1 AMERICAN
pi=gll SOCIETY FOR

MICROBIOLOGY Resource Announcements

_‘ Microbiology-

GENOME SEQUENCES

L)

Check for
updates

Complete Annotated Genome Sequence of Limosilactobacillus

fermentum AGR1487

Marc A. Bailie,>b< (2 Eric Altermann,®<4 Wayne Young,®<9 Nicole C. Roy,?><<f Warren C. McNabb<4

aSchool of Food and Advanced Technology, Massey University, Palmerston North, New Zealand

bFood Nutrition & Health Team, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
cRiddet Institute, Massey University, Palmerston North, New Zealand

d9The High-Value Nutrition National Science Challenge, Auckland, New Zealand

eDepartment of Human Nutrition, University of Otago, Dunedin, New Zealand

fLiggins Institute, University of Auckland, Auckland, New Zealand

ABSTRACT Limosilactobacillus fermentum is a probiotic species; however, L. fermen-
tum AGR1487 increases colon inflammation in germfree mice and decreases barrier
integrity in Caco-2 cells. The AGR1487 genome was sequenced to explore these phe-
notypes. The genome is a single, circular, 1,939,032-bp chromosome with a G+C
content of 52.17% and no plasmids.

imosilactobacillus fermentum strains are regularly used for fermented food produc-

tion and preservation as acid-producing starter cultures (1, 2). In humans, strains of
L. fermentum have been shown to improve the ratio of beneficial microorganisms of
the large intestine and have been used as probiotic treatments for intestinal and
vaginal diseases (1-3). However, L. fermentum AGR1487 has been found to increase
colon inflammation in germfree mice and decreased the barrier integrity of Caco-2
monolayers (4, 5). L. fermentum AGR1487 was isolated from an oral swab of a
healthy human and identified using 16S rRNA gene sequencing (6). AGR1487 was
sequenced to explore this unique barrier disruptive phenotype and its genetic
characteristics.

L. fermentum AGR1487 cells were grown in de Man-Rogosa-Sharpe (MRS) broth
(Merck Ltd., Auckland, New Zealand) to stationary phase overnight at 37°C. Genome
extraction, purification, and Illlumina and PacBio shotgun sequencing were carried out
as previously described (7). The lllumina library was created using the TruSeq library kit
with genomic DNA sheared into 500-bp fragments and sequenced on a HiSeq 2000
genome analyzer. lllumina sequencing generated 2,523,872 2 x 100-bp paired-end
(200-bp combined) lllumina reads. The sheared genomic DNA was used for the crea-
tion of a 10-kb PacBio SMRTbell library. Ten-kilobyte size selection conditions were
used when purifying the hairpin dimers by magnetic bead, and the adapters were
removed using PacBio’s MagBead kit. Sequencing was carried out on the PacBio
Sequel platform, generating 344,060 subreads with an average length of 8,498 bp and
an Ns, value of 9,837 bp.

Default parameters were applied for all software packages unless otherwise speci-
fied. lllumina short-read quality control was done using FastQC v0.11.9 (8) before and
after trimming with Trimmomatic v0.39 (9). Assembly graphs were assessed for errors
using Bandage v0.8.1 (10). A single circular genome assembly was produced by
Unicycler v0.4.7 (11) using the trimmed lllumina short reads along with uncorrected
PacBio long reads. The final genome assembly was polished for three rounds using
Pilon v1.22 (12).

CheckM v.1.0.18 (13) reported genome completeness rates of 99.18% and 0.55%
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FIG 1 (A) Pulsed-field gel electrophoresis of AGR1487 genomic DNA digested with restriction enzyme
I-Ceul. The marker ladder contained lambda DNA, where the fragments were multimers of 48.5kb. The
values given are the sizes (kb) of the DNA fragments from the bacterial strains. The graph depicts the
relevant parts of the original published gel image for conciseness, and the vertical black line indicates
the boundaries between image slices. (Adapted from Microbiologyopen [4].) (B) In silico digest results of
the AGR1487 genome assembly using |-Ceul restriction sites processed by UGENE (11) and presented
as the range from one restriction site to the next (fragment size in bp and Kbp).

contamination. The basic statistics were calculated using QUAST v4.6.3 (14), which
found that the resulting assembly was a single 1,939,032-bp contig with a G+C con-
tent of 52.17% and no ambiguous bases or gaps filled with arbitrary place holders
(Ns). The expected average read depth was calculated to be 1,510.51x. The ge-
nome assembly was uploaded to UGENE v34.0 (15), the ends of the sequence were
digitally overlapped, and an in silico digest at the I-Ceul restriction sites was calcu-
lated. The resulting fragment pattern from the in silico digest matched a previously
published restriction digest of AGR1487 that used a commercial I-Ceul restriction
enzyme (Fig. 1) (4).

PGAP v4.10 (16) and GAMOLA2 v16.0 (17) were used to annotate the AGR1487 ge-
nome assembly, which was found to harbor 2,065 open reading frames (ORFs), 1,743
conserved domains, and 1,666 clusters of orthologous groups (COGs). The genetic ori-
gin of the barrier disruptive phenotype for this strain is likely found in this chromo-
some, as no plasmids were found during genomic DNA purification and sequence
assembly.

Data availability. The PacBio long reads and Illumina MiSeq sequence reads
described here have been deposited at NCBI/GenBank under BioProject accession num-
ber PRINA596816. The whole-genome sequence is available from NCBI/GenBank under
BioSample accession number SAMN13639333 or directly using the assembly accession
number CP047585.
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