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ABSTRACT
Objectives This study’s objective was to examine 
whether commercial wearable devices could accurately 
predict lying, sitting and varying intensities of walking and 
running.
Methods We recruited a convenience sample of 49 
participants (23 men and 26 women) to wear three 
devices, an Apple Watch Series 2, a Fitbit Charge HR2 
and iPhone 6S. Participants completed a 65 min protocol 
consisting of 40 min of total treadmill time and 25 min of 
sitting or lying time. The study’s outcome variables were 
six movement types: lying, sitting, walking self- paced and 
walking/running at 3 metabolic equivalents of task (METs), 
5 METs and 7 METs. All analyses were conducted at the 
minute level with heart rate, steps, distance and calories 
from Apple Watch and Fitbit. These included three different 
machine learning models: support vector machines, 
Random Forest and Rotation forest.
Results Our dataset included 3656 and 2608 min of 
Apple Watch and Fitbit data, respectively. Rotation Forest 
models had the highest classification accuracies for 
Apple Watch at 82.6%, and Random Forest models had 
the highest accuracy for Fitbit at 90.8%. Classification 
accuracies for Apple Watch data ranged from 72.6% for 
sitting to 89.0% for 7 METs. For Fitbit, accuracies varied 
between 86.2% for sitting to 92.6% for 7 METs.
Conclusion This preliminary study demonstrated that 
data from commercial wearable devices could predict 
movement types with reasonable accuracy. More research 
is needed, but these methods are a proof of concept for 
movement type classification at the population level using 
commercial wearable device data.

INTRODUCTION
The introduction of commercial wearable 
devices for physical activity monitoring has 
been an exciting development with the 
potential to increase physical activity at the 
population level.1 2 We define commercial 
wearable devices as those used primarily by 
individual consumers for physical activity 
monitoring rather than research purposes.1

Research examining commercial wearable 
devices has primarily focused on two areas. 
First is examining the reliability and validity of 
the devices' measures, including step counts, 

heart rate and energy expenditure.3–5 Our 
recently published systematic review shows 
that heart rate measures are valid for some 
brands (Apple Watch, Garmin), but no brand 
correctly measures energy expenditure.6 
The second research area for commercial 
wearable devices is how available measures, 
particularly steps, from commercial devices, 
translate to current physical activity recom-
mendations. For example, Tudor- Locke et al 
found that approximately 8000 steps/day is a 
good proxy for 30 min of daily moderate to 
vigorous physical activity (MVPA) and 7000 
steps/day, 7 days a week is consistent with 
obtaining 150 min of weekly MVPA.7 8

Despite the research examining commer-
cial wearables to date, we believe that overall, 
these data are understudied. Specifically, 
the focus on concurrent validation studies9 
to directly compare a commercial wearable 
device measure to a criterion measure is 
limiting. To improve our understanding of 
commercial wearable device data, researchers 
should use combinations of variables from 
these devices and machine learning methods 
to predict movement types, including phys-
ical activity and sedentary behaviour, using 
these data. These new combinations of vari-
ables (ie, features) and machine learning 
methods have commonly been applied to 
research- grade accelerometer data to predict 
movement types.10–13 For example, Stauden-
mayer et al used features including the 
distribution of counts (10th, 25th, 50th, 75th 
and 90th percentiles) and temporal dynamics 
of counts (lag, one autocorrelation) from 
wrist- worn accelerometers combined with 
Artificial Neural Networks to predict 18 
different activities including lying down, 
running and raking leaves. To our knowledge, 
no research has developed new features and 
applied machine learning methods to predict 
movement types using commercial wearable 
device data. While specific measures from 
commercial wearable devices (ie, Heart rate, 
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steps) are known to include measurement error, there is 
the potential to create new measures of physical activity 
and sedentary behaviour using devices that are already 
well adopted in the population. By examining multiple 
devices and including the device type as a feature in the 
collected data, we can investigate if the hardware and 
firmware play an essential role in deciding the outcome. 
If this is the case, machine learning methods may bypass 
hidden algorithms used in commercial devices and allow 
researchers to provide movement type estimates inde-
pendent of device type (ie, standardise estimates across 
devices).

The purpose of this study is to examine whether using 
data from commercial wearable devices, Apple Watch 
and Fitbit and machine learning methods, we can predict 
movement types. We hypothesise that commercial wear-
able devices will accurately predict movement types 
associated with moderate to vigorous activity including 
running, but may not differentiate well between less 
intense movement types, including sitting. As a secondary 
objective, we examine whether accounting for the type of 
device could improve classification results. If the device 
type is an important feature for classification, this may 
allow for standardisation between devices.

METHODS
Study design
We used a lab- based protocol combined with a cross- 
sectional concurrent validation study design.9 14 
Participants engaged in a 65 min protocol with 40 min of 
total treadmill time and 25 min of sitting or lying time. 
The protocol was similar to previous studies testing the 
reliability and validity of different commercial wearable 
devices.15 Figure 1 shows the lab- based protocol. Partic-
ipant energy expenditure was measured for the entire 
study using the Oxycon Pro metabolic cart (Oxycon 
Pro, Jaeger, Hochberg, Germany). The Oyxcon Pro is a 

valid and reliable method for measuring energy expen-
diture.16 The metabolic cart was calibrated according 
to manufacturer specifications every morning of data 
collection.

The protocol’s first two phases involve sedentary 
activity (ie, lying on a cot and sitting on a chair) for 
5 min each. Following this, participants moved to the 
treadmill and selected a self- paced speed for 10 min. A 
5 min lying period followed. Participants then moved 
to the treadmill and walked at a pace of 3 metabolic 
equivalents of task (METs) for 10 min. Following the 
3 MET treadmill activity, the participants spent 5 min 
lying on a cot. Participants walked at an effort of 5 METs 
for 10 min, then had a 5 min sitting period. Finally, each 
participant completed 10 min at 7 METs. The 5 min rest 
periods were sufficient to lower participant heart rate 
and maintain a steady- state for these sedentary activ-
ities.17 The 10 min treadmill periods are sufficient to 
estimate O

2
 uptake at steady state during each move-

ment type involving activity. For each stage involving a 
specified MET value, a VO

2
 to METs calculator was used 

to calculate the METs of each individual based on age, 
gender, height and weight.

Participants
We recruited a convenience sample of 49 participants (23 
men and 26 women) from St. John’s, Canada. Participants 
were recruited using social media posts and through 
word of mouth among lab members. Inclusion criteria 
included being over 18 years of age and completing the 
Physical Activity Readiness Questionnaire (PAR- Q).18 
Participants were not provided with any compensation. 
All participants provided signed informed consent. 
Patients or the public were not involved in the design, 
conduct, or reporting, or dissemination plans of our 
research.

Figure 1 65 min lab- based activity protocol. METs, metabolic equivalents of task.



3Fuller D, et al. BMJ Open Sp Ex Med 2021;7:e001004. doi:10.1136/bmjsem-2020-001004

Open access

Wearable devices
Participants used three devices, an Apple Watch Series 2, 
a Fitbit Charge HR2 and an iPhone 6S. We chose Apple 
Watch and Fitbit because they have the highest market 
share among wearable devices.5 We randomly assigned 
the wrist for wearing the Fitbit and placed the Apple 
Watch on the opposite wrist. Participants were given an 
iPhone 6S with a custom iOS App called Physical Activity, 
Sleep, and Sedentary Behaviour Mobile (PASS Mobile) 
developed in our lab. PASS Mobile collects minute- by- 
minute data from Fitbit and Apple Watch. For Fitbit, the 
App connects to the Fitbit SDK.19 For Apple Watch, the 
App connects to Apple HealthKit.20 PASS Mobile was 
installed through Test Flight, the Apple development 
platform, and is not available publicly in the Apple App 
Store.

Measures
The study’s outcome variable was movement types based 
on the activities performed and the measures from the 
Oxycon Pro metabolic cart. For every minute of the 
protocol, the outcome variable includes a label for one 
of six movement types: lying, sitting, walking self- paced, 3 
METs, 5 METs and 7 METs.

The variables collected through the PASS Mobile 
App were heart rate, steps, distance and calories. Each 
measure was collected at 1 Hz from Apple Watch and 
Fitbit, respectively. For heart rate, both devices collect 
the average heart rate for the minute. For steps, both 

devices provide the total number of steps for the minute. 
For distance, both devices estimate the total distance 
travelled in metres. For calories, Apple Watch collects 
active calories, not including a constant to account for 
basal metabolic rate. Therefore, it was plausible that 
during sitting or lying participants had a true value of 
zero calories for Apple Watch. Fitbit provides total 
energy expenditure using the MD Mifflin- St Jeor equa-
tion,21 22 which means Fitbit reports energy expenditure 
every minute, even when the participant is sitting or lying. 
Additional variables included in the analysis are partici-
pants age in years, weight in kilograms, height in metres 
and sex (male or female).

Analyses
Statistical analyses were performed using R (V.3.6.1) and 
Weka (V.3.8.3). Data were downloaded from the meta-
bolic cart. We used previously published methods to 
convert breath- by- breath data to minute by minute MET 
intensity estimates.23 We have published the code for this 
analysis on GitHub (https:// github. com/ walkabillylab/ 
jaeger_ analysis).

Analyses were conducted separately for Apple Watch 
and Fitbit. We first cleaned the data and used linear 
interpolation on steps, heart rate, calories and distance 
to impute missing data. Following this, we developed a 
feature set that included intensity (Karvonen formula)24 25 
which calculates individualised target heart rate parame-
ters, steps entropy as a measure of predictability of step 
count and the correlation coefficient between heart 
rate and steps.26 We developed the features to consider 
multiple physiological characteristics that could explain 
sitting, lying and different physical activities (see table 1).

We used three different classification methods, Random 
Forest,27 28 Rotation Forest,29 and linear support vector 
machines (SVM),30 in our analysis.31 Model accuracy 
was examined using k- fold cross- validation. Data were 
randomly split into 10 subsamples. For each subsample, 
classification algorithms were developed. Each algorithm 

Table 1 Descriptions and descriptive statistics for each feature included in all models averaged over the entire study protocol

Variable Description
Apple Watch
Mean (SD)

Fitbit
Mean (SD)

Steps/min Number of steps/min 181.4 (270.4) 7.7 (21.8)

Heart rate (bpm) Average heart rate/min 91.1 (26.8) 75.3 (38.7)

Energy expenditure Amount of calories expended 5.8 (7.3) 40.8 (33)

Distance (m) Distance ran in metres 0.1 (0.1) 23.8 (58)

Heart rate entropy Measure of heart rate variability 6.1 (0.2) 5 (2.3)

Steps entropy Measure of steps variability 6.1 (0.2) 3.9 (2.7)

Resting heart rate (bpm) 10th percentile of HR data 68.3 (11.9) 59.1 (38.9)

Correlation heart rate and steps Correlation coefficient between heart rate and 
steps

0 (0.7) 0.7 (0.6)

Intensity (Karvonen formula) Intensity zone during activity 0.2 (0.2) 0.1 (0.2)

Steps*distance Product measure of total amount of steps and 
distance covered in metres

40.3 (113.5) 967.6 (5275.1)

SD normalised heart rate SD of normalised heart rate 8.8 (10.1) 7.7 (15.7)

Table 2 Percentage accuracy per each classifier for Apple 
Watch and Fitbit for interpolated data

Apple Watch Fitbit

SVM 50.87 56.66

Random Forest 81.95 90.80

Rotation Forest 82.60 89.26

Bold value represents highest accuracy.
SVM, support vector machines.

https://github.com/walkabillylab/jaeger_analysis
https://github.com/walkabillylab/jaeger_analysis
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was then used to predict the error associated with each 
one of the subsamples. A sum of prediction errors was 
calculated over all subsamples to produce a final accu-
racy.32 In each model, we included the features described 
in table 1 and age, gender, height and weight. We chose 
these models because linear SVM33 and Random Forest 
models34 are common in physical activity research using 
research- grade accelerometers and Rotation Forest are 
similar methods to Random Forest.

We evaluated model fit using accuracy, confusion 
matrices and feature ranking. Finally, to answer our 
second research question, we combined the Fitbit and 
Apple Watch data and added an additional feature, 
device type and reran a Rotation Forest model to see the 
difference between devices.

RESULTS
Participants included 26 women and 23 men. The average 
age was 29.3 (min 18–max 56). Table 1 shows mean and 
SD values for continuous variables or count and per cent 
for categorical predictors for Apple Watch and Fitbit, 
respectively. The average height and weight were 1.7 m 
and 70.6 kg, respectively. Average heart rate during the 
entire study protocol was 91.1 for Apple Watch and 75.3 
for Fitbit. Average steps per minute were 181.4 and 7.7 
for Apple Watch and Fitbit, respectively. Table 1 also 
shows the feature descriptions and descriptive statistics 
for each feature included in the models.

Table 2 shows the overall classification accuracies for 
the Random Forest, SVM and Rotation Forest models. 

The Rotation Forest model had the highest accuracy 
for Apple Watch, and the Random Forest model had 
the highest accuracy for Fitbit. However, the difference 
between the Random Forest and Rotation Forest models 
was small. As a result, we present the Rotation Forrest 
models. Tables 3 and 4 show the confusion matrices from 
the Rotation Forest model for Apple Watch and Fitbit 
data, respectively. Table 5 shows the top eight features 
from the χ² feature ranking for the Rotation Forest 
models.

Finally, we included the device type as a feature to the 
Rotation Forest model to examine the device’s potential 
as important in predicting activity type. The accuracy, 
including device type, was 85.9% with the device type 
variable being ranked 13th overall in terms of feature 
importance.

DISCUSSION
This study used minute by minute data collected from 
two different commercial wearable devices combined 
with machine learning models to predict different 
movement types. We show that data from commercial 
wearable devices can correctly predict movement types 
in 82% and 90% of instances for Apple Watch and 
Fitbit, respectively. We also developed and used new 
features that combine existing data from commercial 
wearable devices, including heart rate, step count and 
calories.

Table 3 Confusion matrix for Apple Watch data from Rotation Forest model

True 
value* Lying Sitting Self- paced walk Running 3 METs Running 5 METs Running 7 METs

Predicted as

Lying 613 (78.8%) 59 (10.7%) 24 (4.7%) 51 (8.9%) 30 (4.8%) 10 (1.6%)

Sitting 48 (6.2%) 399 (72.6%) 25 (4.9%) 7 (1.2%) 41 (6.5%) 32 (5.3%)

Self- paced walk 25 (3.22%) 28 (5.1%) 454 (88.2%) 10 (1.8%) 11 (1.8%) 1 (0.2%)

Running 3 METS 50 (6.4%) 7 (1.3%) 9 (1.8%) 493 (86.0%) 10 (1.6%) 3 (0.5%)

Running 5 METS 27 (3.5%) 25 (4.6%) 3 (0.6%) 9 (1.6%) 518 (82.2%) 21 (3.4%)

Running 7 METS 15 (1.9%) 32 (5.8%) 0 (0%) 3 (0.5%) 20 (3.2%) 543 (89.0%)

*Values in absolute number (representing minutes) and per cent.

Table 4 Confusion matrix for Fitbit data from Rotation Forest model

True 
value* Lying Sitting Self- paced walk Running 3 METs Running 5 METs Running 7 METs

Predicted as

Lying 505 (88.1%) 15 (4.1%) 24 (6.4%) 26 (6.9%) 11 (2.8%) 11 (2.1%)

Sitting 16 (2.8%) 319 (86.2%) 8 (2.1%) 0 (0%) 20 (5.0%) 15 (2.9%)

Self- paced walk 6 (1.1%) 13 (3.5%) 333 (88.6%) 4 (1.1%) 1 (0.3%) 3 (0.6%)

Running 3 METS 25 (4.4%) 1 (0.3%) 5 (1.3%) 338 (89.9%) 7 (1.8%) 2 (0.4%)

Running 5 METS 16 (2.8%) 10 (2.7%) 3 (0.8%) 6 (1.6%) 357 (89.5%) 7 (1.4%)

Running 7 METS 5 (0.9%) 12 (3.2%) 3 (0.8%) 2 (0.5%) 3 (0.8%) 476 (92.6%)

*Values in absolute number (representing minutes) and per cent.
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Comparison with past research
The Rotation Forest algorithm achieved the highest 
accuracy for classifying sedentary, light, moderate and 
vigorous activity from Apple Watch. The Random Forest 
model had the highest accuracy for Fitbit data. Overall 
percentage accuracy for all four movement types is 
slightly lower than previous research using research- 
grade wearable devices. The accuracy of models for 
predicting movement types in studies using research- 
grade wearables is typically greater than 90% in lab- based 
studies.28 35 36 The lower accuracy in our study is expected 
as the frequency of data collection is at the minute level, 
and each individual measure from the wearable devices 
has measurement error. We show that the overall accu-
racy is slightly higher for Fitbit compared with Apple 
Watch. This is surprising given that, previous studies 
have shown that the Apple Watch is more accurate for 
individual measures such as heart rate.37–40 The results 
are also consistent with previous work, showing that the 
models’ accuracy was higher for activities greater than 3 
METs and lower for low intensity and sedentary activities 
for both Fitbit and Apple Watch.1 However, given the 
preliminary nature of this work, we believe these models 
are promising.

Important variables
To understand which variables were the most important 
in each model, we used feature ranking methods. The 
results of feature ranking showed that for Apple Watch, 
heart rate was the most important, while for Fitbit, steps 
were more important. Among the top six most important 
features for both Fitbit and Apple Watch were heart 
rate, steps, calories and distance. We developed new 
features based on the literature, including normalised 
heart rate and intensity using the Karvonen formula, 
which were important in model accuracy. Conversely, 
previous features thought to be important for classifying 
moderate activity (100 steps/min) were not important 
in our models.8 This may be because our study design 
is different, and our outcome variable includes multiple 

movement types and features that differ from previous 
research.

Device type
This study found that the type of commercial wearable 
device does impact accuracy. However, we only examine 
the differences between the two devices. This may related 
to different methods used by the devices to estimate 
heart rate, steps, calories, and distance. Including more 
devices and specifically including the software or firm-
ware version of devices may be important.

Limitations
There are several limitations to this study. First, unlike 
research- grade devices, commercial wearables include 
much more missing data. There are many instances 
when the device cannot collect a reading, or there are 
errors in the transfer of data from the device to our app. 
For example, the total step count between Apple Watch 
and Fitbit is dramatically different (see table 1). We 
attempted to deal with these missing data by imputation. 
Future research should examine imputation methods 
and their impact on model accuracy. Second, each indi-
vidual measure from commercial wearable devices has a 
measurement error. The impact of these errors on our 
models is unknown. Third, the devices we used for our 
research are now not the most current versions avail-
able. This is common with wearable device research. We 
cannot know if newer devices provide fewer missing data 
or more accurate measures. Fourth, our results show that 
device type was not important in predictions. However, we 
believe that given the unknown nature of the algorithms 
used to measure heart rate, steps, calories and distance, 
by commercial companies, researchers should continue 
to develop methods to attempt to account for algorithmic 
differences (ie, include device and/or firmware/software 
version) when these algorithms are unknown. Finally, we 
have not used neural network type methods because our 
dataset is small.

CONCLUSION
This preliminary study demonstrated that commercial 
wearable devices such as Apple Watch and Fitbit could 
predict six different movement types, including sitting, 
lying down and different intensities of walking/running 
with reasonable accuracy. The results support the use of 
raw data from Apple Watch and Fitbit combined with our 
machine learning approach for scalable movement type 
classification at the population level.

Twitter Daniel Fuller @walkabilly
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Ranking Apple Watch Fitbit

1 Heart rate Distance
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4 Intensity Normalised heart rate

5 Calories Steps*distance

6 Distance Intensity _low energy

7 Steps*distance Calories

8 SD normalised HR SD normalised HR

9 Correlation heart rate and 
steps

Entropy steps per day

10 Weight Resting heart rate
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