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Abstract 

Background:  The association between body mass index (BMI) and Alzheimer’s disease (AD) remains controversial. 
Genetic and environmental factors are now considered contributors to AD risk. However, little is known about the 
potential interaction between genetic risk and BMI on AD risk.

Objective:  To study the causal relationship between BMI and AD, and the potential interaction between AD genetic 
risk and BMI on AD risk.

Methods and Results:  Using the UK Biobank database, 475,813 participants were selected for an average follow-
up time of more than 10 years. Main findings: 1) there was a nonlinear relationship between BMI and AD risk in 
participants aged 60 years or older (p for non-linear < 0.001), but not in participants aged 37–59 years (p for non-
linear = 0.717) using restricted cubic splines; 2) for participants aged 60 years and older, compared with the BMI 
(23–30 kg/m2) group, the BMI (< 23 kg/m2) group was associated with a higher AD risk (HR = 1.585; 95% CI 1.304–
1.928, p < 0.001) and the BMI (> 30 kg/m2) group was associated with a lower AD risk (HR = 0.741; 95% CI 0.618–0.888, 
p < 0.01) analyzed using the Cox proportional risk model; 3) participants with a combination of high AD genetic 
risk score (AD-GRS) and BMI (< 23 kg/m2) were associated with the highest AD risk (HR = 3.034; 95% CI 2.057–4.477, 
p < 0.001). In addition, compared with the BMI (< 23 kg/m2), the higher BMI was associated with a lower risk of AD in 
participants with the same intermediate or high AD-GRS; 4) there was a reverse causality between BMI and AD when 
analyzed using bidirectional Mendelian randomization (MR).

Conclusion:  There was a reverse causality between BMI and AD analyzed using MR. For participants aged 60 years 
and older, the higher BMI was associated with a lower risk of AD in participants with the same intermediate or high 
AD genetic risk. BMI (23–30 kg/m2) may be a potential intervention for AD.
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Background
Dementias are chronic, progressive neurological dis-
eases characterized by memory loss and cognitive 
impairment [1]. Among the dementias, the most com-
mon one is Alzheimer’s disease (AD), which accounts 
for approximately 50–70% of all dementia patients [2]. 
Critically, its prevalence is rising sharply, owing to the 
global population aging [3]. Therefore, reducing the 
burden of AD has become an important global public 
health issue [4].

The main pathological features of AD include amyloid 
plaques and neuronal filament entanglement [5, 6]. AD 
is believed to arise from a combination of genetic and 
environmental factors and it can be divided into early-
onset AD (EOAD) and late-onset AD (LOAD) [3, 7]. It 
is important to identify the gene-environment inter-
actions behind the development of AD, which would 
allow for the development of personalized intervention 
strategies for early intervention of AD, thereby ulti-
mately reducing the global incidence of AD [8].

In conjunction with the rising rate of AD, there is also 
a worrying epidemic of high levels of obesity world-
wide [9]. As an indicator of body nutrition, body mass 
index (BMI) has been reported to be associated with 
cerebrovascular adverse events, a variety of cancers, 
and other diseases [10–13]. However, the association 
between BMI and AD risk remains controversial [14]. 
Several studies have shown that obesity and weight loss 
in middle age are associated with an increased risk of 
dementia [15, 16], while other studies have shown that 
obesity in old age does not increase the risk of AD [16, 
17]. Moreover, a large UK population study has shown 
that low BMI across all age groups increases the risk of 
AD [18]. Although many previous studies have focused 
on the association between BMI and AD, these conflict-
ing results suggest that the causal relationship between 
BMI and AD requires further exploration. Moreover, 
gene-environment interactions behind the develop-
ment of AD also need deep investigation. However, lit-
tle is known about the potential interaction between 
genetic risk and BMI on AD risk so far.

Understanding the causal relationship between BMI 
and AD is crucial for AD prevention. However, simple 
observational studies tend to result in reverse causality 
and residual confusion [19]. Mendelian randomization 
(MR) based on genetic variations is useful to overcome 
some of these limitations [20]. Numerous previous 
studies using MR analysis to assess the causal effect of 

BMI on AD found that polygenic scores strongly related 
to a higher BMI are unrelated to higher dementia risk 
and may even predict a lower dementia risk. This is sur-
prising, however, there has been no further assessment 
of reverse causality [21]. Fortunately, bidirectional MR 
overcomes this limitation [22]. For the first time, this 
study used bidirectional MR to assess the causal rela-
tionship between BMI and AD. In addition, since we 
conducted observational studies and MR in the same 
study population, the conclusions could be more stable 
and reliable.

Therefore, we sought to use the UK Biobank (UKB) 
to investigate the relationship between BMI and risk 
of developing AD. To further assess the relationship 
between BMI and genetic susceptibility on AD risk, we 
also explored potential genetic and BMI interactions after 
calculating the AD genetic risk score (AD-GRS) of each 
participant. Finally, bidirectional MR was used to further 
explore the causal relationship between BMI and AD.

Methods
Study population
A public database is specifically designed to store sci-
entific research data on an open platform [23]. The UK 
Biobank (UKB) is the world’s largest biomedical sam-
ple database and contains data from a population-based 
cohort study consisting of more than 500,000 volunteers. 
The UKB study was approved by the Northwest Multi-
center Research Ethics Committee, and all participants 
agreed to their inclusion [24, 25]. Importantly, it has col-
lected—and continues to collect—a large number of par-
ticipant data regarding phenotypes and genotypes [26, 
27].

Initially, 502,490 participants were enrolled, excluding 
the participants who.

had been diagnosed with AD prior to registration 
(n = 18) and who either did not undergo genetic testing 
(n = 13,121) or did not complete baseline data collection 
(n = 26,659). This resulted in 475,813 participants who 
were enrolled in our study. A study flow chart of the anal-
ysis process is presented in Fig. 1. All participants have a 
complete case analysis.

Ascertainment of exposure and basic characteristics
According to the UKB, BMI was measured by weight 
(kg) divided by height measured per square meter 
(m2). The basic characteristics of each participant 
were primarily identified using registration records. 

Keywords:  Body mass index (BMI), Genetic susceptibility, Alzheimer’s disease (AD), Bidirectional Mendelian 
randomization (MR), UK Biobank
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Follow-up occurred from the registration date to the 
time of AD diagnosis, death, or final follow-up time 
(December 2020), whichever occurred first.

Definition of genetic risk score
Regarding quality control, the input procedures and 
genotyping for participants included in the UKB have 
been described previously [28]. In this study, the newly 
discovered loci from the UKB were not included to 
reduce false positives. 29 independent single nucleo-
tide polymorphisms (SNPs) with significant asso-
ciation with AD were selected based on a previous 
genome-wide association study (GWASs) [29–31].

The selected SNPs are listed in the Additional file 2: 
Table S1. For each individual included in the UKB, an 
AD-GRS was determined using the previously pub-
lished method [32]. The effect size (beta-coefficient) 
of each SNP was derived from the reported GWAS 
results [30]. Each participant was assigned as one of 
the following genetic risks for AD: High (5 quintile), 
intermediate (2–4 quartile), or low (1 quintile).

Outcome assessment
In the UKB database, the AD outcome of each par-
ticipant is determined by algorithmically-defined out-
comes (https://​www.​ukbio​bank.​ac.​uk).

MR analyses
MR is based on the natural and random classification of 
genetic variation during meiosis to produce the random 
distribution of genetic variation in a population [20]. 
Genetic variation has been used as an instrumental vari-
able (IV). In bidirectional MR, exposure instruments and 
outcome are used to assess whether the “exposure” vari-
able causes the “outcome” or the “outcome” causes the 
“exposure"[33], and it is done using the SNPs to study 
the causal relationship in the separate GWASs [34]. The 
BMI genetic IV was obtained from a GWAS of UKB 
participants (https://​gwas.​mrcieu.​ac.​uk/; GWAS ID: 
ukb-b-19953). AD genetic IV data were also obtained 
from a GWAS [(https://​gwas.​mrcieu.​ac.​uk/; GWAS ID: 
ieu-b-2; data from Alzheimer Disease Genetics Consor-
tium (ADGC), European Alzheimer’s Disease Initiative 
(EADI)]. To remove IVs with linkage disequilibrium, 
SNPs were clumped for independence if they had a corre-
lation of r2 > 0.001 [35]. Two methods—Inverse variance 
weighted (IVW)-MR and MR-Egger—have been primar-
ily used for MR analysis [36]. To further ensure the reli-
ability of the MR results, three other methods including 
Weighted median, Simple mode and Weighted mode 
were also used simultaneously.

First, we explored the causal relationship between BMI 
(exposure) and AD (outcome). The exposure and out-
come data are available in the Additional file  2: Tables 
S2 and S3, respectively. After harmonizing the effect 

Fig. 1  The flow chart of the analysis process. BMI, Body mass index; AD, Alzheimer’s disease; AD-GRS, Alzheimer’s disease genetic risk score; ADGC, 
Alzheimer Disease Genetics Consortium; EADI, European Alzheimer’s Disease Initiative; MR, Mendelian randomization

https://www.ukbiobank.ac.uk
https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
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allele and removing the SNPs for being palindromic with 
intermediate allele frequencies, the remaining 433 SNPS 
were further analyzed using MR. After calculating the 
MR results, we next conducted a sensitivity analysis [37] 
mainly from the following three aspects: (1) Heterogene-
ity test: To test for differences among IVs. As these results 
showed a strong heterogeneity among IVs (p < 0.05), we 
next used a random effects model to estimate MR effect 
size. However, the random effects model yielded similar 
causal association results (p > 0.05). (2) Pleiotropy test: 
To test for horizontal pleiotropy in multiple IVs, which is 
often expressed by the intercept of MR Egger’s law. Our 
results showed that there was no horizontal pleiotropy 
across multiple IVs (p > 0.05). (3) Leave-one-out sensitiv-
ity test: To calculate MR results of the remaining IVs after 
successive elimination of each IV. No matter which SNP 
was removed, it had no fundamental effect on the result, 
showing that our results were robust (Additional file  1: 
Figure S1). The visualization of the Mendelian randomi-
zation results and a detailed explanation of the conclu-
sion are shown in Additional file 1: Figures S2–S4.

Second, we explored the reverse causal relationship 
between BMI (outcome) and AD (exposure). The expo-
sure and outcome data are shown in Additional file  2: 
Tables S4 and T5, respectively. After calculating these MR 
results, we next performed a sensitivity analysis as pre-
viously described: (1) Heterogeneity test: These results 
showed a strong heterogeneity among IVs (p < 0.05), and 
a further random effects model yielded similar causal 
association results (p < 0.001). (2) Pleiotropy test: Our 
results showed that there was no horizontal pleiotropy 
across multiple IVs (p > 0.05). (3) Leave-one-out sensitiv-
ity test: Regardless of which SNP was removed, it had no 
fundamental effect on the results, indicating that our MR 
results were robust (Additional file 1: Figure S5). Mean-
while, the funnel figure showed that the funnel plot was 
symmetrical on the whole, without any obvious heteroge-
neity (Additional file 1: Figure S6).

R software (version 4.1.0) was used for all statistical 
analyses and the Two Sample MR package was used for 
MR analyses.

Statistical analyses
Comparison of the baseline characteristics between con-
trol and AD groups was performed using the Chi-square 
(or univariate logistic regression) or Wilcoxon rank sum 
test. The P values were tested and adjusted by Benja-
mini–Hochberg false discovery rate (FDR) method. Con-
tinuous variables are represented as mean ± standard 
deviation or median ± interquartile range (IQR).

A restricted cubic spline (RCS) was used to further 
study the potential nonlinear relationship between BMI 
and AD. Moreover, an age subgroup analysis was also 

performed. The model was adjusted for age, Townsend 
deprivation index (TDI), sex, smoking, ethnicity, educa-
tion level, alcohol use, hypertension, stroke, myocardial 
infarction, and diabetes. In addition, we divided BMI 
into three groups (< 23 kg/m2, 23–30 kg/m2, > 30 kg/m2) 
according to the RCS results.

A Kaplan–Meier survival curve was used to show 
the risk of AD among the three BMI groups (< 23  kg/
m2, 23–30  kg/m2, > 30  kg/m2). The BMI (23–30  kg/m2) 
group was used as the control group, and the differences 
between the three groups were evaluated using log-rank 
tests.

A Cox proportional risk model was used to test the 
association between BMI and AD. The multivariable 
model 1 was unadjusted, model 2 was adjusted for age 
and sex, and model 3 was adjusted for age, TDI, sex, 
smoking, ethnicity, education level, alcohol use, hyper-
tension, stroke, myocardial infarction, and diabetes.

A Cox proportional risk model was used to estimate 
the association between BMI and AD-GRS for risk of AD. 
The multivariable model was adjusted for age, TDI, sex, 
education level, alcohol use, hypertension, stroke, myo-
cardial infarction, and diabetes.

All statistical analyses were performed with the R pack-
age (version 4.1.0). A p value < 0.05 was considered statis-
tically significant.

Results
Basic characteristics of control and AD groups
The mean follow-up time was 11.58 years. We compared 
the basic characteristics of participants who developed 
AD (AD group, n = 886) and those who did not (control 
group, n = 474,927). As shown in Table 1, the AD group 
had a higher age and a larger TDI (p < 0.05). Those that 
were male, had a history of smoking, or were of mixed 
race as well as those with hypertension, diabetes, or a his-
tory of myocardial infarction or stroke had higher rates 
of AD (p < 0.05). Moreover, a lower education level corre-
lated with a higher incidence of AD (p < 0.05). In addition, 
there were no significant differences in BMI between the 
AD and control groups.

The association between BMI and the risk of AD analyzed 
using RCS
When assessing the results from previous studies, the 
effect of BMI on AD risk remains controversial [15–17]. 
As shown in Fig. 2A, there was a nonlinear relationship 
in the 37–73  years age group (p for non-linear < 0.001). 
Previous studies have defined 40–59  years as middle-
aged and 60  years and older as elderly [38]. We further 
analyzed these age subgroups. Interestingly, as shown 
in Fig.  2B, there was no significant association between 
BMI and AD risk in the 37–59  years age group (p for 
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non-linear = 0.717). However, as shown in Fig. 2C, there 
was a nonlinear relationship in the 60 years and older age 
group (p for non-linear < 0.001).

To further explore the appropriate BMI range between 
BMI and the risk of AD, we divided BMI into three 
groups according to the RCS results shown in Fig.  2. 
We used Kaplan–Meier survival curves to demonstrate 
the risk of AD among the three BMI groups (< 23  kg/
m2, 23–30 kg/m2, and > 30 kg/m2). As shown in Fig. 3A, 
there was no significant difference in risk of developing 
AD across the three BMI groups of the 37–59 years old 
group. However, for participants aged 60 years and older, 
there was a significant difference across the three BMI 

groups (Fig. 3B). Compared with the BMI (23–30 kg/m2) 
group, the BMI (< 23 kg/m2) group had a significant asso-
ciation with a higher risk of AD (p < 0.001), while the BMI 
(> 30  kg/m2) group had an association with a lower AD 
risk (p = 0.17).

In summary, our results indicated a nonlinear rela-
tionship between BMI and AD risk in participants 
aged 60  years or older, but not in participants aged 
37–59  years. Moreover, for participants aged 60  years 
and older, the BMI (< 23 kg/m2) group had a significant 
association with a higher risk of AD.

Hazard ratio estimation for AD using Cox proportional risk 
model
As shown in Fig. 4A, for participants aged 60 years and 
older, compared with the BMI (23–30 kg/m2) group, the 
BMI (< 23  kg/m2) group was associated with a higher 
AD risk (HR = 1.35; 95% CI 1.118–1.64, p < 0.01) in the 
unadjusted model 1, the BMI (< 23  kg/m2) group was 
associated with a higher AD risk (HR = 1.585; 95% CI 
1.304–1.928, p < 0.001) and the BMI (> 30  kg/m2) group 
was associated with a lower AD risk (HR = 0.741; 95% CI 
0.618–0.888, p < 0.01) in the multivariable adjusted model 
3.

For participants aged 60  years and older, our results 
indicated that the participants with the BMI (< 23 kg/m2) 
were associated with a higher AD risk.

Joint association between BMI and AD‑GRS for risk of AD
In combination, genetic and environmental factors have 
been considered main contributors to the progression of 
AD [3]. Therefore, we further investigated the potential 
interaction between genetic susceptibility and BMI on 
the risk of AD. As shown in Fig. 4B, there was no statis-
tically significant interaction between BMI and GRS (p 
for interaction = 0.14). Additionally, participants with a 
combination of high AD-GRS and BMI (< 23 kg/m2) were 
associated with the highest AD risk (HR = 3.034; 95% CI 
2.057–4.477, p < 0.001). In addition, compared with the 
BMI (< 23  kg/m2), the higher BMI was associated with 
lower risk of AD in participants with the same intermedi-
ate or high AD-GRS.

Bidirectional MR of BMI and AD
First, we explored the causal relationship between BMI 
(exposure) and AD (outcome). A summary of the MR-
based analysis of BMI and AD risk is shown in Fig. 5A. 
Our five MR analysis results indicated that genetically 
predicted higher risk of BMI was not associated with the 
risk of AD (p > 0.05).

Second, we further explored the reverse causal rela-
tionship between BMI (outcome) and AD (exposure). 
The summary of the MR-based analysis of BMI and AD 

Table 1  Comparison of the basic characteristics between the 
control (n = 474,927) and AD groups (n = 886)

IQR interquartile range, TDI Townsend deprivation index

Characteristics Control group AD group P-adjusted

Age (Median, IQR) 58 (50,63) 66 (62,68)  < 0.001

TDI (Median, IQR) −2.2 (−3.7,0.5) −2 (−3.6,1.1) 0.0693

Sex (n, %)  < 0.001

 Female 257,988 (54.3) 431 (48.6)

 Male 216,939 (45.7) 455 (51.4)

Ethnicity (n, %)  < 0.01

 White people 432,898 (91.2) 820 (92.6)

 Mixed people 17,394 (3.7) 40 (4.5)

 Other people 24,635 (5.2) 26 (2.9)

 Education (n, %)  < 0.001

 College/University 155,879 (32.8) 168 (19)

 Other 319,048 (67.2) 718 (81)

Smoking (n, %)  < 0.001

 Never 260,085 (54.8) 422 (47.6)

 Previous 165,055 (34.8) 381 (43)

 Current 49,787 (10.5) 83 (9.4)

Alcohol (n, %)  < 0.001

 Never 20,271 (4.3) 77 (8.7)

 Previous 16,833 (3.5) 66 (7.4)

 Current 437,823 (92.2) 743 (83.9)

Myocardial infarction (n, %)

 No 455,682 (95.9) 776 (87.6)  < 0.001

 Yes 19,245 (4.1) 110 (12.4)

Stroke (n, %)  < 0.001

 No 462,880 (97.5) 787 (88.8)

 Yes 12,047 (2.5) 99 (11.2)

Diabetes (n, %)  < 0.001

 No 470,331 (99) 855 (96.5)

 Yes 4596 (1) 31 (3.5)

Hypertension (n, %)  < 0.001

 No 329,896 (69.5) 379 (42.8)

 Yes 145,031 (30.5) 507 (57.2)

BMI (Median, IQR) 26.7 (24.1,29.9) 26.6 (23.9,29.4) 0.142
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risk is shown in Fig. 5B. In the reverse direction, our five 
MR analysis results indicated that genetically predicted 
higher risk of AD was associated with lower BMI (OR < 1, 
p < 0.001). Figure 5C and D are visualizations of the MR 
results, which further confirmed the results shown in 
Fig. 5B.

Our results indicated there was a reverse causality 
between BMI and AD risk, and genetically predicted 
higher risk of AD was associated with lower BMI, 

suggesting that reduced BMI could be one of the early 
manifestations of AD.

Discussion
In this large-scale study with an average follow-up time of 
more than 10 years, we have the following main findings: 
1. our results indicated there was a nonlinear relationship 
between BMI and AD risk in participants aged 60 years 
or older, but not in participants aged 37–59 years; 2. for 

Fig. 2  The restricted cubic splines (RCS) for analysis of the relationship between BMI and incidence of AD. A: 37–73 (years), B: 37–59 (years), C: 
60–73 (years). Adjusted for age, TDI, sex, smoking, ethnicity, education level, alcohol use, hypertension, stroke, myocardial infarction, and diabetes

Fig. 3  The Kaplan-Meier survival curve showing the risk of AD across the three BMI groups. A: 37–59 (years), B: 60–73 (years). The BMI (23–30 kg/m2) 
group was used as control group, and the differences between the three groups (< 23 kg/m2, 23–30 kg/m2, and > 30 kg/m2) were evaluated using 
log-rank tests
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participants aged 60 years and older, our results indicated 
that participants with the BMI (< 23 kg/m2) were associ-
ated with a higher AD risk; 3. compared with the BMI 
(< 23 kg/m2), the higher BMI was associated with lower 
risk of AD in participants with the same intermediate or 
high AD-GRS; 4. there was a reverse causality between 
BMI and AD analyzed using bidirectional MR.

With global incidence of both obesity and dementia 
increasing year by year, understanding the causal rela-
tionship between BMI and AD risk has become a pub-
lic health priority [39]. To the best of our knowledge, 
our study is the first to use bidirectional MR to establish 

a causal relationship between BMI and AD risk. Our 
results showed that there is a reverse causality between 
BMI and AD risk analyzed using bidirectional MR, sug-
gesting that reduced BMI could be one of the early mani-
festations of AD.

Possible pathogenesis of BMI declines in AD patients 
has been investigated in previous studies. Reduced hip-
pocampal volume and thinning of the entorhinal and 
medial temporal cortices are common imaging findings 
in AD patients [40]. Imaging data also indicate that brain 
structural changes, including changes of whole brain and 
hippocampal atrophy, are associated with alterations in 

Fig. 4  The Cox proportional risk model estimating the hazard ratio of AD. A: model 1 was unadjusted, model 2 was adjusted for age and sex, and 
model 3 was adjusted for age, TDI, sex, smoking, ethnicity, education level, alcohol use, hypertension, stroke, myocardial infarction, and diabetes. B: 
Joint association between long BMI and genetic risk score for AD. The multivariable model was adjusted for age, TDI, sex, education level, alcohol 
use, hypertension, stroke, myocardial infarction, and diabetes. The vertical line indicates a reference value of 1
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body composition, including reductions in more specific 
measures of lean mass [41]. The potential mechanisms 
underlying the pathophysiological relationship between 
BMI and AD risk include neuropathological changes 
occur in regions like hypothalamus that play critical 
roles in regulation of energy metabolism and food intake 
[42]. Behavioral and cognitive changes associated with 
dementia can also affect weight by interfering with nutri-
tion (forgetting to eat) or by reducing physical activity (a 
strong predictor of sarcopenia) [43]. In addition, Apoli-
poprotein E (APOE), produced primarily by astrocytes in 
the central nervous system, is a major cholesterol carrier 
that transports lipids to neurons to maintain synapses 
and promote damage repair, which is linked to increased 
accumulation of cortical amyloid-β (Aβ) [44]. The E4 
allele of APOE gene (APOE4) is the strongest genetic 
risk factor for late AD [45]. The accumulation of Aβ in 
APOE4 + individuals is regulated by leptin signaling in 
the hypothalamus [46], and leptin signaling pathway 
itself could lead to the synthesis and release of anorexia 
neuropeptides that may contribute to weight loss [47, 48].

Although our bidirectional MR results showed no posi-
tive causal relationship between BMI and AD risk due to 
the limitations of the MR method, a false-negative result 
cannot be ruled out. Our MR method mainly studied 
linear causality. However, our observational study found 

that the association between higher BMI and AD risk 
was non-linear. In addition, after the participants were 
grouped according to AD-GRS, a lower BMI was still 
associated with a higher risk of AD in the intermediate 
or high AD-GRS groups. Studies also showed that higher 
BMI-related genetic variants may slightly reduce the risk 
of AD [18], however, their non-linear relationship has 
been studied. Therefore, we speculated that there might 
be a non-linear causal relationship between BMI and the 
risk of AD. However, more research is needed to clarify 
this.

The possible mechanism underlying that high BMI 
is associated with lower risk of AD in older individuals 
remains poorly understood. Blautzik et  al. showed that 
even among APOE4 carriers, BMI was negatively associ-
ated with cortical amyloid load, glucose metabolism in 
posterior cingulate gyrus, and recent cognitive decline 
[47]. Adipose tissue releases molecules such as leptin and 
adiponectin, which bind to receptors in the hippocampus 
to regulate neuronal excitability, increase synaptogen-
esis, and prevent amyloid-induced neuronal cell death 
[49, 50]. In addition, microglia are innate immune cells 
of the central nervous system, which can prevent devel-
opment of AD by inhibiting accumulation of Aβ [51]. 
Adiponectin can inhibit Aβ-induced inflammation and 
promote anti-inflammatory properties of microglia [52, 

Fig. 5  A: Summary of the Mendelian Randomization-Based Analysis of BMI (exposure) and AD (outcome). B: Summary of the Mendelian 
Randomization-Based Analysis of AD (exposure) and BMI (outcome).C: Scatter plot. Each point on this graph represents an IV, and the line on each 
point reflects a 95% confidence interval. D: The MR effect size for AD on BMI through the IVW and MR Egger methods
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53]. Adiponectin receptor agonists can suppress micro-
glia and astrocyte activation and restore microglia Aβ 
phagocytosis in mouse models of AD [54]. Since AD is 
an age-related disease, this might partially explain why 
high BMI in old age is associated with a lower risk of 
AD development [55]. However, further research will be 
needed to understand this mechanistic basis.

There is no significant association between BMI and 
AD risk in observational studies of participants aged 
37–59  years old using RCS. Because the preclinical 
phase of dementia can last for more than 10 years [56], 
most of the participants may not have reached the diag-
nostic criteria for AD, and this population (37–59 years 
old) requires further follow-up in the future. Genetic and 
environmental factors have been considered contribu-
tors to the progression of AD [3]. To our knowledge, this 
is the first study to investigate the interaction between 
BMI and GRS on development of AD. As expected, for 
participants aged 60 and older, we observed that partici-
pants with high genetic risk had a higher risk of AD. In 
addition, a lower BMI (< 23 kg/m2) was associated with a 
higher risk of AD in the intermediate and high AD-GRS 
groups. Since genetic factor is an unmodifiable factor for 
the risk of AD, more attention should be paid to the man-
agement of BMI, especially in the populations with inter-
mediate or high AD-GRS. It is considered that increased 
BMI (greater than 30 kg/m2) may lead to cardiovascular 
and metabolic diseases [57]. In addition, we also found 
that there was a U-shaped association between BMI and 
all-cause mortality, and higher BMI (BMI > 30  kg/m2) 
and lower BMI (BMI < 23  kg/m2) were associated with 
a higher risk of all-cause mortality (Additional file  1: 
Figure S7). These findings suggest that a higher BMI 
(BMI > 30  kg/m2) was not associated with a higher risk 
of AD, possibly due to the complications that had led to 
death in participants before AD was diagnosed, further 
validation is needed in future studies. Therefore, BMI 
(23–30  kg/m2) may be a potential intervention for AD 
without increasing complications and all-cause mortality.

Conclusions
There was a reverse causality between BMI and AD risk 
analyzed using MR. For participants aged 60 and older, 
the higher BMI was associated with a lower risk of AD 
in participants with the same intermediate or high AD 
genetic risk. BMI (23–30 kg/m2) may be a potential inter-
vention for AD.

Limitations
This study was based on the UKB, which includes par-
ticipants of a predominantly European ancestry. While 
this may affect the applicability of the results to other 
ethnicities, it does not change the internal validity of 

this study. During our follow-up, the BMI of partici-
pants may change, which is also one of the limitations of 
this study. However, the design of randomized trials for 
BMI is hardly feasible, and future longitudinal trajectory 
changes may overcome this limitation.
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