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Abstract

Nontyphoidal Salmonella enterica (NTS) causes a substantial health burden to human pop-

ulations in Canada and worldwide. Exposure sources and demographic factors vary by loca-

tion and can therefore have a major impact on salmonellosis clustering. We evaluated major

NTS serotypes: S. Enteritidis (n = 620), S. Typhimurium (n = 150), S. Thompson (n = 138),

and S. Heidelberg (n = 136) reported in the city of Toronto, Canada, between January 1,

2015, and December 31, 2017. Cases were analyzed at the forward sortation area (FSA)—

level (an area indicated by the first three characters of the postal code). Serotype-specific

global and local clustering of infections were evaluated using the Moran’s I method. Spatial

and space-time clusters were investigated using Poisson and multinomial scan statistic

models. Case-case analyses using a multinomial logistic regression model was conducted

to compare seasonal and demographic factors among the different serotypes. High infection

rate FSAs clustered in the central region of Toronto for S. Enteritidis, in the south-central

region for S. Typhimurium, in north-west region for S. Thompson, and in the south-east

region for S. Heidelberg. The relative risk ratio of S. Enteritidis infections was significantly

higher in cases who reported travel outside of Ontario. The relative risk ratio of infections

was significantly higher in summer for S. Typhimurium, and in fall for S. Thompson. The rel-

ative risk ratio of infection was highest for the 0–9 age group for S. Typhimurium, and the

20–39 age group for S. Heidelberg. Our study will aid public health stakeholders in designing

serotype-specific geographically targeted disease prevention programs.

Introduction

Nontyphoidal Salmonella enterica (NTS) is responsible for an estimated 150,716 illnesses,

1,565 hospitalizations, and 29 deaths each year in Canada, of which the majority are foodborne

[1]. On a worldwide level, diarrheal and invasive infections caused by NTS have the highest

yearly disease burden among all foodborne infections, with 4.07 million attributable Disability
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Adjusted Life Years [2]. Among the more than 2,600 currently known NTS serotypes, only a

small portion cause human infection, most commonly gastroenteritis [3, 4]. In Canada, NTS

serotype Enteritidis (S. Enteritidis), Typhimurium (S. Typhimurium), and Heidelberg (S. Hei-

delberg) are the most frequent serotypes, consisting of over 50% of all serotypes detected [5].

Despite constant attempts to decrease the incidence of NTS infections during the last decade,

public health authorities have not been successful, due, in part, to the significant increase in

infections with certain serotypes, such as S. Enteritidis [3, 4, 6].

Salmonellosis is a complex disease with a multitude of factors that influence its morbidity

and mortality. Specific serotypes are likely to be linked to particular transmission routes based

on their role in natural ecosystems [3]. Previous studies have described common food expo-

sure sources for NTS infections with different serotypes. Salmonella Enteritidis was most com-

monly associated with the consumption of chicken, eggs, turkey and sprouts, S. Typhimurium

with beef, dairy, pork and vegetables, and S. Newport with fruits and vegetables [7]. While the

majority of NTS infections are foodborne, contact with infected animals or their contaminated

environments should not be overlooked as an infection source since NTS are frequently car-

ried asymptomatically by food animals or pets [8].

Studying infectious diseases in cities is increasingly important [9], considering the growth

of urban populations, which are expected to exceed 60% of the total global population by 2050

[10]. Our study was conducted in the city of Toronto, the capital of the province of Ontario

and the largest city in Canada, situated along Lake Ontario’s northwestern coast.

According to the 2016 Census, Toronto had a population of 2,731,571 [11]. Toronto’s

neighborhoods are diverse, and the spatial heterogeneity of salmonellosis rates may occur

from variations in underlying local socioeconomic, demographic and environmental risk fac-

tors [12, 13]. Identifying geographical areas with significantly higher or lower serotype-specific

infection rates can offer valuable etiological indicators to guide the development of public

health prevention and control programs to reduce the health burden of NTS infections [14].

Recent studies have applied a number of spatial epidemiological methods to identify spatial

clusters of NTS infections with various serotypes, including S. 1,4,[5],12:i:- in Portugal [15], S.

Enteritidis in Canada [13, 14], S. Napoli in Italy [16], and S. Wangata and S. Typhimurium in,

Australia [17].

With the expansion of technological capabilities in geographic information systems (GIS)

and disease mapping along with the growing power of applied spatial epidemiological meth-

ods, several recent studies have used these methods to understand the spread and area-level

risk factors of various infectious diseases [18], including granulocytic ehrlichiosis [19],

COVID-19 [20] and chlamydiosis [21] in the United States, chikungunya and dengue fever in

Colombia [22], and dengue fever in Panama [23].

Case-case studies have been effectively used previously in outbreak investigations to iden-

tify specific exposure sources and demographic indicators of NTS serotype-specific infections,

including serotype Typhimurium in Spain [24], serotype Dublin in France [25], serotype Ches-

ter in six European countries [26], serotypes Newport, Javiana, and Mississippi in Tennessee,

US [27], and serotypes Heidelberg and Typhimurium in Ontario, Canada [28].

Despite the multitude of spatial epidemiological and case-case studies that investigated NTS

infections, there is a lack of studies investigating spatial clustering and demographic determi-

nants of serotype-specific NTS infections in an urban setting in Canada and worldwide. There-

fore, to better understand demographic factors and differences in spatial and temporal

clustering among major NTS serotype infections in the city of Toronto, we developed a step-

wise analytical framework that linked spatial exploratory and statistical methods with GIS to

evaluate the distribution and spatial and temporal clustering of major serotypes (S. Enteritidis,

S. Typhimurium, S. Thompson, and S. Heidelberg) of NTS infections. In addition, a case-case
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multinomial analysis was conducted to test whether seasonal and demographic factors differed

by specific serotypes.

Methods

Data sources

Salmonellosis is a reportable disease in Ontario under the Health Protection and Promotion
Act [29], and it is diagnosed by the isolation of Salmonella enterica from stool (most samples),

rectal swabs, urine, blood, or any other sterile site. All Salmonella spp. isolates are sent to the

public health laboratories for serotyping based on the Kauffmann-White method [30]. Public

health unit personnel follow up on each reported Salmonella enterica case to provide case man-

agement, discover potential causes of disease and report all their findings to the Ontario Minis-

try of Health and Long-Term Care’s integrated Public Health Information System (iPHIS)

[31]. For this study, data on reported NTS infections were acquired from the Ontario Ministry

of Health and Long-Term Care and were extracted from the iPHIS database by Public Health

Ontario on 2018/12/10. We obtained data related to Salmonella cases’ forward sortation area

(FSA) (the first three digits of the postal code), disease onset date, serotype, age, sex, outbreak

and travel history that were diagnosed in the city of Toronto between January 1, 2015, and

December 31, 2017. The data were fully anonymized and stripped of direct identifiers such as

client name, address, and age, before they were provided to the authors. Specifically, the cases

were coded with unique case IDs and client IDs; the residential addresses were provided at the

forward sortation area (FSA) and public health unit (PHU)—levels; the ages were aggregated

to five-year age categories; and dates of disease onset were provided as months and years,

rather than specific dates. We included in our study the top four NTS serotypes, S. Enteritidis

(n = 620), S. Typhimurium (n = 150), S. Thompson (n = 138), and S. Heidelberg (n = 136).

This study was reviewed and received ethics clearance through a University of Waterloo

Ethics Committee (ORE # 40133), who determined that informed consent was not required,

since only de-identified secondary data was used for the research.

Study setting

Our study involved the city of Toronto (Degrees, Minutes, Seconds (DMS) 43˚ 440 30@ North,

79˚ 220 24@ West), the capital of the province of Ontario, and the largest city in Canada, situ-

ated along Lake Ontario’s northwestern coast (Fig 1).

The analysis was conducted at the forward sortation area FSA-level, a well-defined geograph-

ical area represented by the first three characters of the postal code, designated by Canada Post

Corporation, and based on the mail delivery regions of postal facilities. Population estimates

and the cartographical boundary files for each FSA were obtained from the 2016 Census of Pop-

ulation [32, 33]. We excluded an FSA with less than 2,000 residents (n = 1) to obtain stable inci-

dence rates. We included 95 FSAs containing a combined population of 2,730,089 (99.95% of

the population). The annual population sizes of the 95 FSAs ranged from 2,951 to 75,897, with a

mean of 28,737. Toronto covers an area of 630.2 square kilometers (243.33 square miles), with a

maximum north-south distance of 21 kilometres, and a maximum east-west distance of 43 kilo-

meters. Toronto FSAs were mapped using the City’s commonly used projection, Universal

Transverse Mercator (UTM), North American Datum (NAD) 1983, Zone 17 North.

Disease mapping

Spatial heterogeneity of FSA-level NTS infection rates of the top four serotypes was evaluated

and compared by following a stepwise analytical framework, which is described below.
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Disease mapping and the global and local cluster analysis were performed using ArcGIS

10.7.1 (Environmental Systems Research Institute, Inc., Redlands, CA, USA).

All reported cases during the 3-year study period were geocoded and spatially joined to the

FSA level. Incidence rates (IRs) per 100,000 persons for each serotype were calculated, by divid-

ing the 3-year total number of cases per FSA by the 3-year total population estimates obtained

from the 2016 Census of Population. Natural breaks that decrease the variance within classes

and increase the variance between classes were used to classify IRs into five categories [34]. In

addition, to account for unstable IRs of FSAs with small populations, we used Spatial Empirical

Bayes method [35] with 2nd order queen contiguity weights to smooth these rates [36]. The

queen criterion defines neighbors as spatial units sharing a common edge or a common vertex.

In Toronto, where several irregularly shaped FSAs are present, using the queen criterion is rec-

ommended [37]. Distribution of non-smoothed and smoothed IRs of the four major NTS sero-

type infections across Toronto’s FSAs were illustrated by choropleth maps in ArcGIS 10.7.1.

Spatial and space-time clustering analysis

Global and local Moran’s I. The Spatial Statistics Toolbox in ArcGIS 10.7.1 was used to

evaluate global and local clustering of serotype specific NTS infection rates.

For the spatial statistical analysis, each FSA was represented by a polygon, its population-

weighted centroid, and its serotype-specific infection rate. Euclidean distance bands were used to

measure distances from each FSA centroid to neighboring FSA centroid. The “zone of indiffer-

ence” conceptualization, a modified form of a distance decay parameter, was applied to account

for zoning and edge effects [38]. This parameter gives maximum weights for the target FSA and

Fig 1. Map highlighting the location of the study area.

https://doi.org/10.1371/journal.pone.0235291.g001
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all neighboring FSAs within a defined distance band, and once this distance is surpassed, neigh-

boring FSAs are allocated smaller and smaller weights as the distance from the target FSA

becomes greater. The null hypothesis for both global and local cluster analyses assumes a complete

spatial randomness, i.e., that FSAs with high or low IRs are randomly distributed across the study

area [38]. The null hypothesis is rejected when FSAs with high or low IRs are more spatially clus-

tered than would be expected if the underlying spatial processes were truly random. When the

null hypothesis is rejected, a Z-score and a p-value are given for the identified cluster.

Global clustering of serotype specific NTS IRs was evaluated using the global Moran’s I

approach [39]. Several Euclidean distances with 1 km increments were manually selected and

included in the model, starting with the 3.3 km distance band that was required for each FSA

to have at least one neighbor. A large, positive Z-score (values� 1.96), a statistically significant

p value (p� 0.05) and a positive Moran’s I Index signified that FSA-level IRs clustered, while a

large, negative Z-score (values� -1.96) and a significant p-value and a negative Moran’s I

index signified that FSA-level IRs were dispersed in the study area [39]. For the local cluster

analysis, we included the distance band that indicated maximum spatial clustering (highest Z-

score) of IRs at the global clustering stage. If global spatial clustering was not significant, we

used the 3.3 km distance band that was required for each FSA to have at least one neighbor.

Local Moran’s I statistics were used to detect local spatial clusters of FSA-level non-

smoothed IRs during the study period [40].

The local Moran’s I statistic of spatial associations is given as:

Ii ¼
xi � �X
S2
i

Pn
j¼1;j6¼iw ij xj � �X

� �
ð1Þ

where xi is an attribute (i.e. infection rate) of future i (i.e. forward sortation area), �X is the

mean of the corresponding attribute, wij is the spatial weight between future i and j, and:

S2

i ¼

Pn
j¼1;j6¼iðxj � �XÞ2

n � 1
ð2Þ

With n equating to the total number of features.

The local Moran’s I statistic recognizes hot spots (i.e., high-high IR areas), cold spots (i.e.,

low-low IR areas) and outlier areas (high-low and low-high IR areas). A statistically significant

positive Local Moran’s I Index indicates that the target FSA is surrounded by FSAs with identi-

cal IRs (high-high: FSA with a high rate enclosed by FSAs with high rates; low-low: FSA with a

low rate surrounded by FSAs with low rates). A statistically significant negative local Moran’s I

Index signifies that the target FSA is surrounded by FSAs with different IRs (high-low: FSA

with a high rate surrounded by FSAs with low rates; low-high: FSA with a low rate surrounded

by FSAs with high rates).

Scan statistic. The scan statistic [41] with SaTScan software version 9.6 was used to iden-

tify purely spatial and space-time clusters of serotype specific NTS infections. At the first step,

we created separate models for S. Enteritidis, S. Typhimurium, S. Thompson, and S. Heidel-

berg infections, and used a retrospective discrete Poisson model, which assumes that the num-

ber of infections in each FSA are Poisson-distributed, based on a known background

population [42]. At the second step we built a multinomial model, in which each outcome was

a salmonellosis case, with each case belonging to one of the four Salmonella serotypes, Enteriti-

dis, Typhimurium, Thompson, and Heidelberg. The multinomial scan statistic concurrently

looks for high or low clusters of any of the four serotypes, adjusting for the overall geographical

distribution of salmonellosis, and accounting for the multiple comparisons among the four

serotypes when calculating the p-values [43].
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Latitude and longitude Cartesian coordinates for each FSA centroid were calculated in Arc-

GIS 10.7.1. The smallest temporal and spatial units were the month of infection onset and the

centroid of an FSA, respectively. Only high IR clusters were examined. In the space-time analy-

sis we used a cylinder with a circular spatial base and height relating to time to identify high IR

clusters [44]. Circular scanning window was selected to detect large, compact clusters. The scan-

ning window moves across simultaneously in space and time comparing the rate of infections

inside of the scanning window to the rate of infections outside of the scanning window using a

Monte Carlo hypothesis testing with 999 replications [18]. If the infection rate is significantly

(p-value�0.05) higher inside the window a relative risk is estimated, and a high rate cluster is

identified. Salmonellosis is mainly a foodborne disease, and the contaminated food sources

could be widespread; therefore, we set the scanning window to include up to 50% of the study

population and up to 50% of the study period, to detect large primary and secondary clusters.

To circumvent the assumption that the relative risk of salmonellosis is similar throughout a

significant spatial or space-time cluster, we also present and illustrate the relative risk for each

FSA that belonged to a significant cluster. The relative risk (RR) for each FSA belonging to a

cluster is obtained from Eq (3):

RR ¼
c=e

ðC � cÞ=ðC � eÞ
ð3Þ

Where c is the total number of salmonellosis cases in an FSA, e is the total number of expected

cases in an FSA, and C is the total number of observed cases in Toronto. The RR is the estimated

risk within an FSA divided by the risk outside of the FSA. If the RR is greater than 1, salmonellosis

cases within that FSA have a higher risk to have salmonellosis than cases from all the other FSAs.

Statistically significant space and space-time clusters were visualized in ArcGIS 10.7.1. The

outbreak history of cases that were included in statistically significant space-time clusters were

assessed to evaluate if local outbreaks explained the clustering of cases.

Case-case multinomial logistic regression analysis

To compare individual-level demographic characteristics and seasonal factors among different

NTS serotypes a case-case analysis [45, 46] was conducted. A multinomial logistic regression

model was built where the outcome variable had four categories representing salmonellosis

infections caused by serotypes Enteritidis, Typhimurium, Thompson, and Heidelberg. Sero-

type Enteritidis was included in the model as the base category to which the other three sero-

types were compared.

The predictor variables were year, season, age group, sex, outbreak status, and travel his-

tory. Date of disease onset was used to assign each case to a specific year and season. The cate-

gorical year variable represented a consecutive 12-month period from January 1st to

December 31st; therefore, there were three groups (2015, 2016, and 2017). The categorical sea-

son variable consisted of winter (December, January, and February), spring (March, April, and

May), summer (June, July, and August), and fall (September, October, and November). The

categorical age variable was divided into five categories: cases aged between 0 and 9, 10 and 19,

20 and 39, 40 and 59, and cases 60 years of age and greater.

Results

Disease mapping

A total of 620 laboratory-confirmed nontyphoidal Salmonella serotype Enteritidis (184 cases

in 2015, 191 in 2016, and 245 in 2017), 150 Typhimurium (55 cases in 2015, 47 in 2016, and 48
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in 2017), 138 Thompson (56 cases in 2015, 67 in 2016, and 15 in 2017), and 136 Heidelberg

(52 cases in 2015, 46 in 2016, and 38 in 2017) infections were reported in the city of Toronto

during the three year study period.

Fig 2 shows the non-smoothed IRs of NTS infections with the four main serotypes in each

FSA.
1Mean forward sortation area (FSA)-level incidence rates were obtained by dividing the

FSA-level 3-year total number of cases by the 3-year total population estimates.The non-

smoothed FSA-level mean serotype-specific IRs ranged from 0 to 18.33 (mean = 7.65) for

Enteritidis, 0 to 11.30 (mean = 1.91) for Typhimurium, 0 to 16.36 (mean = 1.86) for Thomp-

son, and 0 to 7.91 (mean = 1.65) for Heidelberg.

Fig 3 shows the spatial empirical Bayes smoothed IRs of NTS infections with the four main

serotypes.

The smoothed FSA-level IRs ranged from 3.96 to 11.13 (mean = 7.63) for Enteritidis, 0.25

to 4.49 (mean = 1.86) for Typhimurium, 0.32 to 13.67 (mean = 1.89) for Thompson, and 0.58

to 3.95 (mean = 1.63) for Heidelberg.

Spatial and space-time clustering results

Global and local Moran’s I result. Only S. Thompson infections clustered globally in the

city of Toronto. Statistically significant positive Z-scores (2.30–10.70) were detected between

3.3 km and 13.3 km. The largest statistically significant positive Z-score was observed at 6.3

km (Z = 10.7, p<0.001), signifying maximum global spatial clustering of FSAs with high S.

Thompson infection rates at this distance band.

The local Moran’s I results are illustrated in Fig 4.

Three FSAs with High-High S. Enteritidis IRs, four FSA with High-Low IRs, two FSAs with

Low-Low IRs, and three FSAs with Low-High were identified using the Local Moran’s I

method (Fig 4, S1 Fig, S1 Table).

Fig 2. Distribution of non-smoothed nontyphoidal Salmonella enterica infection rates with serotypes (A) Enteritidis

(n = 620), (B) Typhimurium (n = 150), (C) Thompson (n = 138) and (D) Heidelberg (n = 136) in Toronto’s forward

sortation areas (n = 95), 2015−2071.

https://doi.org/10.1371/journal.pone.0235291.g002
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Three FSAs with High-High S. Typhimurium IRs, four FSA with High—Low IRs, three

FSAs with Low-Low IRs, and seven FSAs with Low-High were identified using the local Mor-

an’s I method (Fig 4, S1 Fig, S1 Table).

Seventeen FSAs with High-High S. Thompson IRs, four FSA with High-Low IRs, twenty

FSAs with Low-Low IRs, and seven FSAs with Low-High were identified using the local Mor-

an’s I method (Fig 4, S1 Fig, S1 Table).

Three FSAs with High-High S. Heidelberg IRs, two FSA with High-Low IRs, four FSAs

with Low-Low IRs, and two FSAs with Low-High were identified using the Local Moran’s I

method (Fig 4, S1 Fig, Fig 1, S1 Table).

Fig 3. Distribution of smoothed nontyphoidal Salmonella enterica infection rates with serotypes (A) Enteritidis

(n = 620), (B) Typhimurium (n = 150), (C) Thompson (n = 138) and (D) Heidelberg (n = 136) in Toronto’s forward

sortation areas (n = 95), 2015−2071, 2. 1Spatial empirical Bayes smoothing method with 2nd order queen contiguity

weights was used to smooth the mean forward sortation area (FSA)-level incidence rates.

https://doi.org/10.1371/journal.pone.0235291.g003

Fig 4. Local spatial clusters of nontyphoidal Salmonella enterica infections with serotypes (A) Enteritidis, (B)

Typhimurium, (C) Thompson, and (D) Heidelberg in Toronto identified by the Moran’s I statistic.1Euclidean distance

band of 3.3 km was used for serotypes Enteritids, Typhimurium and Heidelberg, and 6.3 km for serotype Thompson.

https://doi.org/10.1371/journal.pone.0235291.g004
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Scan statistic. Three high rate purely spatial clusters were detected by using the discrete

Poisson model (Fig 5, Table 1, S1 Fig, S1 Table).

Salmonella Typimurium infections (n = 48) cases clustered in the central part of Toronto.

Out of the 24 FSAs included in the cluster, 6 FSAs reported a relative risk of 0, one had a RR of

0.82, and one had a RR of 0.98. On the other hand, 16 FSA had a relative risk greater than one,

ranging from 1.17 to 6.2.

Salmonella Thompson infections (n = 48) clustered in the north-central part of Toronto.

All the FSAs included in the cluster have a relative risk greater than one, ranging from 1.93 to

10.69.

Salmonella Heidelberg infections (n = 68) clustered in the south-east part of Toronto. Out

of the 35 FSAs included in the cluster, 5 FSAs reported a relative risk of 0, and 8 had a relative

risk of one or less, which ranged from 0.51 to 1. On the other hand, 22 FSAs had a relative risk

greater than one, ranging from 1.02 to 4.82.

Three significant (p� 0.05) high rate space-time clusters were detected (Table 1, Fig 6, S1

Fig, S1 Table).

Fig 5. Spatial clusters of nontyphoidal Salmonella enterica infections with serotypes (A) Typhimurium, (B)

Thompson, and (C) Heidelberg, identified by the scan statistic1. 1 Retrospective spatial analysis, scanning for clusters

with high rates, using discrete Poisson models.

https://doi.org/10.1371/journal.pone.0235291.g005

Table 1. Spatial and space-time clusters of nontyphoidal Salmonella enterica infections with major serotypes in the city of Toronto, Ontario, Canada, 2015–20171.

Serotype (N) Model Type Number of FSAs Time Frame (Y/M) Population Number of cases Expected cases O/E RR P-value

Typhimurium (150) Spatial 24 NA 529983 48 29.12 1.65 1.95 0.057

Thompson (138) Spatial 9 NA 191219 48 9.67 4.97 7.08 < 0.001

Heidelberg (136) Spatial 35 NA 934428 68 46.55 1.46 1.92 0.046

Typhimurium (150) Space-Time 52 2015/7 to 2015/10 1264744 26 7.80 3.33 3.82 0.006

Thompson (138) Space-Time 9 2016/9 to 2016/12 183772 30 1.03 29.01 36.79 < 0.001

Heidelberg (136) Space-Time 12 2017/4 to 2017/5 374779 11 1.04 10.59 11.43 0.001

1 Results based on retrospective discrete Poisson models using the SaTScan™ software.

https://doi.org/10.1371/journal.pone.0235291.t001
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One space-time cluster of S. Typhimurium infections (n = 26) occurred between July 2015

and October 2015 in the central part of Toronto (RR = 3.82). Out of the 52 FSAs included in

the cluster, 32 FSAs had a relative risk of 0, and 20 FSAs had a relative risk greater than one,

ranging from 3.48 to 55.32. A space-time cluster of S. Thompson infections (n = 30) occurred

between September 2016 and December 2016 in the north-central part of Toronto

(RR = 29.01). Out of the 9 FSAs included in the cluster, one FSA had a relative risk of 0, and 9

FSAs had a relative risk greater than one, ranging from 11.67 to 52.86.

A space-time cluster of S. Heidelberg infections (n = 11) occurred between April 2017 and

May 2017 in the south-east part of Toronto (RR = 11.43). Out of the 12 FSAs included in the

cluster, 4 FSAs have a relative risk of 0, and 8 FSAs have a relative risk greater than one, rang-

ing from 9.89 to 39.29.

None of the 26 S. Typhimurium cases that were included in the space-time cluster were

linked to an outbreak. Among the 30 S. Thompson cases that were included in the space-time

cluster, 19 (63%) were linked to an outbreak. Of the 11 S. Heidelberg cases that were included

in the space-time cluster, 8 cases (73%) were linked to an outbreak.

The purely spatial multinomial scan statistic identified two clusters (Fig 7, Table 2). The pri-

mary spatial cluster was in the north-central part of Toronto, and included a relative risk

greater than one for serotype Thompson and all the other serotypes had a smaller than one rel-

ative risk. The secondary spatial cluster was in the central and south-central part of Toronto

and included a relative risk greater than one for serotypes Typhimurium and Heidelberg and

had a relative risk smaller than one for serotypes Enteritidis and Thompson.

The space-time multinomial scan statistic identified one cluster (Fig 7, Table 2). The space-

time cluster occurred between August 2016 and December 2016 in the north-central and cen-

tral part of Toronto and included a relative risk greater than one for serotype Thompson and

all the other serotypes had a smaller than one relative risk.

The primary cluster was in the north-central part of Toronto and included a relative risk

greater than one for serotype Thompson and all the other serotypes have a smaller than one

Fig 6. Space-time clusters of nontyphoidal Salmonella enterica infections with serotypes (A)Typhimurium, (B)

Thompson, and (C) Heidelberg, identified by the scan statistic1. 1 Retrospective space-time analysis, scanning for

clusters with high rates, using discrete Poisson models.

https://doi.org/10.1371/journal.pone.0235291.g006
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relative risk. The secondary cluster was in the central and south-central part of Toronto and

included a relative risk greater than one for serotypes Typhimurium and Heidelberg and have

a relative risk smaller than one for serotypes Enteritidis and Thompson.

Case-case multinomial logistic regression analysis

The results of the multinomial logistic regression model of serotype-specific NTS infections

are shown in Table 3.

In the multinomial model, S. Typhimurium infections compared to S. Enteritidis infections,

given the other variables in the model were held constant, the relative risk ratio was signifi-

cantly higher in the summer (RRR = 2.11, 95% CI 1.21–3.67) compared to the fall season. Chil-

dren 0–9 years of age (referent category), followed by individuals 20–39 years of age

(RRR = 0.53, 95% CI 0.31–0.90), 10–19 years of age (RRR = 0.36, 95% CI 0.16–0.83) and 40–59

years of age (RRR = 0.36, 95% CI 0.18–0.71) had the highest risk of infection. Travel had a pro-

tective effect (RRR = 0.39, 95% CI 0.25–0.63) for S. Typhimurium infections. No significant

differences were detected among years or between sexes.

Fig 7. Spatial (A) and space-time (B) clusters of nontyphoidal Salmonella enterica infections with major serotypes

identified by the multinomial scan statistic.

https://doi.org/10.1371/journal.pone.0235291.g007

Table 2. Spatial and space time clusters of major nontyphoidal Salmonella enterica serotypes identified by the multinomial scan statistic in Toronto, Canada,

2015–20171.

Model Type Cluster # FSAs Time (M/Y) Enteritidis Typhimurium Thompson Heidelberg P-Value

Spatial C1 9 NA Observed 60 5 50 6 < 0.001

Expected 71.86 17.39 15.99 15.76

O/E 0.83 0.29 3.13 0.38

RR 0.82 0.26 4.33 0.35

C2 42 NA Observed 236 75 28 74 < 0.001

Expected 245.27 59.34 54.59 53.80

O/E 0.96 1.26 0.51 1.38

RR 0.94 1.53 0.39 1.82

Space-Time C1 19 2016/8 to 2016/12 Observed 9 1 40 1 0.001

Expected 30.29 7.33 6.74 6.64

O/E 0.30 0.14 5.93 0.15

RR 0.29 0.13 7.95 0.14

1 Retrospective spatial and space-time analysis, scanning for clusters with high rates, using multinomial models.

https://doi.org/10.1371/journal.pone.0235291.t002
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Table 3. Demographic and seasonal factors for nontyphoidal Salmonella enterica infections with major serotypes in the city of Toronto, Ontario, Canada, 2015–

20171.

Outcome2 Predictor Variables RRR3 95% CI4 P-value5

S. Typhimurium Year 2015 Referent - -

2016 0.89 0.53–1.48 0.65

2017 0.68 0.41–1.13 0.14

Season Fall Referent - -

Winter 0.61 0.30–1.24 0.17

Spring 0.59 0.31–1.13 0.11

Summer 2.11 1.21–3.67 0.01

Age (years) 0–9 Referent - -

10–19 0.36 0.16–0.83 0.02

20–39 0.53 0.31–0.90 0.02

40–59 0.36 0.18–0.71 < 0.01

� 60 0.76 0.39–1.47 0.41

Sex (Male = 0, Female = 1) 0.99 0.65–1.51 0.95

Travel 0.39 0.25–0.63 < 0.01

Outbreak 1.60 0.72–3.58 0.25

S. Thompson Year 2015 Referent - -

2016 1.11 0.66–1.87 0.69

2017 0.17 0.08–0.36 < 0.01

Season Fall Referent - -

Winter 0.44 0.22–0.85 0.01

Spring 0.41 0.22–0.79 0.01

Summer 0.35 0.18–0.68 < 0.01

Age (years) 0–9 Referent - -

10–19 0.64 0.56–3.09 0.52

20–39 1.75 0.93–3.61 0.08

40–59 1.31 0.78–3.56 0.19

� 60 1.62 0.87–4.44 0.10

Sex (Male = 0, Female = 1) 0.86 0.53–1.39 0.53

Travel 0.12 0.06–0.24 < 0.01

Outbreak 5.55 2.97–10.39 < 0.01

S. Heidelberg Year 2015 Referent - -

2016 0.88 0.52–1.50 0.65

2017 0.52 0.30–0.90 0.02

Season Fall Referent - -

Winter 0.93 0.47–1.83 0.83

Spring 1.18 0.63–2.20 0.60

Summer 1.13 0.61–2.11 0.70

Age (years) 0–9 Referent - -

10–19 1.13 0.50–2.56 0.77

20–39 1.93 1.03–3.61 0.04

40–59 1.92 0.96–3.84 0.07

� 60 1.99 0.95–4.17 0.07

Sex (Male = 0, Female = 1) 0.88 0.56–1.38 0.58

Travel 0.06 0.02–0.14 < 0.01

Outbreak 1.12 0.51–2.46 0.78

(Continued)
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Salmonella Thompson infections compared to S. Enteritidis infections, given the other vari-

ables in the model were held constant, the relative risk ratio was significantly lower in 2017

(RRR = 0.17, 95% CI 0.08–0.36) compared to 2015 (referent category). Compared to the fall

season (referent category), the risk of infections were significantly lower in the winter

(RRR = 0.44, 95% CI 0.22–0.85) spring (RRR = 0.41, 95% CI 0.22–0.79), and summer

(OR = 0.35, 95% CI 0.18–0.68). Travel had a protective effect on S. Thompson infections

(RRR = 0.12, 95% CI 0.06–0.24). Salmonella Thompson infections were significantly associated

with outbreaks (RRR = 5.55, 2.97–10.39, 95% CI). No significant differences were detected

among age groups or between sexes.

Salmonella Heidelberg infections compared to S. Enteritidis infections, given the other vari-

ables in the model were held constant, the relative risk ratio was significantly lower in 2017

(RRR = 0.52, 95% CI 0.30–0.90) compared to 2015 (referent category). Persons between 20

and 39 years of age (RRR = 1.93, 95% CI 1.03–3.61) had the highest risk of infection. Salmo-
nella Heidelberg infections were significantly less likely to be travel related than S. Enteritidis

infections (RRR = 0.06, 95% CI 0.02–0.14). No significant differences were detected among

years, seasons, or between sexes.

Discussion

Our study applied a stepwise analytical framework that linked spatial exploratory and statisti-

cal methods with GIS to assess and compare the distribution and spatial clustering of NTS

infections with different serotypes across the city of Toronto. As the first exploratory spatial

analytical step, we visually assessed the geographic extent of NTS infections with major sero-

types across Toronto’s 95 FSAs by constructing disease choropleth maps. In cities with several

areal units with small populations, the estimated infection rates become unreliable and unsta-

ble if several cases were detected in these regions [13]. To account for small area level unstable

infection rates, we used spatial empirical Bayes method at the second step of our spatial explor-

atory analysis, which reduces the unbalanced infection rate estimates towards the local mean

infection rate if local clustering is detected, and towards the global mean infection rate if no

local clustering is found [47]. This method in our study reduced the highest infection rate esti-

mates for each of the four NTS serotypes and helped us to focus our attention toward the over-

all spatial disease trends to evaluate visually FSAs of high and low IRs. Several high IR areas for

each of the major NTS serotype infection were identified that were later recognized as statisti-

cally significant disease clusters.

We identified three space-time clusters across the city of Toronto. In our analysis, space-

time clusters were defined as significantly higher than expected number of cases at a specific

location and time period, which might or might not meet the definition of an outbreak [48].

Our space-time scan statistics correctly identified the S. Thompson and S. Heidelberg out-

breaks as many of the cases that were included in the space-time clusters were linked to an

Table 3. (Continued)

Outcome2 Predictor Variables RRR3 95% CI4 P-value5

S. Enteritidis Base (referent) category

1 Results of the multinomial logistic regression model.
2 Outcome: S. Enteritidis (N = 620) compared to S. Typhimurium (N = 150), S. Thompson (N = 138) and S. Heidelberg (N = 136).
3 RRR-Relative Risk Ratio.
4 CI-Confidence Interval of the RRR.
5 Statistically significant at P� 0.05.

https://doi.org/10.1371/journal.pone.0235291.t003
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outbreak by public health staff. However, none of the S. Typhimurium cases that were included

in the space-time cluster were linked to an outbreak, suggesting that these cases did not have a

common exposure source.

At the first spatial statistical step, we evaluated differences in global clustering among sero-

type-specific NTS infection IRs. Only S. Thompson IRs clustered globally across the city of

Toronto. The extent of global clustering of S. Thompson IRs ranged from 3.3 km to 13.3 km,

with a maximum global clustering at 6.3 km, suggesting that S. Thompson infections were

widespread and involved several areas across Toronto. The local cluster analysis later sup-

ported this finding, by identifying a large high-high infection rate area in the northwest region

of Toronto.

At the second spatial statistical step, we assessed and compared local clustering of serotype-

specific NTS IRs by using the Moran’s I method. This method is ideal in areas with dissimilar

IRs, because it not only identifies areas with high-high or low-low IRs, but also detects outlier

areas where low IR areas are surrounded by high IR areas or high IR areas are surrounded by

low IR areas. Interestingly, when we compared FSA-level high-high IR clusters among major

NTS serotypes they differed in their size and location. The S. Thompson high-high IR cluster

was the largest, including seventeen neighboring FSAs, in the northeast region of Toronto.

The other NTS serotype clusters were small and included only three FSAs each, and were in

the central region of Toronto for S. Enteritidis, in the northwest for S. Typhimurium, and the

southeast for S. Heidelberg. The differences in serotype-specific geographical clustering

among major NTS infections might be explained by differences related to their specific envi-

ronmental, demographic, socioeconomic and host factors. Future targeted individual-level

studies are needed in these areas to elucidate our study findings.

When we compared the spatial exploratory and spatial statistical methods for each NTS

serotypes, the non-smoothed and smoothed maps visually identified areas with high and low

rates, that were later identified by the local Moran’s I method as statistically significant high-

high, low-low or outlier IR FSAs. In addition, the spatial and space-time scan statistic added

extra information on the location and time frame of these clusters (Figs 2–7). The same high

and low rate FSAs were consistently identified by each method, emphasizing the strength of

our study methodology, and highlighting the consistency of FSA-level clustering of each NTS

serotype.

We built multinomial scan statistic models to identify purely spatial and space-time clusters

of nontyphoidal Salmonella infections with major serotypes. Multinomial scan statistic has

some advantages over Poisson or binomial logistic regression models in that this model can

investigate more than two outcomes (i.e. serotypes) concurrently in a single model. This

approach was useful in our purely spatial analysis in detecting simultaneous excess risk ratios

for serotypes Heidelberg and Typhimurium that might suggest a common exposure source

(Fig 7, Table 2). The multinomial scan statistic is useful also in outbreak investigations, when a

serotype compared to the “other” serotypes is strongly associated with a localized exposure

source (i.e. local restaurant). This assumption was supported by our multinomial spatial and

space-time scan statistic result that identified a cluster where only S. Thompson cases had an

excess risk ratio (Fig 7, Table 2).

We identified a high S. Thompson infection rate space-time cluster in the north-east region

of Toronto between September 2016 and December 2016 (Table 1, Fig 6), and 63% of cases

that were included in this cluster were linked to an outbreak by public health enteric outbreak

investigators. Interestingly, researchers from the neighbouring province of Quebec, Canada,

reported an S. Thompson outbreak [49] at the same time period (November to December

2016) as the Toronto space-time cluster. The Quebec outbreak was linked to the consumption

of chicken shawarma at a local restaurant chain in the city of Montreal and its neighboring
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regions. As our study did not have exposure history data, we cannot link the Montreal and

Toronto outbreaks; however, it is possible that Toronto cases were exposed to the same food

source, considering the probable inter-provincial poultry meat exchange through the supply

chain, the identical time frame of illnesses, and the relatively rare serotype.

At the final step of our study, we performed a retrospective case-case multinomial analysis

to test whether a specific serotype compared to all the other serotypes had different seasonal and

demographic factors. Differences in annual infections among major NTS serotypes were identi-

fied. When compared to S. Enteritidis infections the relative risk ratio was higher in 2015 for S.

Thompson and Heidelberg, and no differences among years were detected for S. Typhimurium.

This finding is consistent with the results of previous Canadian [50] and US [51] studies that indi-

cated an emergence in the number of S. Enteritidis infections during the last decade.

When we examined differences in cases’ age among major NTS serotypes we identified that

the relative risk ratio of infections were highest in children 0–9 years of age for S. Typhimur-

ium, in persons between 20 and 39 years of age for S. Thompson, in persons greater than 60

years old for S. Heidelberg. Differences in age predilection of various NTS serotypes might be

explained by differences in their exposure sources and genetic determinants.

Our study detected a variation in NTS serotypes’ seasonal predilection. The relative risk

ratio of infections was highest in the summer for S. Typhimurium, in the fall for S. Thompson,

and no seasonal effect was detected for S. Heidelberg. Moreover, the relative risk ratio of cases

who reported travel outside of Ontario was lowest among serotypes Typhimurium, Thomp-

son, and Heidelberg when compared to S. Enteritidis infections. This finding agrees with pre-

vious studies conducted in Ontario, which showed that more than half of the S. Enteritidis

infections detected in Ontario were travel-related [14, 52], and were linked to cases who visited

resorts in the Caribbean and Mexico region during the winter and spring months [52].

Before extrapolating our study results several limitations should be mentioned. First, it is

well documented that enteric surveillance systems commonly underestimate the true number

of cases [53] and extrapolating our study results to the whole population requires caution.

Also, in spatial epidemiological studies the Modifiable Areal Unit Problem (MAUP) should be

considered where the chosen case aggregation scale and area boundary might affect the results

of the analysis. Therefore, it is recommended to select an adequate scale that allows meaningful

inferences about the spatial determinants of infectious diseases. We chose the smallest scale

that is readily available in surveillance systems, the FSA, and believe that FSAs are adequately

small scale to define areas with distinctive features. Besides, to account for differences in FSA

size and spatial characteristics, we used the “zone of indifference” conceptualization parameter

in our spatial statistical analysis.

For our scan statistic we used a circular scanning window that may miss irregularly shaped

clusters. However, Toronto’s FSAs are compact, and irregularly shaped clusters are more com-

mon in elongated shaped areas (i.e. coastlines, rivers). In addition, we chose a relatively large

window size that may include a single large cluster with several low infection rate areas. To

overcome this problem, we calculated and illustrated the relative risks of each FSA that were

included in each significant cluster.

Finally, our study was a spatial exploratory study that aimed to identify areas with high

infection rates and seek to understand host factors for disease and did not aim to identify envi-

ronmental exposure sources for NTS infections. Contamination of food products in retail

stores and restaurants [54], differences in microbial quality of food among various neighbor-

hoods [55], and food safety practices followed by food servers in local restaurants [56] have

been described by previous studies as important factors for NTS infection outbreaks. Future

studies should assess the role of local exposure sources, especially in high infection rate areas

that were identified by our study.
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Conclusions

We demonstrated the utility of integrating geographic exploratory data visualization and spa-

tial statistics analysis with GIS to identify and compare serotype-specific NTS infection clusters

across Toronto’s FSAs. To investigate differences in seasonal and demographic factors among

major NTS serotypes a case-case multinomial analytical method was performed. Several FSAs

with high serotype-specific NTS rates were identified. Future studies in these FSAs should be

conducted to identify local exposure sources and socioeconomic determinants for serotype

specific NTS infections. A distinct seasonality of NTS infections were observed, the relative

risk ratio of infections was highest in summer for S. Typhimurium and fall for S. Thompson.

The relative risk ratio of infections was highest in young children for S. Typhimurium, in

adults between 20 and 39 years of age for S. Thompson, and older adults for S. Heidelberg. The

relative risk ratio of infections in cases who reported travel was highest among S. Enteritidis

infections. Our research methodology could be applied to other enteric disease outbreak inves-

tigations across North America with a final goal to reduce the burden of NTS infections.
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