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There are many types of cancers. Although they share some hallmarks, such as
proliferation and metastasis, they are still very different from many perspectives. They
grow on different organ or tissues. Does each cancer have a unique gene expression
pattern that makes it different from other cancer types? After the Cancer Genome Atlas
(TCGA) project, there are more and more pan-cancer studies. Researchers want to get
robust gene expression signature from pan-cancer patients. But there is large variance in
cancer patients due to heterogeneity. To get robust results, the sample size will be too
large to recruit. In this study, we tried another approach to get robust pan-cancer
biomarkers by using the cell line data to reduce the variance. We applied several
advanced computational methods to analyze the Cancer Cell Line Encyclopedia
(CCLE) gene expression profiles which included 988 cell lines from 20 cancer types.
Two feature selectionmethods, including Boruta, andmax-relevance andmin-redundancy
methods, were applied to the cell line gene expression data one by one, generating a
feature list. Such list was fed into incremental feature selection method, incorporating one
classification algorithm, to extract biomarkers, construct optimal classifiers and decision
rules. The optimal classifiers provided good performance, which can be useful tools to
identify cell lines from different cancer types, whereas the biomarkers (e.g. NCKAP1,
TNFRSF12A, LAMB2, FKBP9, PFN2, TOM1L1) and rules identified in this work may
provide a meaningful and precise reference for differentiating multiple types of cancer and
contribute to the personalized treatment of tumors.
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INTRODUCTION

“Cancer” is the term used to describe a series of diseases that is
characterized by the spontaneous expansion and spread of
somatic cell clones. It is becoming a serious public health
problem worldwide. In 2020 alone, over 19.29 million new
cases of cancer were diagnosed, and more than 9.58 million
people died from cancer (World Health Organization, 2019).
The hallmarks of cancer have been extensively described as six
biological capabilities, namely, enhanced proliferative signaling,
growth suppressor escape, cell death resistance, replicative
immortality, angiogenesis induction, and invasion and
metastasis activation (Hanahan and Weinberg, 2011). In other
words, the pro-oncogenic function is the abnormal expression of
various genes based on these six biological capabilities. Therefore,
cancer genomic data, particularly gene expression signatures, can
provide insight into the occurrence and development of cancers
and, importantly, can be used to develop targeted therapies for
cancers (Garman et al., 2007).

Althoughmany cancers share the hallmarks of cancer, they are
still very different. They grow on different organs and tissue. Pan-
cancer studies provide an opportunity to understand the
commonalities, heterogeneity, and emergent themes of
multiple tumors (Andor et al., 2016). Increased numbers of
tumor sample datasets provide scientists with a clear picture
of tumors, rare driver events in heterogeneous tumor samples,
and new molecular carcinogenic mechanisms that may be readily
detected (Weinstein et al., 2013). For example, a study on the
genomic predictors of the drug sensitivity of 947 human cancer
cell lines based on a cancer cell line encyclopedia revealed known
and novel response candidate biomarkers, which may contribute
to cancer biology and therapeutic development (Barretina et al.,
2012). Another study on long noncoding RNA (lncRNA) in 5185
TCGA tumors demonstrated that although tumor-specific
dysregulated lncRNAs are commonly observed in a variety of
tumors, genes and pathways could be synergistically regulated in
different cancers by the same group of lncRNAs; this information
may provide useful ideas for the development of broad-spectrum
antineoplastic drugs (Chiu et al., 2018).

The sample size of TCGA based pan-cancer studies is already
very large as a multi-omics data source. But it is still not enough to
get robust pan-cancer biomarkers if we consider the large
variances among cancer patients across cancer types and even
within the same cancer. Tumor heterogeneity can be broadly
categorized into intratumor heterogeneity and inter tumor
heterogeneity (Burrell and Swanton, 2014). Inter tumor
heterogeneity refers to the heterogeneity between patients with
the same histological tumor type and has been considered to be
caused by patient-specific factors, including germline mutations,
individualized somatic mutations, and environmental factors.
Intratumor heterogeneity can be divided into spatial
heterogeneity (different regions of the tumor have different
genetic aberrations) and temporal heterogeneity (during
disease progression) (Dagogo-Jack and Shaw, 2018). Studies
across multiple cancers have suggested that intratumor
heterogeneity promotes tumor growth, metastasis, and drug
resistance in human cancers (Hyo-eun et al., 2015; Russo

et al., 2016). Therefore, treatment strategies with increased
effectiveness and durability still need to be developed on the
basis of a comprehensive understanding of tumor dynamics.

To get robust pan-biomarkers, there are two approaches:
increase the sample size or reduce the variance. TCGA and
the following works tried the first approach of increasing
sample size. In this study, we would like to try the second
approach of reducing the variance by analyzing the cancer cell
line data from Cancer Cell Line Encyclopedia (CCLE) (Ghandi
et al., 2019). The important genes were extracted by using the
Boruta method (Kursa and Rudnicki, 2010). These genes were
further analyzed with the max-relevance and min-redundancy
(mRMR) method to evaluate their importance and sort them in a
feature list. This list was fed into the incremental feature selection
(IFS) method (Liu and Setiono, 1998) that combined support
vector machine (SVM) (Cortes and Vapnik, 1995) or decision
tree (DT) (Safavian and Landgrebe, 1991) to identify important
genes and decision rules and build powerful classifiers. Further
analysis was performed through a literature review of the top-
ranked genes and portion decision rules to confirm the validity
and reliability of the results. This study gives new insight into
pan-cancer studies and may provide novel targets of tumor-
specific therapies.

MATERIALS AND METHODS

Datasets
Xiao et al. (Xiao et al., 2019) downloaded the raw RNA-Seq data
from Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al., 2019)
and quantified the gene expression levels as Transcripts Per
kilobase Million (TPM) using RSEM (Li and Dewey, 2011).
We used the processed gene expression data by Xiao et al.
(Xiao et al., 2019). The cancer types with sample sizes of less
than 10 was removed. Finally, there were 988 cancer cell lines
from 20 cancer types. The sample size of each tumor is listed in
Table 1. For each sample, 57,820 gene features were included. We
investigated the expression patterns of genes in different tumor
types and whether these tumor types could be distinguished on
the basis of expression profiles.

Boruta Feature Selection
The CCLE data involved a large number of genes (features).
Obviously, not all genes are associated with the investigated
tumor types. Therefore, filtering the important genes is
necessary. Here, we applied the Boruta (Kursa and Rudnicki,
2010) method to select a set of relevant features with multiple
tumor labels.

The Boruta method is a wrapping algorithm that is based on
random forest (RF) and involves the following steps: 1) the new
shuffled data are generated by copying the original dataset and
shuffling original features; 2) a RF classifier that can output the
importance score of each feature is trained by using the new
feature matrix as the input; and 3) the features in the original
features that are sincerely relevant to the labels are retained, and
the shuffled data are removed. Boruta finally selects the relevant
features after several iterations of the above three steps.
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The Boruta program that we used in this research was
downloaded from https://github.com/scikit-learn-contrib/boruta_
py and was set to default parameters for execution.

mRMR
After feature filtering by using the Boruta method, the
mRMR (Peng et al., 2005) feature selection method was
used to evaluate the importance of the remaining features.
This approach has been widely used to analyze complicated
systems.

The mRMR method evaluates the importance of target
features by using max-relevance and min-redundancy.
Features with great relevance to the category labels and low
redundancy with other features are considered to be
influential. It uses mutual information (MI) to measure
relevance and redundancy. The score of the MI between two
variables X and Y is calculated as

I(X,Y) � ∫∫p(x, y)log p(x, y)
p(x)p(y) dxdy, (1)

where p(x, y) represents the joint probability distribution
function of X and Y, and p(x) and p(y) represent the
marginal probability distribution function of X and Y,
respectively. The mRMR constructs order feature lists on the
basis of the importance of features. Specifically, the program
loops several times, and each loop selects a feature that has the
greatest correlation with the target variable and the least
correlation with the selected features. Finally, a list of sorting
features is obtained in accordance with the selected orders.

The mRMR program used in this research was obtained from
http://penglab.janelia.org/proj/mRMR/and executed with default
parameters.

Incremental Feature Selection
Even though the mRMR method produces a ranked list of
features on the basis of the importance of features, we still
cannot determine the influential features. The IFS (Liu and
Setiono, 1998) method can determine the optimal number of
key features in combination with one classification algorithm.
First, IFS generates a series of feature subsets from the above
feature list in accordance with the step size. For example, if the
step size is 10, the first feature subset will be the top 10 features,
and the second subset will be the top 20 features. Next, one
classifier is built based on the training set, where the samples are
represented by features from each feature subset. The classifiers
are evaluated by 10-fold cross-validation (Kohavi, 1995) to obtain
evaluationmetrics. Finally, the optimal feature subset and the best
classifier are determined, and features in this subset are called
optimum features.

Decision Tree
DT (Safavian and Landgrebe, 1991) is a model that presents
decision rules and classification results in a tree-like structure and
is widely used in the biological and biomedical fields. DT is a
supervised learning approach that builds a model based on the
IF–THEN format. It achieves superior model performance
through low computational complexity. The common decision
trees are Iterative Dichotomizer 3, C4.5, and Classification and
Regression Tree. They use different partition strategies when
building a prediction model. In this study, we used the Scikit-
learn (Pedregosa et al., 2011) module in Python to construct a DT
classifier.

Support Vector Machine
SVM (Cortes and Vapnik, 1995; Zhou J.-P. et al., 2020; Wang
et al., 2021) is a supervised learning algorithm in statistical

TABLE 1 | Distribution of samples and decision rules in different cancer cell lines.

Cancer
cell line types

Number of cell lines Number
of decision rules

Number of criteria Number
of involved genes

Autonomic ganglia 16 4 42 17
Bone 20 4 46 19
Breast 51 23 325 63
Central nervous system 65 18 219 57
Endometrium 28 16 191 52
Fibroblast 37 3 28 15
Haematopoietic and lymphoid tissue 173 8 96 34
Kidney 32 7 88 38
Large intestine 56 9 123 47
Liver 25 9 115 42
Lung 188 51 740 80
Oesophagus 27 8 145 47
Ovary 47 25 306 67
Pancreas 41 14 208 56
Skin 49 7 83 34
Soft tissue 28 9 126 41
Stomach 37 26 361 72
Thyroid 12 7 79 38
Upper aerodigestive tract 31 11 162 47
Urinary tract 25 16 216 59
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learning methods that is commonly used in classification and
regression problems. SVMmaps the data from a low-dimensional
space to a high-dimensional space by using a kernel function.
Then, a hyperplane with the maximum interval existing in the
high-dimensional space makes two classes of samples linearly
separable.

In this study, 20 tumor types needed to be classified. This task
was a multiclass classification problem. Therefore, we applied the
one-versus-rest strategy to train a multiclass SVM, which was
split into numerous binary SVMs. For each binary SVM, samples
of one class were regarded as positive examples, and samples of all
other classes were used as negative examples.We directly used the
tool “SMO” in Weka software (Gewehr et al., 2007) in this study.
The sequential minimum optimization algorithm (Platt, 1998;
Keerthi et al., 2001) was utilized to optimize the training
procedure. The kernel function was set as a polynomial function.

Synthetic Minority Oversampling Technique
As can be seen from Table 1, the sample sizes for all tumor
types were quite different. For example, types “lung” and
“hematopoietic and lymphoid tissue” contained 188 and 173
samples, respectively, whereas types “autonomic ganglion”
and “bone” had only 16 and 20 samples, respectively. These
results indicated that the whole dataset of this study was
unbalanced. Accordingly, we adopted the synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002) to
balance the dataset when building classifiers. This method
uses the k-nearest neighbor algorithm to expand the sample
sizes of each minority class. SMOTE first selects random data
from one minority class and then finds the k-nearest
neighbors in this class. Next, the new sample data are
synthesized between the random data and the randomly
generated k-nearest neighbor. After SMOTE processing,
the sample size of each minority class is equal to that of
the majority class. In other words, the sample sizes of the 20
tumor types in this study were equal. In this study, we
oversampled data by using the tool “SMOTE” in Weka
software (Gewehr et al., 2007).

Performance Measurement
In this study, several multiclass classifiers were used to
distinguish samples from 20 tumor types. We adopted 10-
fold cross-validation (Kohavi, 1995; Chen et al., 2017; Zhao
et al., 2018; Zhou JP. et al., 2020; Jia et al., 2020; Liang et al.,
2020; Zhang et al., 2021c; Yang and Chen, 2021; Zhu et al.,
2021) to evaluate the performance of each multiclass
classifier. We correlation coefficient (MCC) (Matthews,
1975; Gorodkin, 2004; Liu H. et al., 2021; Zhang et al.,
2021a; Zhang et al., 2021b; Pan et al., 2021) to measure
and evaluate the prediction quality of the results of 10-fold
cross-validation. Let X be a matrix representing predicted
labels yielded by one classifier and Y be another matrix
indicating the actual labels of samples. The calculation
formula of MCC is as follows:

MCC � cov(X,Y)����������������
cov(X,X)cov(Y, Y)√

� ∑n
i�1 ∑C

j�1(xij − �xj)(yij − �yj)����������������������������������∑n
i�1 ∑C

j�1 (xij − �xj)2 ∑n
i�1 ∑C

j�1 (yij − �yj)2√ , (2)

where cov(X,Y) denotes the correlation coefficient of X and Y,
and �xj and �yj are the average values in the j th column ofX and
Y, respectively. In addition, C denotes the number of tumor
types, and n denotes the total number of samples.

In addition to MCC, we also calculated accuracy on each
cancer type and overall accuracy. The accuracy on the ith cancer
type was computed by

Accuracyi � ni
Ni

i � 1, 2,/, 20, (3)

where Ni represents the number of samples in the ith cancer type
and ni denotes correctly predicted samples in the ith cancer type.
The overall accuracy was calculated by

Overall accuracy � ∑20
i�1 ni∑20
i�1 Ni

i � 1, 2,/, 20, (4)

MCC was set as the key measurement and others were also
provided for reference in this study.

RESULTS

In this study, several computational methods were used to
analyze the CCLE dataset of 20 tumor types. The analysis
process is shown in Figure 1.

Results of the Boruta and max-Relevance
and Min-Redundancy Methods
All features were first analyzed by using the Boruta method. A
total of 54,634 features were removed, and 3,186 features were
retained. These retained features are provided in Supplementary
Table S1. These 3,186 features were further analyzed by using the
mRMR method, and a feature ranking list was generated on the
basis of their importance. This list can also be found in
Supplementary Table S1.

Results of the Incremental Feature
Selection Method
The feature list produced by the mRMR method was fed into the
IFS method. A series of feature subsets were generated by setting
the step size to 10. The DT and SVMwere used to build classifiers
on each feature subset. Then, all classifiers were evaluated by 10-
fold cross-validation to obtain evaluation metrics, such as
accuracy on each cancer type, overall accuracy and MCC. The
above measurements that were acquired by the two classification
algorithms for each subset of features are shown in
Supplementary Table S2. We plotted the IFS curve to
visualize the results. For SVM, the MCC was set as the Y-axis,
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and the number of features was set as the X-axis. As shown in
Figure 2, when the number of features reached 3,130, the highest
value of MCC was 0.976. The corresponding overall accuracy was
0.978 (Table 2). Accordingly, the best SVM classifier can be built
based on these top 3,130 features. Although this classifier
provided the highest performance, its efficiency was not very
high because an excessively high number of features were used.
The IFS results of SVM were carefully checked (Supplementary
Table S2 and Figure 2). When the top 400 features were adopted,
the MCC reached 0.951, which was only slightly lower than the
highest MCC. The overall accuracy was 0.954 (Table 2). It was
also a little lower than that of the best SVM classifier. It can be
concluded that these two SVM classifiers provided almost equal
performance. To further confirm this fact, we also investigated
the accuracies on 20 cancer types yielded by these two classifiers.

A radar graph was plotted, as shown in Figure 3. Clearly, the
areas inside the curves of two classifiers were almost same,
suggesting the equal performance of these two classifiers.
However, the number of features was considerably lower. The
SVM classifier with these features had drastically higher efficiency
than the best SVM classifier. Thus, this classifier could be the
proposed classifier for assigning samples to the correct
cancer type.

In addition to the above SVM algorithm, we used the DT,
which is a white-box classification algorithm. In this process, the
step size of IFS with the DT was also set to 10, and only the top
400 features in the mRMR list were considered. The IFS results
are also available in Supplementary Table S2, and the IFS curve
is presented in Figure 4. The best DT classifier yielded an MCC
value of 0.754, which was based on the top 390 features. The

FIGURE 1 | Flow chart to show the entire analysis procedures. The CCLE dataset which includes 988 cell lines and 20 tumor types is analyzed by Boruta and
mRMR methods, resulting in a feature list. The list is then fed into the incremental feature selection method to extract optimal genes, build the optimal classifiers and
construct decision rules.
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overall accuracy of this classifier was 0.771, as listed in Table 2.
Likewise, we also wanted to obtain an accepted classifier that
used few features and provided high performance. As can be
seen from Figure 4, the MCC reached 0.739 when the top 100
features were used. The overall accuracy was 0.757 (Table 2).
They were only a little lower than those of the best DT classifier.
Furthermore, the accuracies on 20 cancer types of these two
classifiers were also investigated, as illustrated in Figure 3.
Evidently, these two DT classifiers were almost at the same
level. Therefore, these top 100 features were considered to build
the DT classifier.

Classification Rules
As mentioned above, the DT classifier with the top 100 features
exhibited high performance. Thus, we constructed a DT with
these features and all samples. Consequently, we obtained 275
rules, which are presented in Supplementary Table S3. The
number of decision rules and criteria used for 20 tumor types
are shown in Table 1. Each cancer type was assigned some
decision rules. The cancer type “Lung” was assigned most
decision rules, whereas ‘Fibroblast’ received least rules. The
further analysis of these rules can be found in Analysis of
Decision Rules.

GO and KEGG Enrichment Analysis
As mentioned in Results of the Incremental Feature Selection
Method, the SVM classifiers with top 400 features gave a little
lower performance than the best SVM classifier. However, it had

much higher efficiency because much less features were used in
this classifier. Thus, these 400 features may be highly related to
distinguish different cancer types. Thus, we conducted GO and
KEGG enrichment analysis on these features (genes). The results
can be found in Supplementary Table S4. Some top GO terms
and KEGG pathways are illustrated in Figures 5, 6. In Analysis of
Essential Genes, the discussion on the enrichment analysis results
would be given.

DISCUSSION

In this study, we used the Boruta and mRMR methods to analyze
features and applied the IFS method combined with SVM and DT
to construct classifiers and decision rules. Some essential features
(genes) (see Supplementary Table S1) were extracted.
Furthermore, we obtained several decision rules. In this
section, we provide an extensive analysis of these essential
genes and decision rules.

Analysis of Essential Genes
Firstly, we performed GO/KEGG enrichment analysis to find
whether our 400 selected features were significantly enriched in
specific terms. Results were described in GO and KEGG
Enrichment Analysis, top GO terms and KEGG pathways are
illustrated in Figures 5, 6.

We found that the significantly enriched GO terms mainly
involve actin organization, cell matrix components and cell
polarization. Actin assembly is very important for cell
migration, and abnormal regulation of cell migration can drive
cancer invasion and metastasis (Yamaguchi and Condeelis,
2007). Different cancers and different differentiation states of
cancers often show different patterns of cell migration and the
migration of these cancer cells is regulated by various signals.
Although it is difficult to use a single strategy to regulate the
motility of all cancer cells, inhibiting actin polymerization can
inhibit migration of most types of cancer cells (Yamazaki et al.,

FIGURE 2 | IFS curve with SVM classification algorithm on the different number of features. The SVM provides the highest MCC of 0.976 when the top 3,130
features are adopted. When top 400 features are adopted, SVM provides good performance with MCC of 0.951.

TABLE 2 | Performance of some key classifiers.

Classification algorithm Number of features Overall accuracy MCC

Support vector machine 3,130 0.978 0.976
400 0.954 0.951

Decision tree 390 0.771 0.754
100 0.757 0.739
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2005). The loss of cell polarity has been shown to be related to
tumor progression (Wodarz and Näthke, 2007). Generally,
aggressive tumors lack polarity, and study have shown that
different cancers have different abnormal expression or
localization of polar proteins, which may also serve as the
basis for our classifier (Ellenbroek et al., 2012). The KEGG
results also showed similar results, which are mainly related to

migration and actin cytoskeleton. This reflects both the
importance of cell migration ability to tumors and the
difference in invasion of different tumors.

Secondly, among the 400 selected features (genes), the top-
ranked genes were usually highly decisive for distinguishing
different cell lines. Therefore, some of them were selected for
analysis, which are listed in Table 3.

FIGURE 3 | Radar graph to show the performance of two support vector machine (SVM) classifiers and two decision tree (DT) classifiers on 20 cancer types. Two
SVM classifiers provide almost equal performance, also for two DT classifiers.

FIGURE 4 | IFS curve with DT classification algorithm on the different number of features. The DT provides the highest MCC of 0.754 when the top 390 features are
adopted. DT yields high performance with MCC of 0.739 when only 100 features are used.
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The highest-ranking feature is NCKAP1
(ENSG00000061676). It encodes the NCK-associated protein 1
as a part of the WAVE (WASF) complex that regulates
lamellipodia formation. Past studies have revealed that
NCKAP1 is associated with multiple types of human cancer. A
previous study showed that the WASF3 gene is a promoter of cell
invasion in breast cancer and the Nckap1 can keep WASF3 in an
inactive conformation through binding to the WASF homology

domain at the N-terminus. The activation of WASF3 depends on
the combination with RAC1 which can be prevented by the
absence of NCKAP1. Thus, the downregulation of NCKAP1
inhibits the activity of WASF3 and may suppresses metastasis
in breast cancer cells. In addition, univariate survival analysis
have found that high expression level of NCKAP1 is correlated
with short overall survival (Teng et al., 2016). The function of
NCKAP1 in liver cancer has recently been clarified. Specifically,

FIGURE 5 | Top enriched GO terms to the top 400 genes in the mRMR feature list.
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NCKAP1 can control tumor growth and improve prognosis by
enhancing Rb1/p53 activation in hepatocellular carcinoma
(HCC) (Zhong et al., 2019). Similarly, a recent study
discovered that NCKAP1 is highly expressed in primary non-
small-cell lung cancer (NSCLC) and is significantly associated
with histologic tumor grade, metastasis, and poor survival rate. It
is also related to the HSP90-mediated invasion and metastasis of
NSCLC by stimulating MMP9 activation and the

epithelial–mesenchymal transition (EMT) (Xiong et al., 2019).
In conclusion, NCKAP1 is aberrantly expressed in a variety of
cancer types and could be a biomarker and potential therapeutic
target.

TNFRSF12A (ENSG00000006327) encodes the receptor of
TNFSF12/TWEAK, which is also known as fibroblast growth
factor-inducible molecule 14. It can promote endothelial cell
proliferation and angiogenesis. Studies have demonstrated that

FIGURE 6 | Top enriched KEGG pathways to the top 400 genes in the mRMR feature list.
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TNFRSF12A is highly expressed in breast cancer, and a high
TNFRSF12A level associated with matrix metalloproteinase
(MMP)-9 overexpression is related to cancer progression; thus,
TNFRSF12A-targeting therapy could improve survival rates in
cancer (Yang et al., 2018). Furthermore, through modulating the
expression of MMP-9, the overexpression of TNFRSF12A can
promote prostate cancer progression and result in poor treatment
outcomes (Huang et al., 2011). TNFRSF12A is also highly
expressed in human HCC, and in vivo experiments have
revealed that TNFRS12A knockdown can inhibit cancer cell
proliferation and migration (Wang et al., 2017). TNFRSF12A
has also been demonstrated to be highly expressed in NSCLC and
contribute to NSCLC cell migration and invasion in vitro
(Whitsett et al., 2012). Other studies have also confirmed that
TNFRSF12A is overexpressed in melanomas, gliomas, and
esophageal and pancreatic cancers (Han et al., 2005; Tran
et al., 2006; Watts et al., 2007; Zhou et al., 2013). Interestingly,
in certain tumor types, TNFRSF12A exhibits a low expression
level. A study on TCGA data suggested that the downregulation
of TNFRSF12A in thyroid cancer could be a potential molecular
biomarker for the prediction of poor prognosis (Wu et al., 2020).
Therefore, TNFRSF12A has different expression patterns in
different cancers and could be a remarkable feature for
distinguishing different cancer cell lines. In addition, it could
also be a critical therapeutic target, and preclinical studies have
shown that the use of inhibitors in cancer with high TNFRSF12A
expression has certain effects (Wajant, 2013).

LAMB2 (ENSG00000172037) encodes a subunit of laminins,
which are one of the major glycoproteins present in the basement
membrane of the extracellular matrix and are related to tumor
angiogenesis, invasion, and metastasis. A previous study revealed
that the downregulation of LAMB2 caused by HE4 gene
interference results in the invasion and metastasis of ovarian
cancer cells (Zhuang et al., 2014). Studies on pancreatic cancer
have demonstrated that the lack of basement membrane
continuity, which is determined by limited laminin expression,
is associated with poor postoperative outcomes. In other words,
in pancreatic cancer, the downregulation of LAMB2 is correlated
with poor prognosis (Van Der Zee et al., 2012).

FKBP9 (ENSG00000122642), which encodes FKBP prolyl
isomerase 9, is known to be associated with chaperonin-
mediated protein folding and protein metabolism. A recent
study has found that FKBP9 could be an independent
prognostic marker for predicting the poor prognosis of
patients with prostate cancer; that high FKBP9 levels and
short biochemical-recurrence-free survival are significantly

correlated (p � 0.041); and that FKBP9 may be a cancer
promoter that enhances prostate cancer progression (Jiang
et al., 2020). Another study found that FKBP9 is a critical
factor for promoting the malignant behaviors of glioblastoma
cells; high FKBP9 level is related to poor prognosis and could
confer malignant cells with the capability to resist endoplasmic
reticulum stress inducers (Xu et al., 2020). Other studies have also
confirmed that FKBP9 is connected with other cancers, such as
colorectal and breast cancers (Bianchini et al., 2006; Chang et al.,
2020). Thus, FKBP9 may be an effective feature of many cancer
cell lines.

PFN2 (ENSG00000070087) encodes an actin monomer-
binding protein. It participates in regulating actin
aggregation in response to extracellular signals and cell
motility. Recently, PFN2 has emerged as a key regulator of
cancer development and progression. PFN2 has been reported
to be highly expressed in triple-negative breast cancer (TNBC);
it could promote the proliferation, migration, and invasion of
TNBC cells and may be partially responsible for the worsened
survival associated with high PFN2 levels (Ling et al., 2021). In
esophageal squamous cell carcinoma, a high PFN2 level is
related to short overall survival. Moreover, PFN2 expression
is positively associated with tumor invasion depth and lymph
node metastasis (Cui et al., 2016). Another study demonstrated
that PFN2 is highly expressed in head and neck squamous cell
cancer (HNSCC) tissues and cell lines and that the activation of
the PI3K/Akt/β-catenin signaling pathway by PFN2 results in
the proliferation and metastasis promotion of HNSCC, whereas
PFN2 knockdown produces the opposite effects (Zhou et al.,
2019). However, another study suggested a different result: the
degree of tumor metastasis is negatively associated with PFN2
expression level likely because of the enhancement in EMT
induced by low PFN2 levels considering that enhanced EMT
may increase migratory capabilities (Zhang H. et al., 2018).
Other studies have also found that PFN2 has different
expression patterns and effects in NSCLC, small cell lung
cancer, and gastric cancer (Hippo et al., 2002; Yan et al.,
2017; Cao et al., 2020). In conclusion, PFN2 plays an
important role in a variety of cancers and could be an
important biomarker for different cancer cells, as well as an
attractive therapeutic target.

TOM1L1 (ENSG00000141198) encodes the target of myb1-
like 1 membrane trafficking protein. ERBB2-induced breast
cancer cell invasion has been documented to be caused by the
TOM1L1-derived membrane delivery of MT1-MMP, and ERBB2
and TOM1L1 are frequently coamplified in the breast (Chevalier

TABLE 3 | Information of essential genes.

Ensembl ID Gene symbol Description

ENSG00000061676 NCKAP1 NCK Associated Protein 1
ENSG00000006327 TNFRSF12A TNF Receptor Superfamily Member 12A
ENSG00000172037 LAMB2 Laminin Subunit Beta 2
ENSG00000122642 FKBP9 FKBP Prolyl Isomerase 9
ENSG00000070087 PFN2 Profilin 2
ENSG00000141198 TOM1L1 Target Of Myb1 Like 1 Membrane Trafficking Protein
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et al., 2016). Other studies have also found that TOM1L1 is
related to colorectal cancer and is highly expressed in bladder
cancer (Emaduddin et al., 2008; Zhang Y. et al., 2018).

As analyzed above, the selected genes from our results showed
strong expression differences in multiple cancer cells. These genes
could be good therapeutic targets. By the same token, distinct
gene expression patterns could also be remarkably decisive
features for different cancer cell lines.

Analysis of Decision Rules
Previously, we constructed 275 decision rules on the basis of the
top 100 selected features and all cell lines. Each rule contained
several criteria. The numbers of rules and criteria for each cancer
type are listed in Table 1. In addition, the number of genes
involving rules for each cancer type is also listed in this table. In
the following, we provide our interpretation and experimental
evidence for some rules based on published literature. These
evidences indicate the effects of the high/low expression of key
genes on tumors which also found to have similar expression
patterns in the decision rules of the corresponding tumor cell line
(relatively high/low expression level compared to other cell lines).

The 23 rules for identifying breast cancer cell lines included
325 criteria, which involved 62 genes. These genes have
considerable experimental support, and here we show some
evidence. LDHB (ENSG00000111716) encodes the B subunit
of lactate dehydrogenase enzyme, which participates in
glycolysis. A study found that LDHB is specifically upregulated
in basal-like TNBC, and the loss of LDBH arrests tumor growth in
vivo (Cui et al., 2015). One study discovered that PAX8
(ENSG00000125618) is the best discriminatory marker
between ovarian and breast carcinomas (Nonaka et al., 2008).
The same study also reported that PAX8 is negatively expressed
in serous carcinoma but is positively expressed in breast
carcinomas. This expression pattern is in agreement with our
decision rules. RAB34 (ENSG00000109113) regulates the spatial
distribution of lysosomes, secretion, and micropinocytosis and is
expressed at high levels in breast cancer cell lines. A recent study
has found that RAB34 is overexpressed in breast cancer and that
the high expression of RAB34 is closely linked to breast cancer
cell adhesion, migration, and invasion (Sun et al., 2018).

Among the 275 rules, 51 could identify lung cancer cell lines
with 740 criteria involving 80 genes. Here, we provide clear
experimental evidence for some genes that are well established
in the literature. SOX10 (ENSG00000100146) is a transcription
factor that encodes genes involved in the regulation of embryonic
development and cell-fate decisions. Studies have demonstrated
that SOX10 is usually overexpressed in multiple cancers. It can
activate stem/progenitor cells through the Wnt/β-catenin
signaling pathway and induces mesenchymal transformation
expression (Zhou et al., 2014; Miettinen et al., 2015). However,
it appeared in all the lung cancer decision rules with a low
expression. A recent experimental study on 1085 NSCLC
tumor tissue samples has given direct support for our results.
A microarray analysis study revealed that SOX10 is negatively
expressed in NSCLC, with only 5 (<1%) cases showing positive
results (Kriegsmann et al., 2018). ARHGAP30
(ENSG00000186517) encodes Rho GTPase-activating protein

30, which plays an important role in cell adhesion and
cytoskeleton organization regulation. It is downregulated in
lung cancer cell lines. Moreover, a low ARHGAP30 level is
associated with the activation of Wnt/β-catenin signaling
pathways and further leads to lung cancer cell proliferation,
migration, and invasion (Mao and Tong, 2018). CTDSPL/
RBSP3 (ENSG00000144677) was also downregulated in our
rules. It has been reported to be a tumor-suppressor gene in
multiple cancers (Kashuba et al., 2009) and to be downregulated
in lung cancer (Senchenko et al., 2010). TSPAN4
(ENSG00000214063) was highly expressed in our rules. The
transcriptional product of TSPAN4 is a circular RNA that is
upregulated in lung adenocarcinoma; circ-TSPAN4 can promote
metastasis by increasing the expression of ZEB1 (Ying et al.,
2019). In our rules, S100A13 (ENSG00000189171) was required
to be relatively highly expressed. As has been seen in another
study, S100A13 is overexpressed in NSCLC, especially in the
advanced stage. High S100A13 level is strongly associated with
tumor angiogenesis and poor prognosis (Miao et al., 2018).

Liver cancer cell lines had nine decision rules containing 115
criteria. These criteria involved 42 genes. The expression patterns
of many genes in these rules have been confirmed in several other
studies. A1BG-AS1 (ENSG00000268895) is a RNA gene, and its
transcriptional product is a lncRNA. A study found that A1BG-
AS1 inhibits HCC cell proliferation, migration, and invasion
in vitro. Clinical association analysis revealed that A1BG-AS1
is downregulated in HCC, and low A1BG-AS1 level is also
associated with advanced tumor stage, microvascular invasion,
and high tumor grade (Bai et al., 2019). CMTM4
(ENSG00000183723) also showed a low expression level in our
rules. As found in other studies, CMTM4 plays a tumor-
suppressor role in HCC, wherein it inhibits tumor activities by
regulating cell growth and cell cycle (Bei et al., 2017). Thus,
consistent with our results, CMTM4 showed negative expression
in HCC. AKAP1 (ENSG00000121057) encodes A-kinase
anchoring protein 1 and plays an important role in the
regulation of mitochondrial function and oxidative
metabolism. A previous study identified that AKAP1 is
overexpressed in HHC; this expression pattern also provides
supporting evidence for our decision rules. AKAP1 may
contribute to tumor progression and result in poor overall and
disease-free survival rates in patients with HCC (Yu et al., 2018).

The identification of ovarian cancer cell lines had 25 rules
with 306 criteria. These criteria involved 67 genes. The validity
of our results was supported by other studies that have
confirmed some of these genes. As mentioned in the rules
for breast cancer cell lines, PAX8 is highly expressed in ovarian
cancer and could be a remarkable feature for discriminating
between breast cancer and ovarian cancer (Nonaka et al.,
2008). In addition, another study found that the knockdown
of PAX8 significantly reduces cancer cell proliferation,
migration, and invasion (Di Palma et al., 2014). GNAI2
(ENSG00000114353) encodes heterotrimeric G protein,
which plays a direct role in regulating the cAMP response
element-binding protein. In agreement with our findings, the
results of the direct sequencing and qPCR analysis of 589
human ovarian cancer revealed that 85.9% (506) of patients
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have decreased GNAI2 messaging (Raymond et al., 2014).
SRPX (ENSG00000101955) is reported to be a tumor-
suppressor gene and is downregulated in multiple cancer
cells and tissues (Tambe et al., 2016). This result is
consistent with our decision rules for endometrial,
pancreatic, and urinary tract cancers. However, one
difference is worth noting: we found that SRPX was
overexpressed in most rules for ovarian cancer. The
overexpression of SRPX has been affirmed by a recent study
based on clinical specimens, wherein the upregulation of SRPX
is associated with tumor invasion and migration activity in
ovarian cancer (Liu et al., 2019).

At the same time, we noted the exclusive genes for some cancer
cell line may be quite important. For example, CD276
(ENSG00000103855) only been shown in the rules of lung cancer
cell lines. CD276 (B7-H3) encode a member of the immunoglobulin
superfamily and is an important immune checkpoint member of the
B7/CD28 families. It is induced by antigen presenting cells and
participates in the regulation of T cell-mediated immune response
(Picarda et al., 2016). Studies have found that CD276 is associated
with Mycoplasma pneumoniae pneumonia. It is up-regulated in
patients’ plasma and may be involved in the progression of
pneumonia by increasing the concentration of TNF-α and the
activation of neutrophils (Chen et al., 2013). At the same time,
CD276 is also abnormally expressed in a variety of tumors and
participates in tumor proliferation, apoptosis, differentiation,
invasion and interepithelial transformation. Usually CD276 is up-
regulated in tumors and is associated with poor prognosis of patients
(Liu S. et al., 2021). In NSCLC, a previous meta-analysis found that
the high expression of CD276 was significantly associated with
patients’ lymph node metastasis and advanced TNM staging (Wu
et al., 2016). Other studies have also found that the expression of
CD276 is related to the smoking history and pathological types of
patients. Usually, the expression of CD276 in patients with lung
adenocarcinoma or smoking history is associated with a shorter
overall survival (Inamura et al., 2017; Zhang and Hao, 2019).
Although CD276 is highly expressed in a variety of tumors, and
its molecular mechanism to promote cancer progression is not clear,
our results show that it may be more important for lung cancer. At
the same time, other study also found that CD276 was up-regulated
in tumor cells of lung cancer patients treated with trametinib, which
can achieve better therapeutic effect after combined B7-H3 × T cell
bispecific antibody treatment, and this also proves that CD276 is a
potential therapeutic target for lung cancer.

We provided pieces of evidence for some decisive genes in the
decision rules for four classes of cancer cell lines in the preceding
discussion. Although these genes also have different expression
patterns in other cancer cell lines and a large number of remaining
genes have not yet been explained in detail, we can confirm the
reliability of our results from the substantial evidence that we
presented. Notably, some distinctive and decisive genes in our rules
have not previously been investigated by other researchers. These

genes may give new insight into tumor growth and progression, as
well as novel potential therapeutic targets.

CONCLUSION

This study gave a computational investigation on the cell line
gene expression data of cancer cell lines. Several machine
learning algorithms were applied on such data. On one
hand, we constructed efficient classifiers, which can be
latent tools to identify different cancer types. On the other
hand, a new set of potential biomarkers (NCKAP1,
TNFRSF12A, LAMB2, FKBP9, PFN2, TOM1L1) and
expression rules for the identification of different cancers at
the transcriptome level were discovered. These biomarkers and
rules can be useful materials to uncover mechanism underlying
different cancer types, thereby improving our understanding
on cancer.
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