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1  | INTRODUC TION

Lung cancer is one of the most common cancers in the world and 
has received much attention in recent years due to its association 
with high morbidity and mortality.1 In 2018, the World Health 
Organization reported the estimated morbidity and mortality asso-
ciated with lung cancer to be about 11.6% and 18.4%, respectively; 
in China, its incidence and mortality remain high in both men and 
women.2 Lung cancer has two main subtypes, small-cell lung cancer 

(SCLC) and non-small-cell lung cancer (NSCLC). Based on pathol-
ogy, NSCLC has various subtypes, such as adenocarcinoma (LUAD), 
squamous carcinoma (LUSD) and adenosquamous carcinoma. 
LUAD, one of the most malignant cancers, is often diagnosed at a 
late stage and has a poor clinical prognosis.3 In addition, it has been 
reported that LUAD is associated with a high degree of tumour me-
tastasis.4,5 Therefore, it is of extreme importance to research the 
factors associated with lung cancer progression and its poor clinical 
prognosis.
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Abstract
Lung adenocarcinoma (LUAD) is a highly malignant cancer. Although competing en-
dogenous RNA (ceRNA)-based profiling has been investigated in patients with LUAD, 
it has not been specifically used to study metastasis in LUAD. We found 130 differ-
entially expressed (DE) lncRNAs, 32 DE miRNAs and 981 DE mRNAs from patients 
with LUAD in The Cancer Genome Atlas (TCGA) database. We analysed the func-
tions and pathways of 981 DE mRNAs using the Gene Ontology (GO) and the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) databases. Based on the target DE 
mRNAs and DE lncRNAs of DE miRNAs, we established an lncRNA-miRNA-mRNA 
ceRNA network, comprising 37 DE lncRNAs, 22 DE miRNAs and 212 DE mRNAs. 
Subsequently, we constructed a protein-protein interaction network of DE mRNAs 
in the ceRNA network. Among all, DE RNAs, 5 DE lncRNAs, 5 DE miRNAs and 45 DE 
mRNAs were confirmed found to be associated with clinical prognosis. Moreover, 3 
DE lncRNAs, 4 DE miRNAs and 9 DE mRNAs in the ceRNA network were associated 
with clinical prognosis. We further screened 3 DE lncRNAs, 3 DE miRNAs and 3 DE 
mRNAs using clinical samples. These DE lncRNAs, DE miRNAs and DE mRNAs in 
ceRNA network may serve as independent biomarkers of LUAD metastasis.
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Cancer progression is closely associated with cancer cell 
metastasis in LUAD. Using CRISPR/Cas9 technology, Huang 
et al found that catenin knockout attenuates tumour cell metasta-
sis and that catenin effectively enhances cell proliferation and cell 
cycle through Wnt signalling.6 DNA damage results in cell death, 
although cancer stem cells are able to survive for long periods by 
avoiding DNA damage. Poly (ADP-ribose) polymerase 1 promotes 
DNA repair in cancer cells7 and is associated with distant metas-
tasis in patients with LUAD.8 High α1-antitrypsin expression pre-
dicts poor prognosis in 88 patients with LUAD and enhances lung 
cancer cell invasion and metastasis.9 The serine protease inhibitor 
Kazal type 1, a defined prognostic biomarker, was also reported 
to control cancer cell growth and metastasis.10 Although cancer 
metastasis is regulated by various proteins, it is important to note 
that there are many other factors that regulate these proteins in 
the tumour microenvironment.

Long non-coding RNA (lncRNAs) are a type of non-coding RNAs 
that are longer than microRNAs (miRNAs). Numerous recent stud-
ies have demonstrated that lncRNAs are abnormally expressed in 
tumour cells and can interact with miRNA or mRNA to regulate 
tumour progression. CAR10, a type of lncRNA, is up-regulated in 
patients with LUAD and increases cancer cell metastasis and epi-
thelial-to-mesenchymal transition by binding to miRNA30 and 
miRNA203.11 MALAT1, HCP5, UCA1 and AS1 have been found to 
promote tumour development and metastasis, and are associated 
with the clinical prognosis of LUAD.12-15 MiRNAs, comprising 22 
nucleotides, are another type of non-coding RNAs that regulate 
mRNA expression by binding to the target region in mRNA.16 miR-
NAs control tumour cell stemness and metastasis by acting either as 
oncogenes or as tumour suppressors. For example, miRNA-520c-3p 
is expressed at low levels at the tumour site and negatively regu-
lates the biological behaviour of cancer cells through binding to 
Akt1 and Akt2.17 MiRNA-126-3p and miRNA-126-5p are involved 
in the progression of LUAD and are positively associated with the 
TNM stage and metastasis.18 In recent years, accumulating evidence 
has suggested that competing endogenous RNA (ceRNA) competi-
tively binds to miRNA to regulate miRNA or mRNA expression.19,20 
However, investigation of ceRNAs relationships (either single or mul-
tiple) in isolation is not ideal, as the tumour microenvironment is very 
complex, and isolation studies cannot correctly mimic the complex-
ity of this microenvironment.

The Cancer Genome Atlas (TCGA) is a public database that hosts 
a huge amount of sequencing data from many types of cancers, in-
cluding lung, liver, colon and breast.21 It is of great importance to 
study the complex crosstalk within ceRNA networks by analysing 
sequencing data. Sui et al analysed the lncRNA-miRNA-mRNA net-
work using TCGA data from patients with LUAD and found many 
differentially expressed (DE) lncRNAs, DE miRNAs and DE mRNAs 
in patients with stages I-II and III-IV LUAD.22 ceRNAs in patients 
with LUAD have been widely researched in recent years using 
TCGA data.23-25 However, ceRNA networks have not been previ-
ously investigated in the context of LUAD metastasis. Therefore, 

our objective was to obtain an in-depth understanding of the ceRNA 
network in cancer metastasis, using metastatic and non-metastatic 
tumour data from the TCGA database.

2  | MATERIAL S AND METHODS

2.1 | TCGA data from patients with LUAD

Sequencing data for lncRNA, miRNA and mRNA from patients 
with LUAD were collected from TCGA (https://portal.gdc.can-
cer.gov/), and the clinical parameters of all patients were listed 
(Table S1). lncRNA-seq and mRNA-seq data were normalized using 
the FPKM method according to the formula FPKM = (RCg × 109)/ 
(RCpc × L). In addition, two separate files (mirnas.quantification.txt 
and isoforms.quantification.txt) were used to read the 'per million 
mapped reads' for miRNA-seq data normalization. Patients with 
LUAD were screened for further analyses according to the follow-
ing criteria: 1) LUAD patients with tumours other than lung cancer 
were excluded; 2) only LUAD patients with clinical information 
were included; and 3) only LUAD patients with lncRNA, miRNA 
and mRNA sequencing data were included. We obtained data for 
21 LUAD patients with metastasis (M1) and 283 LUAD patients 
without metastasis (M0).

Forty-one treatment-naïve patients with LUAD were en-
rolled in the First Affiliated Hospital of Zhengzhou University 
(Zhengzhou, China) and were diagnosed with lung cancer and no 
other diseases. Ethical approval was obtained from the Human 
Research Ethics Committee (First Affiliated Hospital of Zhengzhou 
University, China). Written informed consent was obtained from 
all participants.

2.2 | Analysis of DE RNAS (lncRNA, miRNA and 
mRNA) in M0 and M1 patients

The random variance model t test was used to identify the DE RNAs 
(lncRNA, miRNA and mRNA) after lncRNA-seq, mRNA-seq and 
miRNA data in M0 and M1 patients were normalized. DE RNAs were 
screened using the false discovery rate (FDR) method; those with fold 
change > 1.2 and P < .05 were considered significantly different.26-28 
Hierarchical cluster analysis was performed by EPCLUST.

2.3 | DE mRNA functional enrichment and 
pathway analysis

DE mRNA functional enrichment was analysed by screening against 
the Gene Ontology (GO) database to obtain information regarding 
the biological functions of mRNA.29 In addition, Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis was used to enrich the dif-
ferential pathways in M0 and M1 patients on the basis of the DE 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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mRNAs.30 Fisher's exact test was used to select significantly differ-
ent functions and pathways (P < .05).

2.4 | Construction of cerna network and protein-
protein interaction (PPI) network

On the basis of the 981 DE mRNAs and 32 DE miRNAs, MiRanda 
(http://www.micro rna.org/), Targetscan (http://www.targe tscan.org/) 
and miRWalk (http://129.206.7.150/) were used to screen the target 
mRNAs of the miRNAs. Next, using miRanda (http://www.micro rna.
org/) and PITA (https://genie.weizm ann.ac.il/pubs/ mir07/mir07_exe.
html), we obtained the target lncRNAs of miRNAs based on 32 DE 
miRNAs and 130 DE lncRNAs. Finally, based on the predicted relation-
ships miRNA-mRNA and miRNA-lncRNA, a ceRNA network (lncRNA-
miRNA-mRNA) was constructed.31

We selected the DE mRNAs in the ceRNA network and predicted 
the protein-protein interactions (PPIs) using the String database. 
Finally, a PPI regulatory network was constructed using Cytoscape 
3.1.0 (http://cytos cape.org/).32-34 The protein interaction score 
was > 0.4 in this PPI network.

2.5 | Survival analysis of DE lncRNAs, DE 
miRNAs and DE mRNAs

Patients with LUAD and survival information in the TCGA database 
were divided into two groups, low expression and high expres-
sion, according to the medians of DE lncRNAs, DE miRNAs and DE 
mRNAs, respectively. Then, these DE RNAs were selected to ana-
lyse survival using the univariate Cox proportional hazards regres-
sion model. However, this method was not applicable to analyse the 
survival curves crossed, and therefore, the two-stage procedure was 
used. P < .05 was considered statistically significant.

2.6 | RNA extraction

Tumour and normal tissues from the 41 patients with LUAD were col-
lected for RNA extraction. Tissues were cut into small pieces and placed 
into RNase-free tubes, and RNA was extracted using Trizol (Takara). 
Briefly, chloroform was used to separate RNA, which was precipitated 
with isopropanol. Finally, RNA was washed in 75% ethanol and the RNA 
concentration was measured using Nanodrop 2000 (Agilent).

2.7 | Real-time quantitative polymerase chain 
reaction (QRT-PCR)

cDNA was synthesized from mRNA and lncRNA according to the 
manufacturer´s instructions (Takara, Japan), and the miScript II RT kit 
(Qiagen) was used for cDNA synthesis from miRNA. Finally, the SYBR 
Premix Ex Taq was used for qRT-PCR according to the manufacturer's 
instructions using the following reaction conditions: 95°C for 30 s, fol-
lowed by 40 cycles of 94°C for 5 s and 60°C for 30 s. Each 20 μL reac-
tion included 10 μL SYBR Green (Roche), 2 μL cDNA which was diluted 
5-10 times, 10 μ M primer forward 0.8 μL, 10 μM primer reverse 0.8 μL 
and 6.4 μL water.

2.8 | Statistical analysis

GraphPad Prism 7.00 was used to construct histograms. All data in 
qRT-PCR were expressed as the mean ± the standard error of the 
mean (SEM). P < .05 was statistically significant. Student's t test was 
used to compare the qRT-PCR results. DE RNAs in TCGA were identi-
fied by the random variance model t test. Log-rank test and two-stage 
procedure were used for Kaplan-Meier survival curve analysis. Cox 
regression analysis was used to assess the relationship between DE 
RNAs and survival time.

F I G U R E  1   Hierarchical clustering dendrograms of patients with lung adenocarcinoma. The heat map reflects 130 differentially expressed 
(DE) lncRNAs (A), 32 DE miRNAs (B), and 981 DE mRNAs (C). Each column represents a patient and each row represents miRNA, lncRNA or 
mRNA. Red colour represents up-regulation, and blue colour represents down-regulation

http://www.microrna.org/
http://www.targetscan.org/
http://129.206.7.150/
http://www.microrna.org/
http://www.microrna.org/
https://genie.weizmann.ac.il/pubs/
http://cytoscape.org/)
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3  | RESULTS

3.1 | DE RNAs (lncRNA, miRNA and mRNA) in 
patients with LUAD

Patients with LUAD (n = 304) from the TCGA database were classi-
fied into two groups, M0 (n = 283) and M1 (n = 21); data from these 
patients were screened for metastasis-associated factors (Figure S1). 
First, we compared these two groups and obtained the DE RNAs, 130 
lncRNAs, 32 miRNAs and 981 mRNAs (P < .05 and fold change > 1.2; 
Table S2, Figure 1). The top 5 up-regulated lncRNAs were H19, RP11-
284F21.10, ERVH48-1, CTD-2139B15.5 and RP11-284F21.7. The 
top 5 down-regulated lncRNAs were RNU4-62P, RP11-379F4.6, 
RP11-1334A24.6, SNORA2 and AC009237.8 (Table 1). The top 
5 up-regulated miRNAs were hsa-miR-675-3p, hsa-miR-4661-5p, 
hsa-miR-1224-5p, hsa-miR-149-5p and hsa-miR-451a. The top 5 
down-regulated miRNAs were hsa-miR-28-3p, hsa-miR-1249-3p, 
hsa-miR-22-3p, hsa-miR-625-3p and hsa-miR-342-5p (Table 2). The 
top 5 up-regulated mRNAs were ALDH3A1, INHA, UCN3, SCG2 and 
VGF. The top 5 down-regulated mRNAs were LSM10, NLRP3, TWF2, 
PRICKLE2 and MGAT1 (Table 3).

3.2 | Go enrichment and KEGG pathways associated 
with de mRNAmRNA

In patients with LUAD, 981 DE mRNAs were annotated according to 
information in the GO database. We enriched the functions of these 
mRNAs (P < .05) using GO. The top 25 GO functions of the up-reg-
ulated mRNAs are listed in Figure 2A, whereas the top 25 GO func-
tions of the down-regulated mRNAs are listed in Figure 2B. Among 
these GO-enriched functions, cell division, DNA repair and cell pro-
liferation are positively associated with cell growth and metastasis.

To further identify the biological processes associated with the 
981 DE mRNAs, we analysed the KEGG pathways associated with 
these mRNAs. We found that the up-regulated mRNAs were pos-
itively associated with some KEGG pathways, such as the meta-
bolic pathway, cell cycle, p53 and PI3K-Akt signalling pathways, and 

signalling pathways regulating stem cell pluripotency (Figure 2C). 
These pathways have all been reported to promote cancer progres-
sion and metastasis.35,36 Meanwhile, down-regulated mRNAs were 
associated with the B cell receptors, cell adhesion molecules and 
chemokine signalling pathways (Figure 2D).

3.3 | Cerna regulatory network in patients 
with LUAD

Next, using the miRanda, Targetscan and miRWalk websites, we pre-
dicted the target mRNAs of 32 DE miRNAs from among the 981 
mRNAs screened. Then, using the miRanda and PITA websites, we 
selected the target lncRNAs of the 32 DE miRNAs from among the 
130 DE lncRNAs. By combining the aforementioned data, the lncRNA-
miRNA-mRNA ceRNA network was constructed through screening 
the miRNA-mRNA and miRNA-lncRNA targeting (Figure 3). Finally, 
we obtained 22 dominant nodes of miRNAs (9 up-regulated and 13 
down-regulated miRNAs). In this ceRNA network, some of the miRNAs 
(such as miRNA625, miRNA20a and miRNA149) have been reported 
to serve as tumour suppressors or oncogenes.

Ensembl_Gene_ID Gene Symbol
Adjusted 
P-value Regulation

Fold 
change

ENSG00000130600 H19 .0178877 Up 2.5

ENSG00000272405 RP11-284F21.10 .0064564 Up 1.99

ENSG00000233056 ERVH48-1 .0002666 UP 1.95

ENSG00000249199 CTD-2139B15.5 .0019603 Up 1.85

ENSG00000229953 RP11-284F21.7 .006571 UP 1.75

ENSG00000222057 RNU4-62P .0410318 Down 0.83

ENSG00000272440 RP11-379F4.6 .0462578 Down 0.83

ENSG00000248996 RP11-1334A24.6 .0297649 Down 0.83

ENSG00000202343 SNORA2 .0491674 Down 0.83

ENSG00000229689 AC009237.8 .0355755 Down 0.82

TA B L E  1   Top 5 up-regulated and 
down-regulated long non-coding RNAs

TA B L E  2   Top 5 up-regulated and down-regulated micro (mi)
RNAs

miRNA
Adjusted 
P-value Regulation

Fold 
change

hsa-miR-675-3p .0409407 Up 2.14

hsa-miR-4661-5p .0007762 Up 1.83

hsa-miR-1224-5p .0001262 Up 1.76

hsa-miR-149-5p .0291066 Up 1.66

hsa-miR-451a .0388346 Up 1.61

hsa-miR-28-3p .0458777 Down 0.83

hsa-miR-1249-3p .0377803 Down 0.82

hsa-miR-22-3p .007913 Down 0.77

hsa-miR-625-3p .0287589 Down 0.74

hsa-miR-342-5p .0086302 Down 0.73
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3.4 | PPI regulatory network in patients with LUAD

Based on the mRNAs in the lncRNA-miRNA-mRNA ceRNA network, 
we established a PPI regulatory network using the String database 
to better present the protein-protein interaction in M1 patients 
with LUAD (Figure 4). In the PPI regulatory network, the proteins, 
SNAP25, CCNE2, CDC5L and DICER1, were up-regulated and had 
a strong regulatory capacity; FCGR2B, VAV1, WAS, LYN and CSF1 
were down-regulated proteins that play important roles.

3.5 | Association between survival and the 
expression of lncRNAs, miRNAs and mRNAs in the 
cerna network in patients with LUAD

To further explore whether metastasis-associated lncRNAs, miR-
NAs and mRNAs in the ceRNA network were associated with 
clinical prognosis, the Kaplan-Meier survival curves for these 
molecules were generated. Finally, 5 DE lncRNAs, 5 DE miR-
NAs and 45 DE mRNAs were associated with survival (P < .05). 

Ensembl_Gene_ID Gene Symbol Adjusted P-value Regulation Fold change

ENSG00000108602 ALDH3A1 .0192206 Up 2.39

ENSG00000123999 INHA .0049966 Up 2.24

ENSG00000178473 UCN3 .00329 Up 2.16

ENSG00000171951 SCG2 .0008007 Up 2.05

ENSG00000128564 VGF .0000141 Up 2

ENSG00000198951 NAGA .0138281 Down 0.83

ENSG00000183597 TANGO2 .0137221 Down 0.83

ENSG00000174917 C19orf70 .0494865 Down 0.83

ENSG00000011132 APBA3 .0140741 Down 0.83

ENSG00000186111 PIP5K1C .0254345 Down 0.83

TA B L E  3   Top 5 up-regulated and 
down-regulated mRNAs

F I G U R E  2   GO enrichment and KEGG pathways of differentially expressed mRNA in patients with lung adenocarcinoma. Panels A and B 
show the top 25 GO functions with the most significant P-values for the up- and down-regulated mRNAs, respectively. The x-axis represents 
the number of mRNAs involved in the GO function. Panels C and D show the top 25 KEGG pathways with the most significant P-values of 
the up- and down-regulated mRNAs, respectively. The x-axis represents the number of mRNAs involved in the KEGG pathway
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Moreover, 3 DE lncRNAs, 4 DE miRNAs and 9 DE mRNAs in the 
ceRNA regulatory network were associated with clinical prog-
nosis and were able to regulate each other (Figure 5). Patients 
with higher expression of GGTA1P had better prognosis than 
those with a lower expression (Figure 6A). In contrast, patients 
with lower expression of RP11-284F21.9 showed a better clini-
cal prognosis than those with higher expression (Figure 6A). In 
patients with LUAD, low expression of hsa-miR-3934-3p and 
hsa-miR-150-5p was correlated with poor prognosis (Figure 6B). 
CBX5 and WDR76 were highly expressed in M1 patients, and 
survival analysis showed that patients expressing low CBX5 and 
WDR76 had better clinical prognosis (Figure 6C). In addition, we 
performed uni-factor cox regression analysis to examine the re-
lationship between these DE RNAs and prognostic of lung can-
cer patients (Figure S2). We found that five of the six DE RNAs 
could be independent prognosis factors to predict prognosis of 
lung cancer patients. Especially, GGTA1P, RP11-284F21.9, hsa-
miR-150-5p and CBX5 showed statistical significance as inde-
pendent prognostic factors, whereas these RNAs had crossover 
in KM survival analysis to separate lung cancer patients’ survival 
outcomes. Hsa-miR-3934-3p could not be an independent prog-
nostic factor in this analysis, which was possibly due to the small 
amount of miRNA samples with clinical data in TCGA. Overall, 
the results of cox regression analysis were consistent with the 
results of KM survival curve.

3.6 | Expression of 3 DE lncRNAs, 4 DE miRNAs and 
9 DE mRNAs in 41 patients with LUAD

After screening the DE RNAs (3 DE lncRNAs, 4 DE miRNAs and 9 DE 
mRNAs) in the ceRNA regulatory network, we further investigated the 
expression of these DE RNAs through the Gene Expression Profiling 
Interactive Analysis (GEPIA) server and using qRT-PCR, to enhance 
the reliability of our bioinformatic results. Data from 304 patients in 
the TCGA database were used for screening these DE RNAs in the re-
sults already reported here. Next, we reanalysed the expression of 3 
DE lncRNAs and 9 DE mRNAs in 483 tumour tissue and 59 normal tis-
sue samples from the TCGA database using GEPIA. It was confirmed 
that the expression of 3 DE lncRNAs, 3 DE mRNAs—regulated by hsa-
miR-3934-3p—1 DE mRNA—regulated by hsa-miR-199b-5p—1 DE 
mRNA—regulated by hsa-miR-150-5p—and 1 DE mRNA—regulated 
by hsa-miR-4661-5p—in the tumour tissue exhibited trends similar to 
that observed in the ceRNA regulatory network (Figure S3). In addi-
tion, the expression of 4 DE miRNAs was investigated by qRT-PCR, 
and the expression of hsa-miR-3934-3p, hsa-miR-150-5p and hsa-
miR-4661-5p was consistent with the results in the ceRNA regulatory 
network (Figure 7B). Therefore, based on the aforementioned results, 
3 DE lncRNAs and 5 DE mRNAs (CBX5, NMB, RAB3B, WDR76 and 
RNF130) were further analysed using qRT-PCR. The expression of 
3 DE lncRNAs (RP11-284F21.9, RP11-284F21.10 and GGTA1P) and 
3 DE mRNAs (CBX5, WDR76 and RNF130) in the 41 samples was 

F I G U R E  3   The lncRNA-miRNA-mRNA ceRNA network in patients with LUAD. The nodes highlighted in red indicate up-regulation, 
whereas the nodes highlighted in blue indicate down-regulation in patients with metastasis. Triangles, rectangles and circles represent 
lncRNAs, miRNAs and mRNAs, respectively. The bigger nodes represent stronger regulation ability, and the smaller nodes represent weaker 
regulation ability
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similar to that of the results of bioinformatic analyses, whereas 2 DE 
mRNAs NMB and RAB3B showed no difference in expression be-
tween tumour and normal tissue (Figure 7A and C). Finally, the 41 pa-
tients with LUAD were stratified into two groups, M0 and M1. Using 
qRT-PCR, we were able to verify that 3 lncRNAs, 3 miRNAs and 3 
mRNAs exhibited similar expression trends as those predicted using 
bioinformatic analyses (Figure S4).

4  | DISCUSSION

In this study, we aimed to investigate the factors affecting metasta-
sis in patients with LUAD. To comprehensively analyse these factors, 

we obtained RNA sequencing data (lncRNA, miRNA and mRNA) 
from the TCGA database. We used bioinformatics to predict and ex-
plore cancer development and metastasis. First, we screened 981 
DE mRNAs, 130 DE lncRNAs and 32 DE miRNAs, and found that 
they were dysregulated in M0 but not in M1 patients with LUAD. 
Then, we further analysed the functions of these differentially ex-
pressed mRNAs based on the GO and KEGG pathway databases. 
We established a ceRNA network, based on the DE lncRNAs, DE 
miRNAs and DE mRNAs, to visualize the interactions among these 
RNAs. In addition, we analysed the association between the differ-
entially expressed RNAs in the ceRNA network and clinical prognosis 
in patients with LUAD. Therefore, this study helps to provide a bet-
ter understanding of the mechanisms underlying cancer metastasis.

F I G U R E  4   The protein-protein 
interaction (PPI) regulatory network 
in patients with LUAD. The nodes 
highlighted in red indicate up-regulation, 
whereas the nodes highlighted in blue 
indicate down-regulation in patients with 
metastasis. The bigger nodes represent 
stronger regulation ability, and the smaller 
nodes represent weaker regulation 
ability

F I G U R E  5   Mutual regulatory relations 
among 9 survival-associated differentially 
expressed (DE) mRNAs, 3 DE lncRNAs 
and 4 DE miRNAs. The nodes highlighted 
in red indicate up-regulation, whereas the 
nodes highlighted in blue indicate down-
regulation in patients with metastasis. 
Triangles, rectangles and circles 
represent lncRNAs, miRNAs and mRNAs, 
respectively
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MiRNAs have been reported to control the biological be-
haviour of tumour cells via regulating mRNA expression.37-39 In 
our study, we first predicted that 32 DE miRNAs were associated 

with metastasis. Hsa-miR-675 is known to regulate the hypox-
ia-associated epithelial-to-mesenchymal transition in colon can-
cer cells, suggesting that hsa-miR-675 is associated with tumour 

F I G U R E  6   Kaplan–Meier curve for lncRNAs (A), miRNAs (B) and mRNAs (C). The x-axis represents time (days), and the y-axis represents 
the overall survival
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cell stemness and metastasis.40 It has been reported that the 
down-regulation of hsa-miR-149 expression is associated with 
cancer stem cell apoptosis in prostate cancer.41 Here, we found 
that the expression of hsa-miR-675 and hsa-miR-149 was higher 
in M1 patients than in M0 patients, which was consistent with the 
findings of previous studies. With the exception of hsa-miR-675 
and hsa-miR-149, other miRNAs associated with metastasis such 
as hsa-miR-28, hsa-miR-22 and hsa-miR-150 were identified. Hsa-
miR-22 has been reported to inhibit tumour cell migration and in-
vasion in colon cancer.42 It has been shown that high expression of 
hsa-miR-28 is associated with poor overall survival and relapse in 
patients with colorectal adenocarcinoma.43 The findings of these 
studies are consistent with our results indicating that DE miRNAs 
were able to mediate cancer cell progression and metastasis.

In recent years, lncRNAs have become a popular topic in cancer 
research and have been widely and thoroughly studied in various 
cancers.44 In our study, we found variation in the expression levels 
of lncRNAs (including H19, RP11-284F21.10, RP11-1334A24.6 and 
SNORA2) in M1 patients with LUAD. LncRNAs usually perform 
their biological functions by competitively binding to miRNAs. For 
example, H19 was able to protect cells from hypoxia-induced in-
jury by competitively binding to hsa-miR-139.45 Wang et al demon-
strated that the interaction of H19 and hsa-miR-675-5p mediates 
breast cancer progression.46 In our study, we constructed the ln-
cRNA-miRNA-mRNA ceRNA network of patients with metastasis 
to further the understanding of how non-coding RNA regulates 
mRNA expression. Xu et al used this bioinformatics method to es-
tablish a ceRNA network for 20 types of cancers, such as ovarian 

F I G U R E  7   Expression of differentially expressed (DE) lncRNAs (A), DE miRNAs (B) and DE mRNAs (C) in tumour and normal tissues. 
Tumour and normal tissues from 41 patients with LUAD were used to extract RNA and perform RT-PCR for DE RNA detection
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and lung cancer, and glioma.47 Reportedly, ceRNA networks can 
also be constructed to analyse the regulatory factors in one sig-
nalling pathway.48

Here, we found that the DE lncRNAs (GGTA1P, LINC00125, 
LINC00261, RP11-284F21.9 and RP11-284F21.1) in the ceRNA 
network were negatively or positively associated with clinical 
prognosis in patients with LUAD. In triple-negative breast can-
cer, patients with higher GGTA1P expression exhibit better re-
lapse-free survival.49 LINC00261 expression plays an important 
role in cell proliferation, apoptosis and invasion in choriocarci-
noma and gastric cancer,50,51 and was identified as a novel prog-
nostic biomarker in pancreatic cancer.52 Additionally, LINC00261 
is able to bind to hsa-miR-182, hsa-miR-183, hsa-miR-153 and 
hsa-miR-27a; further, hsa-miR-96 was able to regulate FOXO1 
mRNA expression, suppressing cell proliferation, migration and 
invasion of endometrial cancer cells.53 Finally, based on the sur-
vival analysis of DE RNAs in ceRNA network and experimental 
data, we identified 3 lncRNAs, 3 miRNAs and 3 mRNAs. We will 
further investigate which mRNAs play major roles in regulat-
ing metastasis, and which lncRNAs and miRNAs regulate these 
mRNAs.

In conclusion, we used an integrative biological approach to 
analyse DE mRNAs, lncRNAs and miRNAs in patients with LUAD 
in the M0 and M1 patient groups. Moreover, we obtained informa-
tion from the GO and KEGG databases to understand the functions 
and pathways associated with these screened mRNAs, lncRNAs 
and miRNAs. The lncRNA-miRNA-mRNA ceRNA network and PPI 
networks were established, revealing a novel regulatory mechanism 
for further investigation of LUAD. Finally, we also screened the DE 
mRNAs, lncRNAs and miRNAs in the network with respect to the 
clinical prognosis (using RT-PCR), which may serve as independent 
biomarkers of LUAD metastasis.
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