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ABSTRACT
Plastics take hundreds of years to degrade naturally, while their chemical degradation typically requires high
temperature and pressure. Here, we first utilize solar energy to realize the sustainable and efficient
plastic-to-syngas conversion with the aid of water at ambient conditions. As an example, the commercial
plastic bags could be efficiently photoconverted into renewable syngas by Co–Ga2O3 nanosheets, with
hydrogen and carbon monoxide formation rates of 647.8 and 158.3μmol g−1 h−1. In situ characterizations
and labelling experiments unveil water is photoreduced into hydrogen, while non-recyclable plastics
including polyethylene bags, polypropylene boxes and polyethylene terephthalate bottles are
photodegraded into carbon dioxide, which is further selectively photoreduced into carbon monoxide.
In-depth investigation illustrates that the efficiency of syngas production mainly depends on the carbon
dioxide reduction process and hence photocatalysts of high carbon dioxide reduction activity should be
designed to promote the efficiency of plastic-to-syngas conversion in the future.The concept for the
photoreforming of non-recyclable plastics into renewable syngas helps to eradicate ‘white pollution’ and
alleviate the energy crisis simultaneously.
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INTRODUCTION
Plastic products, such as shopping bags, meal boxes
and mineral-water bottles, have become one of the
most widely used man-made materials in our daily
life. It is estimated that∼359million tons of plastics
are produced annually in the world and a total
of ∼12 000 million metric tons of non-recyclable
plastic wastes will have accumulated in the natural
environment by 2050 [1]. Although these non-
recyclable plastic wastes could spontaneously de-
grade over hundreds of years, theymay also turn into
microplastics that will invade water, plants and an-
imals, and eventually transfer into the human body
[2,3]. Recently, the World Health Organization an-
nounced that >90% of the prevailing bottled water
that was tested containedmore or lessmicroplastics.
Also,Mason et al.have reported that themicroplastic
concentrations of some bottled water could amount
to>10 000 particles per liter [4].More surprisingly,
Schwabl et al. have confirmed that microplastics

had for the first time been detected in human stools,
implying unintentional ingestion of microplastics
by humans [5]. All these studies suggest that
non-recyclable plastic wastes in the environment
are encroaching on human health. However, owing
to their high stability and durability, it is still very
difficult to rapidly degrade or sustainably recycle
these discarded plastics [6,7]. Aside from the most
widely used method of landfill, traditional strategies
including pyrolysis and hydrocracking for the
degradation of these non-recyclable plastic wastes
usually require a high temperature up to 500◦C
[8]. Considering the abundant carbon sources of
plastic wastes, they may serve as the raw material
for the production of high-value-added fuels, for
which many novel techniques have been employed
to convert these non-recyclable plastic wastes into
useful carbon-based compounds [9]. For example,
Reisner et al. have realized the photoreforming of
polyethylene terephthalate (PET) and polylactic
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acid (PLA) into hydrogen (H2) and some valuable
carbon-based chemicals with the help of CNx|Ni2P
catalysts and alkaline aqueous conditions [10],
while they have also converted polyethylene (PE)
into hydrocarbons through the integrated tandem
chemical-photo/electrocatalytic processes [11].
Inspired by these great breakthroughs, it is a promis-
ing technology for utilizing solar energy to convert
the non-recyclable plastic wastes into useful carbon-
based compounds through a green and economic
pathway.

In this regard, renewable syngas, primarily com-
prising carbon monoxide (CO) and H2, may be
a promising target product since it could act as a
versatile ingredient for preparing hydrocarbon fu-
els (methanol, ethanol, etc.) as well as hydrocarbon
building blocks like ethylene and propylene [12].
To date, syngas is mainly produced by the refor-
mation of fossil fuels, including coal, oil and natu-
ral gas, under rigorous and costly conditions (e.g.
high temperature and pressure) [13,14]. For exam-
ple, Ma et al. reported that the FeCralloy woven
fiber-based catalyst could convert natural gas into
CO and H2 at a temperature of 900◦C and pres-
sure of 0.1–2 MPa [15], while Zhou et al. demon-
strated that the gasification of coal could produce
CO,H2,methane (CH4) and carbon dioxide (CO2)
at 700◦C and 3.5MPa [16]. Obviously, these strate-
gies not only demand high energy consumption, but
also result in a variety of complex by-products. In
this case, the utilization of plastic wastes as feed-
stock for clean and renewable syngas production
can contribute to the eradication of plastic pollu-
tion and the alleviation of a potential energy cri-
sis simultaneously. Bearing in mind the discussion
above, it is urgent to develop novel strategies for sus-
tainably and efficiently converting non-recyclable
plastic wastes into renewable syngas under mild
conditions.

Herein, we first propose a sustainable and eco-
friendly strategy for the photoreforming of non-
recyclable plastics into clean renewable syngas
with the assistance of H2O at ambient temper-
ature and pressure. In this process, H2O could
be photoreduced into H2, while various commer-
cial plastics including PE bags, polypropylene (PP)
boxes and PET bottles could be photodegraded
into CO (Scheme S1). Compared with the time-
consuming spontaneous degradation of plastics, the
utilization of sunlight and suitable photocatalysts
can help to realize the fast and sustainable con-
version of plastics into renewable syngas, which
could be further recycled to the plastics through
the Fischer-Tropsch synthesis and polymerization
processes.

RESULTS AND DISCUSSION
Based on the aforementioned analysis, reason-
able selection of highly active photocatalysts holds
the key for realizing plastic degradation, CO2 reduc-
tion and H2O splitting to produce renewable syn-
gas.Given this, earth-abundant and environmentally
friendly Ga2O3 could be selected as a representative
example to investigate the plastic-to-syngas conver-
sion performance [17], since its valence-band (VB)
maximum at approximately +3.16 V vs. NHE and
conduction-band (CB) minimum at approximately
−1.62 V vs. NHE at pH = 0 could satisfy some
key redox potentials of CO2/CO (−0.1 V), H+/H2
(0 V) or O2/H2O (1.23 V), and even ·OH/H2O
(2.73 V) that may take place in the photoconver-
sion process [18,19]. However, the wide band gap
of Ga2O3 may inversely result in lower photocat-
alytic performance owing to the poor solar energy
utilization efficiency. In this regard, heteroatomdop-
ing can be utilized to tailor the electronic structure of
Ga2O3, which could not only extend their photoab-
sorption, but also accelerate the carrier separation
efficiency [20]. More importantly, it could provide
a plentiful surface of exposed atoms by downsizing
the materials into atomic thickness, which could act
as highly active catalytic sites to boost the photocon-
version property [21]. Accordingly, we employ Co-
dopedGa2O3 (Co–Ga2O3) nanosheets and pristine
Ga2O3 nanosheets as ideal models to explore the
plastic-into-syngas process under mild conditions.

To this end, Co–Ga2O3 nanosheets were suc-
cessfully fabricated for the first time. As displayed
in Fig. S1, their XRD pattern could be indexed
to γ -Ga2O3 (JCPDS card No. 19-4506). The
transmission electron microscopy (TEM) image in
Fig. S2 clearly reveals their ultra-thin morphology,
while the high-resolution TEM image in Fig. S3A
shows that the lattice plane spacings of Co–Ga2O3
nanosheets were 0.25 and 0.24 nm with a dihedral
angle of 30◦, in accordance with the calculated angle
between the (113) and (222) planes of γ -Ga2O3,
suggesting their [1 –1 0] orientation. The atomic
force microscopy image in Fig. S3B and C indicates
their average thickness of∼1.05 nm, consisting well
with the thickness of 12 atoms along the [1 –1 0]
direction of γ -Ga2O3. More importantly, the annu-
lar dark-field TEM image and element mapping in
Fig. S4 depict the homogeneous distribution of Ga,
O andCo elements, while their X-ray photoelectron
spectra of theCo 2p core level in Fig. S5 exhibits two
feature satellite peaks at 787.1 and 804.1 eV, verify-
ing the introduction of Co2+ in the synthetic sample
[22]. For comparison, pristine Ga2O3 nanosheets
with the same orientation and thickness were also
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fabricated by virtue of a similar synthetic strategy
(Figs S1, S6 and S7). Furthermore, UV–vis diffuse
reflectance spectra and synchrotron-radiation pho-
toemission spectroscopy were utilized to unravel
the electronic band structures for the Co–Ga2O3
nanosheets and the Ga2O3 nanosheets (Figs S8 and
S9). Based on these results, it was demonstrated that
the VB edge and the CB edge for the Co–Ga2O3
nanosheets were located at 2.50 and –1.40 V vs.
NHE at pH = 7, while the VB and CB edges for
the Ga2O3 nanosheets were located at 3.19 and
–1.46 V vs. NHE at pH= 7.Thus, one can conclude
that both of them are capable of realizing some key
reactions such as H2O oxidation or CO2, O2 and
H2O reduction [23,24].

Todisclosewhether these twophotocatalysts can
realize the sustainable conversion of non-recyclable
plastics into clean renewable syngas under mild
conditions, the commonly used commercial plas-
tic products of PE plastic bags, PP plastic boxes
and PET plastic bottles were taken as the examples
to perform the photocatalytic experiments, wherein
the synthetic samples and the commercial plastics
weremixed inpurewater and irradiatedby simulated
sunlight (AM1.5G, 100mW/cm2) at ambient tem-
perature and pressure. Commercial plastic products
of PE plastic bags, PP plastic boxes and PET plastic
bottles were initially shredded into powders with a
size of <5 mm using a pulverizer (Figs S10–S12).
It should bementioned that small plastics (≤5mm)
were commonly defined as the microplastics, which
were particularly difficult to be recycled and may
cause some unpredictable damage to the ecosys-
tem. As displayed in Fig. 1a–c, Figs S13–S17 and
Tables S1 and S2, the powders of commercial PE
plastic bags, PP plastic boxes and PET plastic bot-
tles could be efficiently photodegraded by both the
Co–Ga2O3 nanosheets and the Ga2O3 nanosheets,
in which the gas products of H2, CO and CO2 were
detected by gas chromatography, while there was
no detectable liquid product confirmed by the 1H
NMR spectra in Fig. S13. Interestingly, there was
plenty of CO2 dissolved in the water (Tables S5 and
S6). It is worth noting that a handful of microplas-
tics with smaller size were also detected (Fig. S14),
which might have been produced during the pho-
toconversion processes, conforming to the princi-
ple of carbon balance (please see the Methods sec-
tion). Taking the commercial PE plastic bags as an
example, the evolution rates of H2, CO and CO2 for
the Co–Ga2O3 nanosheets were 647.8, 158.3 and
419.3μmol g–1 h–1—roughly 1.6, 1.9 and 1.6 times
higher than those of the Ga2O3 nanosheets, im-
plying the former’s better photoconversion perfor-
mance. Note that the weight loss for the commercial
PE plastic bags was 53% after 24 h irradiation over

theCo–Ga2O3 nanosheets and theweight loss could
reach 81%after 48 h irradiation (Fig. S15).More im-
portantly, upon adding another 100 mg of commer-
cial PE plastic bags to the photocatalytic system after
24h irradiation, theCo–Ga2O3 nanosheets alsopos-
sessed almost the same formation rates of H2, CO
and CO2 (Fig. S16), suggesting their superb pho-
tocatalytic stability. Consequently, the commercial
plastic products including PE plastic bags, PP plas-
tic boxes and PET plastic bottles could be efficiently
photodegraded into CO, while H2O could be pho-
toreduced into H2 by the Co–Ga2O3 nanosheets.

To unveil the origin of the generated products,
the photoreforming of reagent-grade PE was
carried out over the Co–Ga2O3 nanosheets in
an air atmosphere at ambient temperature and
pressure with simulated sunlight. The evolution
rates of H2, CO and CO2 were 692.0, 177.8 and
476.4 μmol g–1 h–1 (Fig. S17)—slightly higher
than those for the commercial PE plastic bags. Of
note, control experiments showed that H2 was
detected, while there was no detectable CO and
CO2 without reagent-grade PE in the photocatalytic
system, suggesting that H2 may have come from the
reduction of H2O (Table S3). To further disclose
the origin of theH2, the photoreforming experiment
of reagent-grade PE over theCo–Ga2O3 nanosheets
was performed in the pure D2O solvent. Note that
the synchrotron-radiation vacuum UV photoion-
ization mass spectrometry (SVUV-PIMS) in Fig. 2a
demonstrates that only D2 was detected in the D2O
solvent, which firmly affirmed that the generatedH2
originated from the H2O rather than the PE during
the photoreforming processes. Moreover, when the
light or photocatalyst or reagent-grade PE was re-
moved, therewas nodetectableCOandCO2 (Table
S3), verifying that CO and CO2 originated from the
photodegradation of PE by the photocatalyst. Fur-
thermore, H2 andO2 could be detected when no PE
powders were added into the photocatalytic system
under aN2 atmosphere (Fig. S18), implying that the
H2O splitting could have been triggered by these
two photocatalysts, in which some amount of H2O2
was also produced during the process (Fig. S19). To
further testify the origin of theCO2 andCO,AgNO3
was added into the solution, which helped to clearly
identify the photo-oxidation products since AgNO3
was usually considered as a trapping agent to
efficiently consume the photo-generated electrons
[25]; during the corresponding photocatalytic
process, only CO2 was detected (Fig. 2d and Table
S4), which certified that CO2 indeed derived from
the photo-oxidation of PE.This result also indicated
that CO may be generated from CO2 photore-
duction, further attested to by the corresponding
13CO2 isotope-labelling experiments in Fig. S20.
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Figure 1. Efficient photoconversion of various plastics into syngas over Co–Ga2O3 nanosheets under mild conditions. Pho-
toconversion of (a) commercial PE plastic bags, (b) commercial PP plastic boxes and (c) commercial PET plastic bottles under
simulated AM 1.5G solar irradiation at ambient temperature and pressure: the formation rates of H2 (red), CO (blue) and CO2

(yellow) for Co–Ga2O3 nanosheets and Ga2O3 nanosheets in 24 h. The error bars in (a)–(c) represent the standard deviations
of three independent measurements.
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Figure 2. Investigation of mechanism involved in the photoconversion of reagent-grade PE into syngas over Co–Ga2O3

nanosheets. Synchrotron-radiation vacuum UV photoionization mass spectrometry (SVUV-PIMS) for the gas products in
(a) the H2O and D2O isotope-labelling experiments after 24 h irradiation at hν = 16.5 eV; (b) 18O2 and (c) H2

18O isotope-
labelling experiments after 24 h irradiation at hν = 14.5 eV. (d) The formation rates of CO2 (no H2 or CO was detected) in
2 mmol/L AgNO3 solution, (e) the products in the pure O2 atmosphere, (f) the products in the pure N2 atmosphere. The error
bars in (d)–(f) represent the standard deviations of three independent measurements.

During the experiment of 13CO2 photoreduction in
pure water, only 13CO was detected, which clearly
affirmed that the generated CO stemmed from the
reduction of CO2. Furthermore, when the reaction
atmosphere changed from air to high-purity O2, the
yields of CO andCO2 did not exhibit noticeable dif-
ferences (Fig. 2e andTable S4). However, the yields
of CO and CO2 for the Co–Ga2O3 nanosheets
obviously decreased to 76.5 and 214.7 μmol g–1

h–1 in the high-purity N2 atmosphere (Fig. 2f and
Table S4), hinting that O2 should be beneficial to
the photoreforming processes. Additionally, the
18O2 isotope-labelling experiments in Fig. 2b clearly
show the presence of C16O18O, demonstrating
that O2 was indeed involved in the PE degradation

processes. The identification of C16O18O in the
H2

18O labelling experiments (Fig. 2c) also implied
the participation of H2O in the photodegradation
of PE. Moreover, upon removing H2

18O and 18O2
from the reaction system, there was no detectable
C16O18O (Fig. S21), further confirming that H2O
and O2 participated in the oxidation of PE into
CO2. From the above-mentioned results, we deduce
that the H2 stemmed from the H2O instead of the
PE, while both the O2 and H2O took part in the
oxidation of PE into CO2 and then the formed CO2
could be further reduced to CO.

To further understand the PE photoreforming
processes, in situ electron spin resonance (ESR)
spectra were employed to identify the reaction

Page 4 of 8



Natl Sci Rev, 2022, Vol. 9, nwac011

 
Ga O nanosheets2 3  

  *+ CO2
+ -+ 2(H +e )

  *COOH
+ -  + (H +e )

  *CO
 + H O2

  *+ CO
  + H O2

Δ
G

 (e
V

) 

Co-Ga O  nanosheets 2 3

Rate-determining step

0.0

0.7

1.4

2.1
c

0.0

0.4

0.8

1.2

*H+ -* + (H +e ) * + 1/2 H2

Δ
G

 (e
V

) 

Ga O nanosheets2 3 

Co-Ga O  nanosheets 2 3

800 1200 1600 2000
-1Wavenumber (cm ) 

A
bs

or
ba

nc
e 

(a
.u

.)

*CO

*COOH

-*HCO3
2-*CO32-*CO3

 120 min 
 110 min 
 100 min   
 90 min 
 80 min   
 70 min 
 60 min   
 50 min 

 40 min
 30 min   
 20 min 
 15 min 
 10 min
 5 min   
 3 min
 0 min

a

d e

*COOH

b

f

*H

c

ab

Ga O HCCo

c

ab

c

ab

Figure 3. Investigation of Co atoms in the Co–Ga2O3 nanosheets for the plastic-to-syngas process. (a) In situ FT-IR spectra
of Co–Ga2O3 nanosheets for the CO2 photoreduction process. Free-energy diagrams of (b) CO2 photoreduction to CO and (c)
H2O photoreduction to H2 for the Co–Ga2O3 nanosheets and the Ga2O3 nanosheets. (d) The differential charge density map
of the Co–Ga2O3 nanosheets. The differential charge density maps of (e) ∗COOH and (f) H∗ on the Co–Ga2O3 nanosheets.
The yellow and blue contours in (d)–(f) manifest electron accumulation and depletion, and the values of isosurfaces in (d)–(f)
are 0.007 and 0.002 eÅ–3, respectively.

intermediates, where 5,5-dimethyl-1-pyrroline N-
oxide (DMPO)was used as the spin-trapping agent.
TheESR signals in Fig. S22 exhibit a 1 : 2 : 2 : 1 quar-
tet pattern in the water solution, which could be as-
signed to the ·OH captured by the DMPO [26].
Combined with the H2

18O isotope-labelling experi-
ments in Fig. 2c, it is reasonable to deduce that H2O
would be oxidized into ·OH radicals by the photo-
induced holes and then the ·OH radicals would par-
ticipate in the oxidation processes of the PE. Mean-
while, the ESR signals in Fig. S23 show a quartet
pattern with an intensity of nearly 1 : 1 : 1 : 1 in the
methanol solution, which could be assigned to the
superoxide radicals (O2

�−) captured by theDMPO
[27]. As revealed in Fig. S24, the UV−vis absorp-
tion spectra for the reaction solution after 24 h ir-
radiation displayed a characteristic peak at 436 nm,
which could be ascribed to the characteristic peak
of H2O2 [28]. Considering that O2 is in favor of
the photodegradation of PE powders, it is possible
that the O2 may undergo stepwise photoreduction
into O2

�–, H2O2 and H2O. Besides, the detection
of C16O18O in both the H2

18O and 18O2 labelling
experiments suggested that both the ·OH radicals
and the O2 participate in the photo-oxidation of
PE into CO2. To gain in-depth investigation of the
CO formation process, photocatalytic experiments
in pure CO2 were conducted over the Co–Ga2O3
nanosheets, in which in situ FTIR spectra were per-

formed to trace the reaction intermediates. As re-
vealed in Fig. 3a, the new peak that appeared at
∼1710 and ∼2180 cm–1 under irradiation could be
assigned to the ∗COOH and ∗CO groups, respec-
tively [29,30]. Itmeant thatCO2 moleculeswere ini-
tially reduced into COOH∗ intermediates by the in-
coming proton–electron pair (H+ + e–); then, the
COOH∗ intermediates might have coupled with an-
other H+ + e– pair to form the ∗CO intermediates,
whichwould be liberated from the surface of the cat-
alyst to form free COmolecules [31].

From what has been mentioned above, it was
concluded that the mechanism of photoconvert-
ing commercial plastics and H2O into syngas could
be proposed as the following procedure. Under
light irradiation, the photocatalysts initially gen-
erated electrons and holes pairs, which could re-
act with the H2O to form H2 and O2. Then,
the ·OH radicals derived from H2O and the pro-
duced O2 or O2 in the air atmosphere could syn-
chronously photodegrade plastics into CO2; and
meanwhile, O2 was also reduced to O2

�–, H2O2
and H2O in order by the photoexcited electrons.
Subsequently, the generated CO2 would be further
reduced into CO through ∗COOH intermediates,
while H2O was oxidized into O2. In short, photo-
converting commercial plastics andH2O into syngas
may undergo the following three steps in sequence
(Scheme 1):
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Scheme 1. Schematic representation of the proposed mechanism for the photoconversion of non-recyclable plastics into
renewable syngas under mild conditions.

Step 1: H2O was initially split into H2 and O2.
Step 2: Plastics were oxidized into CO2:

(C2H4)n
·OH,O2−→ 2nCO2 + 2nH2O, (1a)

(C3H6)n
·OH, O2−→ 3nCO2 + 3nH2O, (1b)

(C10H8O4)n
·OH,O2−→ 10n CO2 + 4nH2O. (1c)

Synchronously, O2 was reduced to H2O:

O2 + e− → O2
•−, (2.1)

O2
•− + e− + 2H+ → H2O2, (2.2)

H2O2 + 2e− + 2H+ → 2H2O. (2.3)

Step 3: CO2 was further reduced to CO:

CO2 + e− + H+ → ·COOH, (3.1)

· COOH + e− + H+ → CO + H2O. (3.2)

Meanwhile, H2O was oxidized to O2.
After disclosing the PE photoreforming pro-

cesses, it is necessary to uncover the reasons for the
boosted plastics photoconversion performance of
Co–Ga2O3 nanosheets. Owing to the d–d internal
transitions, the Co–Ga2O3 nanosheets possessed
obviously enhanced photoabsorption relative to
the Ga2O3 nanosheets (Fig. S8), which indicated
that the former could make better use of the photon
energy and generate more charge carriers to engage
in the plastics photoreforming processes [18]. In
addition, density-functional-theory calculations
showed that the Co–Ga2O3 nanosheets possessed

distinctly enhanced density of states at the VB edge
(Fig. S25), which contributed to the promoted
photocarrier transfer ability, and hence helped to
provide more photo-generated electrons and holes
to participate in the subsequent redox reactions
[20]. Moreover, the photoluminescence (PL) in-
tensity dramatically decreased after the introduction
of Co atoms into the Ga2O3 nanosheets, indicating
the restrained recombination efficiency of photo-
generated electron–hole pairs (Fig. S26) [32].
Importantly, the CO2 temperature-programmed
desorption spectra in Fig. S27 manifested that the
onset desorption temperature of CO2 for the Co–
Ga2O3 nanosheets (88◦C) was higher than that of
the Ga2O3 nanosheets (76◦C), suggesting that the
former has stronger adsorption behavior for CO2,
which is beneficial to the further reduction of CO2
[33]. Furthermore, as uncovered by Fig. 3b and
Tables S7 and S8, the calculated reaction Gibbs free
energies (�G) showed that the rate-determining
step of CO2 photoreduction into CO was the
formation of ∗COOH intermediates, wherein the
Co–Ga2O3 nanosheets possessed a lower COOH∗

intermediates formation energy compared with
the Ga2O3 nanosheets. This could be attributed to
the fact that the introduction of Co atoms caused
the charge accumulation of the Co atoms and the
neighboring Ga atoms, which was conducive to sta-
bilizing the ∗COOH intermediates through Co–Ga
dual active sites and hence lowered its formation
energy (Fig. 3d and e, and Figs S28 and S29) [34].
More importantly, the calculated reaction Gibbs
free energies in Fig. 3c and Fig. S30 disclose that
the rate-determining step of H2O reduction into
H2 was the formation of H∗ intermediates, in which
the Co–Ga2O3 nanosheets possessed a lower H∗

intermediates formation energy with respect to the
Ga2O3 nanosheets. This might be ascribed to the
charge accumulation of the Co–H bond induced by
the introduced Co atoms, which helped to stabilize
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the H∗ intermediates, thus lowering the formation
energy (Fig. 3f). As a result, both theoretical and
experimental results affirmed that introducing Co
atoms into Ga2O3 nanosheets as the active sites can
simultaneously favor the processes of CO2 reduc-
tion into CO and H2O reduction into H2 through
stabilizing the ∗COOH and H∗ intermediates. That
is to say, the presence of Co atoms could make for
lowing the activation energies of CO2 reduction
and H2O splitting, and hence promote the property
of plastic-to-syngas photoconversion.

CONCLUSION
In conclusion, we first realized the sustainable
and efficient conversion of non-recyclable plastics
into renewable syngas in pure water at ambient
temperature and pressure. In this process, H2O is
photoreduced intoH2, while non-recyclable plastics
including PE plastic bags, PP plastic boxes and PET
plastic bottles are photodegraded into CO2, which
is further selectively photoreduced into CO. As
an example, commercial PE plastic bags could be
efficiently photoconverted into syngas with the aid
of H2O by the Co–Ga2O3 nanosheets, in which
the H2 and CO formation rates were ∼647.8 and
∼158.3 μmol g−1 h−1 —roughly 1.6 and 1.9 times
higher than those of the Ga2O3 nanosheets, respec-
tively. More importantly, the weight losses of PE
plastic bags, PP plastic boxes and PETplastic bottles
were up to approximately 81%, 78% and 72% after
48 h irradiation over the Co–Ga2O3 nanosheets.
Through deeply exploring themechanism of plastics
photoconversion into syngas, it can be concluded
that the whole efficiency is mainly dependent on
the process of CO2 reduction into CO, and hence
it is necessary to design photocatalysts of high
CO2 reduction activity to promote the efficiency
of non-recyclable plastics degradation in the future.
Meanwhile, considering that the residual microplas-
tics in aqueous solution are hard to fully degrade,
some precautionarymeasures such as filtration units
and advanced wastewater treatment technologies
like membrane filtration may be needed in the fu-
ture. Briefly, the design conceptmay help to open up
new avenues toward the curbing of white pollution
and the relieving of the energy crisis simultaneously.

METHODS
Synthesis of the Co-doped Ga2O3
(Co–Ga2O3) nanosheets
In a typical synthetic procedure, 256 mg Ga(NO3)3
and 29 mg Co(NO3)2 · 6H2O were added to 5 mL

water with vigorous stirring for 10min.Then, 30mL
triethylenetetramine (TETA) was added to the so-
lution after continuousmagnetic stirring for another
30 min. Finally, the solution was transferred to a
stainless Teflon-lined autoclave, which was sealed
and maintained at 160◦C for 48 h. The product was
collected by centrifugation, washed thoroughly with
absolute ethanol and deionized water several times,
and then dried at 60◦C for 12 h.

Synthesis of the Ga2O3 nanosheets
The procedures were the same as those for the
Co–Ga2O3 nanosheets, except no Co(NO3)2 ·
6H2O was added.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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