in the source regions (top-down: -LPMA; bottom-up: +OPA) and isolated time 
points where the z-scored time series exceeded 2.4 s.d. (99th percentile). We then examined the 
activity of matched and anti-matched pRFs from the target region in this peri-event time frame (6 
TRs (8 s) before and after the event). Overall, this event detection procedure yielded 20958 top-
down and 7985 bottom-up events that were well distributed in time (Fig. S8). B. -LPMA pRF 
events co-occur with suppression of retinotopically-matched +OPA pRFs. Peri-event time series 
depicts the grand average activity of matched (dark) and anti-matched +OPA pRFs. Time series 
are baselined to the mean of the first three TRs (TRs -6 to -4 relative to event onset, dotted line). 
Red significance line shows time points with a significant difference between matched and anti-
matched activation, corrected for multiple comparisons (alpha-level: p<0.05/13 = 0.0038). C. 
Suppression of ongoing activity in retinotopically matched -LPMA pRFs during +OPA events. Peri-
event time series depicts the grand average activity of matched (dark) and anti-matched +OPA 
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pRFs. As predicted, -LPMA activity is elevated during resting-state. This elevated ongoing activity 
is suppressed during events in retinotopically matched +OPA pRFs. Time series are baselined to 
the mean of the first three TRs (TRs -6 to -4 relative to event onset, dotted line). Blue significance 
line shows time points with a significant difference between matched and anti-matched activation, 
corrected for multiple comparisons. D. Target area shows retinotopically-specific suppression of 
activity for both top-down and bottom-up events. Bars show the average activation at event time 
of the target areas’ matched and anti-matched pRFs for each participant. Activity in matched pRFs 
was significantly lower than anti-matched pRFs for both top-down (t(6)=4.13, p=0.006) and 
bottom-up (t(6)=3.17, p=0.02), and there was no difference in the influence of retinotopic coding 
between these event types (t(6)=0.86, p=0.42). 

Discussion 
In summary, it is well-established that internally- and externally-oriented distributed brain 
networks, including DNs and dATNs, support higher cognition in humans 1–8,10–12. Yet we lack an 
understanding of what coding principles, if any, underpin interactions across these distributed 
brain networks 24,56–60. Here, we show that a retinotopic code scaffolds the voxel-scale opponent 
interaction between internally- and externally-oriented brain networks, even in the absence of 
overt visual demands. Moreover, by examining functionally-linked perceptual and mnemonic 
areas straddling the boundary between the DNs and dATNs, we found that this retinotopic 
information is multiplexed with domain-specific information, which may enable effective parallel 
processing of representations depending on retinotopic location, attentional-state, and task-
demands. Finally, analysis of neural events in these functionally-linked regions showed that the 
retinotopic opponency is present in top-down as well as bottom-up events, suggesting that the 
retinotopic code is intrinsic to both perceptual and mnemonic cortical areas. Collectively, our 
results provide a unified framework for understanding the flow of neural activity between brain 
areas, whereby macro-scale neural dynamics are organized at the meso-scale by functional 
domain and at the voxel-scale by a low-level retinotopic code. This multi-scale view of information 
processing has broad implications for understanding how the brain’s distributed networks give 
rise to attention, perception, and memory.  

Because of the DN’s importance in many cognitive processes, including spatial and episodic 
memory, social processing, and executive functioning 12,61–66, resolving the coding principles 
inherent to the DN is central to understanding human cognition12,61–66. The traditional view of 
neural coding posits that sensory codes like retinotopy are shed in favor of abstract, amodal codes 
moving up the cortical hierarchy towards the DN 2,23,24. Our data contrast strikingly with this view. 
Instead of shedding the retinotopic code at the cortical apex, our prior work has shown that the 
low-level retinotopic code structures interactions between functionally paired perceptual and 
mnemonic areas in posterior cerebral cortex involved in visual scene analysis during visual and 
memory tasks28. Here we significantly extend that earlier finding by showing that the retinotopic 
code organizes spontaneous interactions across the brain’s large-scale cortical networks, even 
in the absence of task demands. The importance of retinotopic coding is further underscored 
when assessing “top-down” events (i.e. events that originate in the DN) detected at rest, which 
had a retinotopically-specific suppressive influence on pRFs in their downstream target area. This 
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result joins mounting evidence demonstrating retinotopic coding in the DN 25–28, as well as new 
evidence supporting the importance of visual coding in the DN during visual tasks 28,67. Together, 
these findings show that the retinotopic code is a “native language” of the DN, and they suggest 
that the DN plays an active role in perceptual experience and behavior by shaping visual 
responses via the retinotopic code.  

Our findings of retinotopic, voxel-scale opponency between DN and dATN pRFs is at odds with 
theories that posit a global competition between these networks and a general disengagement of 
the DN from sensory processing 9–12. Instead of network-level opponency, where DN globally 
disengages during cognitive states that drive the dATNs and vice versa, the opponent interaction 
between the DN and dATN reflects their common engagement in retinotopic information 
processing at a voxel level. Without considering voxel-wise information this opponency appears 
to “average out” into a global task-negative/task-positive response 11, which has led to the 
conclusion that these networks are engaged in fundamentally different cognitive processes. In 
contrast, our results emphasize that the DN and dATNs are mutually engaged in processing 
common, retinotopic information. Taken together with prior results25–28, our findings prompt a 
reevaluation of the role of the DN in perceptual processing, and the extent to which roles in 
“internally- and externally-oriented attention” adequately captures the DN and dATN’s role in 
cognition. 

Our findings align with other recent studies suggesting an important role of the DN in shaping 
sensory responses beyond retinotopy. For example, recent studies have shown that ongoing 
prestimulus DN activity influences the sensitivity of near-threshold visual object recognition 67. 
Other work has shown that subareas of the DN represent the visuospatial context that is 
associated in memory with a perceived scene 28,43,44,68. Relatedly, DN activity has been shown to 
reflect semantic-level attentional priorities during visual search 69. Taken together, these findings 
show that, rather than being disengaged during visual tasks, the DN actively shapes responses 
in perceptually-oriented cortex. This raises a fundamental question: is the DN a “visual” network? 
One possibility is that the DN directly and obligatorily represents retinal position, like low-level 
visual areas, and is engaged in processing visual features in addition to more abstract 
features31,70. Under this hypothesis, the retinotopic code indicates that the information 
represented in the DN is, in part, sensory. Alternatively, the apparent visual coding may simply 
represent an underlying connectivity structure71 , which enables associative 72 and semantic 24,73 
information that the DN directly represents to be effectively transferred to sensory areas of the 
brain. Under this alternative hypothesis, the retinotopic code serves as a “highway” between 
networks that are engaged in fundamentally different functions: abstract (DN) and sensory (dATN) 
processing. Crucially, in either case the retinotopic scaffolding represents a latent structure linking 
high-level and low-level areas through consistent, spatially-organized interactions71. Further 
studies investigating this framework with diverse tasks and stimuli could reshape our 
understanding of how the brain processes and integrates information across different levels of 
cognitive complexity. 

Finally, our data paint a clear picture of cortical dynamics spanning levels of analysis, from macro-
scale brain networks, to meso-scale domain-specific subareas, to small-scale voxel-level 
interactions. Prior work has emphasized the importance of each of these organizational scales 
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independently1,8,13,25,26,28,31,33,42,47,74,75. Here, our data reveal a comprehensive framework for 
understanding the brain’s functional organization that spans these levels of description. 
Specifically, we demonstrate that retinotopic coding underpins voxel-scale interactions that are 
observable across the whole brain. However, these retinotopic interactions are constrained at the 
mesoscale by specific brain areas’ functional domains (e.g., processing visual scenes). Further, 
interplay among these domain-specific regions underpins the organization of large-scale brain 
networks, whose interactions give rise to specific complex behavior, like memory recall or visual 
attention. This nested hierarchy of neural interactions accounts for the efficiency of parallel 
information processing in the brain and the flexibility to adapt to ongoing task demands.  

In summary, our results show that a retinotopic code organizes the spontaneous interactions of 
large-scale internally- and externally-oriented networks in the human brain. These findings 
challenge our classic understanding of internally-oriented networks like the DN, showing that the 
global opponent dynamic between the DN and dATN does not reflect disengagement from visual 
processing. Rather, the global opponent dynamic is structured by a voxel-wise retinotopic code 
that scaffolds interactions across these large-scale internally- and externally-oriented networks. 
Taken together, these results indicate that retinotopic coding, the human brain’s foundational 
visuo-spatial reference frame29,71, structures large-scale neural dynamics and may be a “common 
currency” or subspace for information exchange across the brain’s functional networks. 

.  

Methods 
The data analyzed here are part of the Natural Scenes Dataset (NSD), a large 7T dataset of 
precision MRI data from 8 participants, including retinotopic mapping, anatomical segmentations, 
functional localizers for visual areas, and task and resting-state fMRI. A full description of the 
dataset can be found in the original manuscript 30. Here we detail the data processing and analysis 
steps relevant to the present work. 

Subjects 
The NSD comprises data from 8 participants collected at the University of Minnesota (two male, 
six female, ages 19-32). One subject (subj03) was excluded from resting-state analyses for 
having insufficient resting-state runs that passed our quality metrics. All participants had normal 
or correct to normal vision and no known neurological impairments. Informed consent was 
collected from all participants, and the study was approved by the University of Minnesota 
institutional review board. 

MRI acquisition and processing 
For this study we made use of the following data from the NSD: anatomical (T1 and FreeSurfer 
segmentation/reconstruction76,77), functional regions of interest ROIs, and minimally 
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preprocessed retinotopy and resting-state time series. All analyses were conducted in original 
subject volume space, and data were projected on the surface for visualization purposes only. 

Anatomical data  
Anatomical data was collected using a 3T Siemens Prisma scanner and a 32-channel head coil. 
We used the anatomical data provided at 0.8mm resolution as well as the registered output from 
FreeSurfer recon-all, aligned to the 1.8mm functional data. For visualization purposes, we 
projected statistical and retinotopy data to the cortical surface using SUMA 78 from the afni 
software package79. 

Defining functional regions of interest (PPA, OPA, OFA, FFA) 
We used the volumetric functional regions of interest provided with the NSD at 1.8mm resolution. 
Specifically, we used the parahippocampal place area (PPA), occipital place area (OPA), iog-
faces (referred to here as occipital face area (OFA)), and pfus-faces (fusiform face area, FFA1) 
regions of interest. In brief, these regions were defined in the NSD using within-subject data 
collected from 6 runs of a multi-category visual localizer paradigm 30.  

Defining functional region LPMA  
Because the NSD did not include mnemonic localizers 43, we used the resting-state data to define 
the lateral place memory area (LPMA). Briefly, the LPMA is a region anterior to OPA and near 
caudal inferior parietal lobule49,50 that selectively responds during recall of personally familiar 
places compared to other stimulus types. We have previous shown that OPA and LPMA are 
functionally-linked and work jointly to process knowledge of visuospatial context out of view during 
scene perception.  

Prior work has suggested that a mnemonic area linked to scenes on the lateral surface can be 
localized by comparing resting-state co-fluctuations of anterior versus posterior PPA (aPPA and 
pPPA, respectively)16,49,50, and we adopted that approach here. We preprocessed the resting-
state fixation fMRI data, runs 1 and 14 from NSD sessions 22 and 23, in all participants (prior to 
data exclusion) and extracted the average time series of aPPA, pPPA, aFFA, and pFFA. We used 
these time series as regressors in a general linear model, and we compared the beta-values from 
the aPPA and pPPA. We considered any voxels with a t-statistic > 5 within posterior parietal-
occipital cortex on the lateral surface as an LPMA ROI (Individual ROIs can be found in 
Supplemental Fig.4). Across subjects, there was considerable overlap between this connectivity-
defined area and a group-level LPMA defined based on our prior work (Fig. 1).  

Functional MRI data acquisition and processing 
All analyses were conducted on 1.8mm isotropic resolution minimally processed runs of a 
sweeping-bar retinotopy task and resting-state fixation provided in the NSD.  
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Quality assessment 
To ensure only high-quality resting-state data were included, we trimmed the first 25 TRs (40s) 
from each run 68, which left 4.25 min of resting-state data per run. We then used afni’s quality 
control assessment tool (APQC80) on the raw trimmed resting-state time series to assess degree 
of motion in the resting-state scans. We excluded runs with greater than 1.8mm maximum 
displacement per run or 0.12mm framewise displacement from analysis and assessed runs with 
greater than 1mm displacement or 0.10mm framewise displacement on a case-by-case basis8. 
After exclusions, one participant (subj03) had only a single run that survived our criteria (4.25 
minutes of data)), so we excluded them from resting-state analyses. The remaining 7 participants 
had at least 8 resting-state runs (> 34 minutes of data; mean number of runs: 14±6.13 (sd), range: 
8-24 runs).  

ICA denoising 
To further denoise the retinotopy and remaining resting-state data, we used manual ICA 
classification of signal and noise on the minimally-preprocessed time series36,37,43. We used 
manual classification because automated tools perform poorly on the high spatial and temporal 
resolution data of the NSD81. For each retinotopy and resting state run, we decomposed the data 
into independent spatial components and their associated temporal signals using ICA (FSL’s 
melodic82,83). We then manually classified each component as signal or noise using the criteria 
established in37. Noise signals were projected out of the data using fsl_regfilt36.  

No global signal regression was performed on these data38. Data were normalized to percent 
signal change. A 2.5mm FWHM smooth was applied to resting-state fixation data used in 
functional connectivity network identification, otherwise no spatial smoothing was applied to the 
data. 

Data analysis - retinotopy 

pRF Modelling 
The NSD retinotopy stimuli features a mosaic of faces, houses, and objects superimposed on 
pink noise that are revealed through a continuously drifting aperture. For our analysis, we 
considered only the bar stimulus time series, which is consistent with other studies investigating 
-pRFs in high-level cortical areas 25,27,28. We did not consider the wedge/ring stimulus for any 
analyses. 

After denoising the retinotopy data, we averaged the three bar stimulus retinotopy runs together 
to form the final retinotopy time series. We performed population receptive field modeling using 
afni following the procedure described in 39. First, because the pRF stimulus in the NSD is 
continuous, we resampled the stimulus time series to the fMRI temporal resolution (TR = 1.333s). 
Next, we implemented afni’s pRF mapping procedure (3dNLfim). Given the position of the 
stimulus in the visual field at every time point, the model estimates the pRF parameters that yield 
the best fit to the data: pRF amplitude (positive, negative), pRF center location (x, y) and size 
(diameter of the pRF). Both Simplex and Powell optimization algorithms are used simultaneously 
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to find the best time series/parameter sets (amplitude, x, y, size) by minimizing the least-squares 
error of the predicted time series with the acquired time series for each voxel. Relevant to the 
present work, the amplitude measure refers to the signed (positive or negative) degree of linear 
scaling applied to the pRF model, which reflects the sign of the neural response to visual 
stimulation of its receptive field. 

Visual field coverage 
Visual-field coverage (VFC) plots represent the sensitivity of an ROI across the visual field. We 
followed the procedure in Steel et al., 2024 to compute these28, which we have reproduced here. 
Individual participant VFC plots were first derived. These plots combine the best Gaussian 
receptive field model for each suprathreshold voxel within each ROI. Here, a max operator is 
used, which stores, at each point in the visual field, the maximum value from all pRFs within the 
ROI. The resulting coverage plot thus represents the maximum envelope of sensitivity across the 
visual field. Individual participant VFC plots were averaged across participants to create group-
level coverage plots. 

To compute the elevation biases, we calculated the mean pRF value (defined as the mean value 
in a specific portion of the visual-field coverage plot) in the contralateral upper visual field (UVF) 
and contralateral lower visual field (LVF) and computed the difference (UVF–LVF) for each 
participant, ROI and amplitude (+/−) separately. A positive value thus represents an upper visual-
field bias, whereas a negative value represents a lower visual-field bias. Analysis of the visual-
field biases considers pRF center, as well as pRF size and R2.  

Reliability of pRF amplitude estimate 
To assess the reliability of pRF amplitude (i.e., positive versus negative), we iteratively compared 
the amplitude of significant pRFs from individual runs of pRF data. Specifically, for each single 
run of pRF data, we fit our pRF model. We then binarized vertices according to significance and 
amplitude – voxels that surpassed our significance threshold (R2 > 0.08) in the full model were 
assigned a value of 0 or 1. When investigating +pRF reliability in OPA, significant vertices with a 
positive amplitude were assigned to 1, all other vertices 0. For -pRF reliability in LPMA, the 
opposite was done: significant negative amplitude vertices were assigned a value of 1, and all 
other vertices set to 0.  

For each participant, after binarization, we calculated a dice-like coefficient within each ROI which 
considered all three retinotopy runs (𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = !|#$%&	∩	#$%)	∩	#$%!|

|#$%&|*|#$%)|*|#$%!|
). We compared this value 

versus 5000 iterations of the same number of voxels randomly sampled from all voxels, both 
significant and non-significant, in the ROI. For each participant, this resulted in 1 “observed” dice 
coefficients, along with 5000 bootstrapped values representing the distribution of dice coefficients 
expected by chance which we used to evaluate the significance of each pRF amplitude’s run-to-
run consistency. 
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Voxel-wise pRF matching 
We matched -pRFs in source (i.e., the DN) with target (i.e., +pRFs in the dATN) using the following 
procedure. Within each participant, we computed the pairwise Euclidean distance between the 
center (x,y) of each source pRF with each target pRF. For each source pRF, we considered the 
top 10 closest target pRFs the “matched pRFs” and the 10 furthest target pRFs the “anti-matched 
pRFs.” So, each pRF within a memory area yielded 10 matched and 10 anti-matched pRFs.  

To investigate the opponent interaction between areas for top-down interactions (below), we 
conducted this procedure using -LPMA pRFs as the source and +OPA pRFs as targets. To 
investigate bottom-up interactions, we considered +OPA pRFs as the source and -LPMA pRFs 
as targets. To investigate the importance of functional domain in retinotopic interactions, we 
considered -LPMA pRFs as the source and 1) +OFA and 2) +FFA pRFs as targets. 

Resting-state analyses 

Individual-specific cerebral network estimation 
In each participant, we identified a set of 15 distributed networks on the cerebral cortical surface 
using a multi-session hierarchical Bayesian model (MS-HBM) functional connectivity approach 
8,32. Briefly, the MS-HBM approach calculates a connectivity profile for every vertex on the cortical 
surface derived from that vertex’s correlation to all other vertices during each run of resting-state 
fixation. The MS-HBM then uses the resulting run- and participant-level profiles, along with a 15 
network group-level prior created from a portion of the HCP S900 data33, to create a unique 15-
network parcellation for each individual. 

The MS-HBM has two primary advantages compared to other approaches used to parcellate 
functional connectivity data, such as k-mean clustering. First, it accounts for differences in 
connectivity both within an individual (likely the result of confounding variables such as scanner 
variability, time of day, etc.), and between participants (reflecting potentially meaningful individual 
differences), allowing for more reliable estimates. Second, by incorporating a group prior which 
includes all the networks of interest, we ensure that all networks will be identified in all participants, 
while allowing for idiosyncratic topographic differences. 

Opponent interaction at rest 
To assess the influence of retinotopy on the correlation of areas at rest, we used the following 
procedure. First, we established matched source (i.e., -DN or -LPMA) and target (i.e., +dATN or 
+OPA) pRF pairs using the procedure described above. For this analysis, our primary focus was 
on the -pRFs in the DN or LPMA and their relationship with perceptual areas (dATN, OPA, OFA, 
FFA). Among these highly connected areas, large-scale fluctuations due to attention and motion 
will cause these voxels to be highly correlated. To control for this, consistent with prior work, we 
extracted the average time series of all +pRFs in the DN or LPMA and partialed out the variance 
associated with these pRFs from the -pRFs in the DN or LPMA and +pRFs in the perceptual areas 
of interest from each resting-state run 28,84.  
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To examine the opponent interaction for matched pRFs, we considered each resting state run 
separately. In each resting state run, we first calculated the average time series of all -pRFs in 
LPMA. We then calculated the average time series for the top 10 best matched +pRFs in OPA of 
all voxels. For example, if a participant had 211 -pRFs in LPMA, these voxels were averaged 
together to get a single -LPMA pRF time series, and the top 10 matched +pRFs in OPA (i.e., 2110 
time series) would be averaged together to constitute the +OPA time series. Note that the 
matched +OPA pRFs were not unique for each voxel. We then correlated these time series (-
LPMA and +OPA pRFs). A negative correlation was considered an opponent interaction. 

To compare the importance of retinotopy in structuring the interaction between LPMA and OPA, 
we performed the same averaging and correlation procedure described above with the 10 worst 
matched pRFs (anti-matched). For each participant, all Fisher-transformed correlation values (z) 
for matched versus anti-matched pRFs were averaged together and we compared these matched 
and anti-matched correlation values using a paired t-test. To examine the specificity within each 
functional network, we repeated this procedure for -LPMA matched/anti-matched with OFA and 
FFA-1. 

To confirm that retinotopic coding structured the opponent interaction, we repeated this anaylsis 
with two key differences: 1), to ensure that the choosing the bottom 10 voxels did not drive our 
results, we randomly sampled 10 pRFs from the furthest 33% of pRFs from each participant, and 
2) we performed the analysis without averaging the pRF’s resting-state time series within each 
ROI. For each resting state run, we extracted each -pRF time series, and correlated this time 
series with the time series from the average of its top 10 best matched +pRF in OPA. We 
performed this matching and random sampling procedure 1000 times for each pRF in the source 
area. For example, if a participant had 211 -pRFs in LPMA, we would correlated each of these 
pRFs with the average time series from the their top 10 best matched +pRFs in OPA, resulting in 
211 individual r-values for each resting-state run, and compared each of these 211 values with 
the correlation of 1000 randomly paired pRFs for that source pRF. We then Fisher-transformed 
these matched and randomly sampled values and averaged them to constitute a single value for 
each participant. The mean Fisher-transformed values were compared using a paired t-test. 

Resting-state event detection 
We reasoned that the influence of top-down versus bottom-up drive on the spontaneous 
interaction between regions could be isolated by examining periods of unusually high activity in 
voxels in these respective areas (“events”)85,86. Specifically, we tested the hypothesis that top-
down events in -LPMA pRFs would co-occur with periods of lower activity in +OPA pRFs, and 
that the suppressive influence of top-down events would be stronger compared with bottom-up 
events.  To test these hypotheses, we isolated neural events in each source region’s (-LPMA (top-
down) and +OPA (bottom-up)) pRF time series and examined the activity in the corresponding 
target region at these event times.  

Event detection was performed for each +/- pRF independently. To detect events, we z-scored 
all pRF’s resting-state time series and identified TRs with unusually high activity in source region 
pRFs. Specifically, we considered each time point with a z-value greater than 2.4 (i.e., 99.18 
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percentile) as a neural event. Results were comparable with varying thresholds between 2.1 < z 
< 2.9. At each event, we extracted the 6 TRs before and after the event time (i.e., 13 TRs) 
surrounding the average time from that pRF’s top-10 matched pRFs in the target region. To make 
time series comparable across events, we normalized the event time series to the mean of the 
first 4 TRs. We repeated this procedure for all -LPMA/+OPA pRFs for top-down and bottom-up 
events. 

For top-down and bottom-up events, we compared the activity of the target region (top-down: 
+OPA pRFs; bottom up: -LPMA pRFs) at event time using paired t-tests. We only considered 
matched pRFs for this analysis. 

Statistical tests 
Statistical analyses were implemented in Matlab (Mathworks, Inc). Given the small number of 
subjects in this dataset, we used two statistical analysis methods to ensure robustness of any 
detected effects. First, borrowing analytical methods from neuroscientific studies using animal 
models, we leveraged the large within participant data by pooling observations (e.g., resting-state 
runs or pRFs) from each participant. We then tested for differences in distributions using two-
sample Kolmogorov-Smirnov goodness-of-fit hypothesis tests. Second, we adopted more classic 
statistical methods to test for effects within participants. We used paired-sample t-tests and 
corrected for multiple comparisons where appropriate.    
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Supplemental material 
 

 

Fig S1. Cortical network parcellations for individual participants. Networks were parcellated based 
on the Yeo HCP 15-network parcellation33 using the multi-session hierarchical Bayesian model 
(MS-HBM) method32. 
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Fig S2. PRF amplitude maps from all participants. Only voxels with greater than 8% variance 
explained by the pRF model are shown. 
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Fig S3. Reliable fitting of pRF amplitude in OPA and LPMA, dATN, and DN. To assess the 
reliability amplitude (i.e., positive versus negative), we iteratively compared the amplitude of 
significant pRFs from individual runs of pRF data. We fit our pRF model on each individual run of 
pRF data. Vertices were binarized according to significance and amplitude – for +pRF reliability 
in OPA, significant vertices with a positive amplitude were assigned to 1, all other vertices 0; for -
pRF reliability in LPMA, the opposite was done: significant negative amplitude vertices were 
assigned a value of 1, and all other vertices set to 0.  

After binarization, for each pair of pRF runs  (e.g., run 1 v run 2), we calculated the dice coefficient 
within each ROI between two retinotopy runs, for each participant. For each participant, this 
resulted in 3 “observed” dice coefficients. The average of the 3 observed values was compared 
against a null distribution to evaluate the significance of each pRF amplitude’s run-to-run 
consistency. To establish the null distributions, we performed 1000 randomly shuffled iterations 
with equal proportion of significant voxels for each run pairing (resulting in 3000 bootstrapped 
values representing the distribution of dice coefficients expected by chance).  

The average dice co-efficient for amplitude exceeded the 99th percentile compared to shuffled 
data in all regions of interest, suggesting pRF amplitudes were reliable. Importantly, because of 
the noise inherent to any single run of fMRI data, this reliability assessment represents a very 
conservative measure of reliability. Bars represent mean reliability versus shuffled distribution 
across participants. Error bars represent standard error across participants. 
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Fig. S4. Spatial distribution of +dATN pRFs matched with -DN pRFs in cortex across all 
participants. Vertices are colored based on number of matched pRFs. Only vertices with greater 
than 7 matched pRFs (i.e., at least one for each subject) are shown. Yeo 2015 network maps33 
dATN A-B and DN A-B are shown for reference. Note that pRFs were matched in individualized 
dATN of each participant and are not expected to correspond precisely with the group network 
maps. 
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Fig S5. All participants OPA/LPMA and pRF amplitude. 
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Fig S6. Matched and anti-matched pRFs correlation values reliability did not differ. One potential 
issue when comparing matched and antimatched pRF populations is that the antimatched 
population might be more variable in the strength of their correlation compared with matched 
pRFs. We confirmed this was not the case by examining the correlation between the matched 
and antimatched pRF time series for each pair of resting-state runs independently.  We then 
tested the correlation in these run-to-run pairs. We found no difference in run-to-run reliability 
between matched and antimatched pRFs (matched pRFs: r = 0.1502, antimatched pRFs: r = 
0.1510; difference: z = 0.0225, p = 0.98). 
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Fig. S7. Retinotopic coding structures the interaction at rest when matched and antimatched pRFs 
are matched for center position and size. Left. Because of the differential distribution of receptive 
field centers across eccentricities, antimatched +OPA pRFs could be more likely to be eccentric 
and larger than matched pRFs. To ensure that this did not influence our results, we repeated the 
pRF matching analysis between -LPMA and +OPA with a restricted field of view (all pRFs within 
3.3°) and size (all pRFs larger than 2.5°). Center. Using these constraints, both matched and 
antimatched pRFs were matched for size. Right. Histogram shows the correlation of the average 
-LMPA and +OPA matched (dark red) and antimatched (light red) time series for each resting 
state run in all participants. These distritbutions were significantly different (D(392)=0.148, 
p=0.0244). Bars show the average correlation value across resting-state runs between -LPMA 
and +OPA matched and antimached pRFs for each participant. Matched pRFs had a stronger 
negative correlation compared to antimatched pRFs (t(6)=2.03, p=0.087; 5/7 participants). 
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Fig. S8. Retinotopic specific co-fluctuation of +pRFs in OPA and LPMA. We matched LPMA and 
OPA based on their center position estimates. We evaluated the correlation between +LPMA 
pRFs and the correlation of the matched and antimatched time series using the same procedure 
as -LPMA pRFs (see methods). Left. Histogram shows the correlation of the average +LMPA and 
+OPA matched (dark orange) and antimatched (light orange) time series for each resting state 
run in all participants. Right. Average correlation value across resting-state runs between -LPMA 
and +OPA matched and antimached pRFs for each participant. Matched pRFs had significantly 
stronger negative correlation compared to antimatched pRFs (t(6)=3.22, p=0.018). This is 
consistent with retinotopic coding structuring the interaction between +pRFs in perception and 
memory areas, and that these +pRFs are positively correlated, even during rest. 
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Fig. S9. Events are widely distributed in time. A. Example time series from each participant (each 
individual’s third resting-state session). Thick black line shows the -LPMA pRFs average time 
series, grey line shows average +OPA pRFs time series. Orange bars show the proportion of 
voxels within each ROI with events at a given time point. Events (time points where individual 
voxel time series exceeds z-score of 2.4) are widely distributed in time, with relatively few voxels 
(<15%) in each ROI exhibiting simultaneous events. This suggests that, after preprocessing, time 
series from individual voxels were effectively isolated. B. Number of events per time point 
combined for top down and bottom up events. Bars indicate the number of voxel events detected 
at a given time point within a resting-state run, aggregated across runs. Events were sparsely 
distributed: most time points contained no events (Proportion = 0.66, bar not shown), with the 
number of events decreasing approximately exponentially. This is further evidence for a wide 
temporal distribution of events. C. Proportion of voxels with events in each run. No voxel had 
more than 4 events per run. Data are combined between top down and bottom-up events. 
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Supplemental methods and results 

Comparison of matched pRFs versus randomly sample pRF pairs 
One possibility is that the bottom 10 pRFs are a non-representative set of pRFs within an area. 
To control for this possibility, we implemented an alternative analysis method to compare the 
influence of retinotopic coding on voxel-scale pull-pull dynamics. For this analysis, we established 
the pairwise distances between all pRF centers across two regions (e.g., +OPA and -LPMA 
pRFS). Then, for each pRF, we randomly sampled 10 pRFs from the top 33% of distances (the 
top 1/3 furthest pRF pairs) and calculated the average correlation between these randomly 
matched pRF pairs. We considered the top 33% because the overwhelming majority of pRFs 
constituted relatively equal “good” matches. This resulted in 1000 correlation values for each pRF. 
Then, for each pRF. we compared the mean correlation from these 1000 iterations with the 
correlation of the top 10 best matched pRFs. We then averaged the matched and random pRF 
values from each participant and compared matched versus random pRFs using a paired t-test. 

Importantly, because some of the randomly sampled “poorly matched” pRFs constituted “good 
matches” for other pRFs, for this analysis we computed the correlation of the matched/random 
pRF timeseries for each pRF separately. Importantly, because the values were computed for each 
pRF separately, the correlation values are lower than the main text analysis where all pRF 
timeseries in a region were averaged together before computing the correlation value. 

Consistent with our main analysis, we found that retinotopic coding underpinned the opponent 
dynamic between the -DN and +dATN (t(6)=8.43, p<0.001) and -LPMA and +OPA pRFs 
(t(6)=3.012, p=0.024). On the other hand, retinotopic coding did not influence the interplay 
between -LPMA and OFA (t(6)=0.59, p=0.57) and -LPMA and FFA (t(6)=2.01, p=0.09). These 
results support the overall conclusions in our manuscript using the matched versus anti-matched 
analysis. 

 

Fig. S10. Comparison of matched versus randomly-paired pRFs. 
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