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Sciatic nerve stimulation alleviates 
acute neuropathic pain via modulation 
of neuroinflammation and descending pain 
inhibition in a rodent model
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Abstract 

Background:  Neuropathic pain (NP) is characterized by abnormal activation of pain conducting pathways and 
manifests as mechanical allodynia and thermal hypersensitivity. Peripheral nerve stimulation is used for treatment 
of medically refractory chronic NP and has been shown to reduce neuroinflammation. However, whether sciatic 
nerve stimulation (SNS) is of therapeutic benefit to NP remains unclear. Moreover, the optimal frequency for SNS is 
unknown. To address this research gap, we investigated the effect of SNS in an acute NP rodent model.

Methods:  Rats with right L5 nerve root ligation (NRL) or Sham surgery were used. Ipsilateral SNS was performed 
at 2 Hz, 20 Hz, and 60 Hz frequencies. Behavioral tests were performed to assess pain and thermal hypersensitivity 
before and after NRL and SNS. Expression of inflammatory proteins in the L5 spinal cord and the immunohistochemi‑
cal alterations of spinal cord astrocytes and microglia were examined on post-injury day 7 (PID7) following NRL and 
SNS. The involvement of the descending pain modulatory pathway was also investigated.

Results:  Following NRL, the rats showed a decreased pain threshold and latency on the von Frey and Hargreaves 
tests. The immunofluorescence results indicated hyperactivation of superficial spinal cord dorsal horn (SCDH) neu‑
rons. Both 2-Hz and 20-Hz SNS alleviated pain behavior and hyperactivation of SCDH neurons. On PID7, NRL resulted 
in elevated expression of spinal cord inflammatory proteins including NF-κB, TNF-α, IL-1β, and IL-6, which was miti‑
gated by 2-Hz and 20-Hz SNS. Furthermore, 2-Hz and 20-Hz SNS suppressed the activation of spinal cord astrocytes 
and microglia following NRL on PID7. Activity of the descending serotoninergic pain modulation pathway showed an 
increase early on PID1 following 2-Hz and 20-Hz SNS.

Conclusions:  Our results support that both 2-Hz and 20-Hz SNS can alleviate NP behaviors and hyperactivation of 
pain conducting pathways. We showed that SNS regulates neuroinflammation and reduces inflammatory protein 
expression, astrocytic gliosis, and microglia activation. During the early post-injury period, SNS also facilitates the 
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Background
Neuropathic pain (NP), defined as pain caused by a pri-
mary lesion of the nervous system, is characterized by 
abnormal activation of pain conducting pathways [1]. 
Mechanical allodynia and thermal hypersensitivity are 
commonly observed in patients with NP and animal 
models of NP, including rats with L5 nerve root ligation 
(NRL) [2, 3].

Dysregulated pain signaling and modulation in the 
central nervous system (CNS) play a critical role in NP 
[1, 4]. The pathogenesis of NP following NRL is charac-
terized by neuroinflammation in the spinal cord dorsal 
horn (SCDH) at the corresponding level [5, 6]. Injury 
of the sciatic nerve has been shown to induce prolifera-
tion and hypertrophy of spinal cord astrocytes via acti-
vation of the mitogen-activated protein kinase signaling 
pathway [7]. Activation of extracellular signal-regulated 
kinase in spinal microglia and astrocytes following spinal 
nerve injury has also been reported [8]. Such changes in 
spinal cord glial cells are known to facilitate hyperactiva-
tion of somatosensory neurons in the SCDH and result 
in NP [8–10]. Together, these findings suggest a pivotal 
role of CNS neuroinflammation in the development of 
acute pain hypersensitivity and the subsequent transi-
tion from acute to chronic NP. Thus, modulation of CNS 
neuroinflammation and the associated hyperactivation 
of somatosensory pain signaling pathways is a potential 
treatment strategy for alleviating NP.

Neuromodulatory techniques, such as peripheral nerve 
stimulation (PNS) and spinal cord stimulation, have 
been used to treat debilitating pain in patients who fail 
to respond to or cannot tolerate pharmacological treat-
ments [11]. Emerging clinical evidence supports the 
clinical efficacy of PNS in the management of chronic 
pain. Sator-Katzenschlager et  al. reported a reduction 
in pain scores of more than 50% and a decrease in the 
doses of required analgesics in 111 NP patients receiv-
ing PNS [12]. Similar results were obtained in patients 
with chronic back pain, who had lower pain scores and 
analgesic consumption after PNS [13, 14]. Goebel et  al. 
successfully utilized PNS to achieve sustained pain relief 
in an amputated patient with complex regional pain syn-
drome who had failed to respond to SCS [15]. Despite 
such evidence of PNS being successfully used to treat 
chronic pain, its applications in treating acute pain were 
not reported until recent years [16]. For example, Ilfield 

et al. applied PNS in the immediate postoperative period 
following knee surgery and reported an average 85% 
improvement of pain scores [17].

Previous animal experiments have demonstrated that 
PNS can increase the pain threshold in NRL rats [18] and 
shed light on potential mechanisms of PNS, such as gate-
control-induced paresthesia [19], inflammatory modula-
tion [20, 21], and endogenous pain inhibition pathways 
[20]. However, a detailed investigation of the mechanism 
of PNS is lacking. Furthermore, there is limited research 
on the frequency used in PNS, which is an imperative 
parameter affecting the response. PNS at a frequency of 
100–10,000  Hz is associated with gate-control-induced 
paresthesia to achieve analgesia [19, 22], whereas PNS at 
a lower frequency (2–30 Hz) is reported to have a mod-
ulatory effect on inflammation [21, 23]. Thus, further 
investigation of frequency is essential for achieving opti-
mal pain relief from PNS. Moreover, the existing studies 
regarding PNS in the treatment of acute pain conditions 
are limited to nociceptive pain, such as postoperative 
pain [17, 24]. The efficacy of PNS for acute NP is yet to be 
investigated.

To address these knowledge gaps in NP research, the 
present study aimed to elucidate the potential role of sci-
atic nerve stimulation (SNS) with graded frequency in 
an acute NP model of NRL rats. Three different electri-
cal stimulation frequencies, namely 2 Hz, 20 Hz, 60 Hz, 
were compared in terms of their analgesic efficacy and 
their effects on histomorphology in the SCDH and pain-
related regions of the brainstem.

Methods
Animals
This study was approved by the Animal Ethics Com-
mittee of National Cheng Kung University (NCKU) in 
Tainan, Taiwan (IACUC approval number: 109195). All 
surgical interventions, perioperative care, and treatments 
were performed in accordance with the guidelines of the 
Institute of Animal Use and Care Committee at NCKU. 
Adult male Sprague-Dawley rats (250–300  g) were 
obtained from BioLASCO (Nangang, Taipei, Taiwan) and 
housed at 25 ± 2  °C under a 12 h light–dark cycle. Food 
and water were available ad libitum. Efforts were made to 
reduce the number of animals used and to minimize ani-
mal suffering.

descending pain modulatory pathway. Taken together, these findings support the therapeutic potential of SNS for 
acute NP.

Keywords:  Sciatic nerve stimulation, Peripheral nerve stimulation, Neuropathic pain, Nerve root ligation, 
Neuroinflammation, Descending pain inhibition
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L5 spinal nerve root ligation model
The surgical procedures for L5 nerve root ligation (NRL) 
were performed as previously described with some modi-
fications [25]. The rats were anesthetized by an intraperi-
toneal injection of Zoletil® 50 (40 mg/kg; Virbac, Carros, 
France), administrated with enrofloxacin (5 mg/kg, Bayer, 
Leverkusen, Germany) and placed in a prone position. In 
brief, the paraspinal muscles were split via a paramedian 
incision and gently retracted to expose the L5 transverse 
process. The L5 transverse process was then removed to 
expose the underlying L5 nerve root. L5 spinal nerve liga-
tion was performed with a 4–0 non-absorbable suture 
(Additional file  1: Supplementary figure  1). Wound clo-
sure was performed in a layer-by-layer fashion. After 
NRL, a heating pad was used to maintain the rat’s body 
temperature at 37 °C until recovery from anesthesia.

Sciatic nerve electrical stimulation
Five different sets of animal experiments, including SNS 
at three frequencies, were performed (Fig.  1): Sham 
(exposure of L5 nerve root without ligation, N = 10); 
NRL + Sham electrical stimulation (NRL + SES, N = 10); 
NRL + 2  Hz SNS (NRL + 2  Hz, N = 10); NRL + 20  Hz 
SNS (NRL + 20  Hz, N = 10); and NRL + 60  Hz SNS 
(NRL + 60 Hz, N = 10). SNS was performed in a 1-h sin-
gle session starting 2 h after the surgery of L5 NRL. The 
segment of the stimulated sciatic nerve is ipsilateral to 
the ligated L5 nerve root at a location distal to the joint 
of L4, L5, and L6 nerve roots in the thigh. The electric 
stimulation was delivered via custom-made bipolar 

electrodes connected to a nerve conduction/electromyo-
graphy stimulator (ISIS Xpress, inomed Medizintechnik 
Gmbh, Germany). The delivered stimulus consisted of 
2-s-long uniform biphasic pulse trains at a frequency of 
2 Hz, 20 Hz, and 60 Hz with 200-μs square wave pulses. 
The pulse trains were separated by 8-s off intervals. The 
intensity ranged from 1 to 10 mA. Motor responses were 
used to confirm the delivery of electric stimulation. The 
stimulation intensity was subsequently selected as the 
maximal intensity that did not trigger a motor response. 
These parameters were adapted from previous studies 
demonstrating that such stimuli activate all fiber types 
[26]. In the NRL + SES group, Sham electrodes without 
electrical current were applied to the sciatic nerve.

Behavioral tests
Starting three days before surgery, the rats were intro-
duced to the testing environment daily to allow for accli-
mation. The rats were placed in the environment used 
for the mechanical and thermal tests for 30  min before 
the tests were performed. Before and 1, 3, 5, and 7 days 
after surgery, the plantar surface of both ipsilateral and 
contralateral hind paws was probed using electrical von 
Frey tips (BIO-EVF5, Bioseb, France) to measure the 
thresholds of mechanical touch sensitivity (von Frey test). 
The tip was gently applied upward onto the rat’s middle 
plantar surface and force was slowly exerted until the rats 
withdrew, flicked, or licked their paw. The reading of the 
largest force (in grams) was automatically recorded. Each 
rat was tested five times separated by 15-s intervals.

Hargreaves test was performed on preoperative day 
1 and 1, 3, 5, and 7  days after surgery to evaluate ther-
mal sensitivity using a Plantar Test Apparatus (Ugo 
Basile, Comerio, Italy). An infrared heat source (50  W) 
was adjusted so that naïve rats had withdrawal latencies 
of 9–12  s. The heat source was focused on the plantar 
surface of the ipsilateral and contralateral hind paw and 
the time taken to withdraw from the heat stimulus was 
recorded. Each hind paw was tested three times sepa-
rated by intervals of 2 min.

Western blot analysis
L4–L6 spinal cords were freshly collected and homog-
enized with T-PER reagent buffer containing protease 
inhibitor mixture (Thermo Scientific). Homogenates 
were centrifuged at 12,000 rpm for 15 min at 4 °C and the 
supernatants were collected as total cell lysates. Proteins 
extracts (30  μg), which were quantified using a protein 
assay kit (Micro BCA™, Thermo Fisher Scientific Inc.), 
were resuspended in loading buffer and subjected to pol-
yacrylamide gel electrophoresis followed by transfer to a 
nitrocellulose membrane for 2  h. The membranes were 
blocked with 5% non-fat milk in Tris-buffered saline with 

Fig. 1  Study protocol for L5 NRL and SNS. The Sham group (group 
1) with the L5 nerve root exposed but not ligated was used as the 
control. In NRL + SES (group 1), the L5 nerve root was exposed and 
ligated and the SNS electrode was placed distal to the joint of L4, 
L5, and L6 nerve roots 2 h after NRL but no electrical stimulation 
was performed. In the SES groups (Groups 3, 4, and 5), NRL and SNS 
electrode placement was performed as above described and 2-Hz, 
20-Hz, and 60-Hz SNS was performed. Behavioral tests, including the 
von Frey test and Hargreaves test, were performed 1 day before NRL 
and on PID 1, 3, 5, and 7
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Tween-20 (TBST, 20 mM Tris base, 130 mM NaCl, 0.1% 
Tween-20) and then incubated overnight at 4 °C with the 
following primary antibodies: anti-α-tubulin (GeneTex 
GTX112141, 1:10,000), anti- NF-κB (Cell Signaling Tech-
nology #8242, 1:2000), anti-IL-1β (Origene TA321162, 
1:2000), anti-TNF-α (abcam ab6671, 1:2000), and anti-
IL-6 (abcam ab6672, 1:2000). After primary antibody 
incubation, the membranes were washed with TBST and 
incubated with horseradish peroxidase-conjugated sec-
ondary antibodies (Jackson ImmunoResearch Inc., West 
Grove, PA, USA) for 1 h at room temperature. Following 
the final washing step, Western blot analysis was per-
formed using an enhanced chemiluminescence detection 
kit (WBKLS000, MerckMillipore/Merck KGaA) and vis-
ualized using a luminescence imaging system (Azure Bio-
systems). The protein level was normalized to α-tubulin 
and analyzed using ImageJ software (NIH, USA). All 
described experiments were performed in triplicate.

Immunofluorescence staining
After the rats were anesthetized, transcardial perfusion 
was performed using ice-cold normal saline followed 
by 4% paraformaldehyde in 0.1  M phosphate buffer at 
pH 7.4. Spinal cord tissues were collected and postfixed 
in 4% paraformaldehyde at 4  °C overnight. Afterward, 
the spinal cord tissues were dissected into 10  mm seg-
ments, centered over the L5 level, immersed in PBS with 
30% sucrose for cryoprotection at room temperature for 
48 h, and embedded in optimal cutting temperature com-
pound in liquid nitrogen. Transverse cryosections of the 
spinal cord and brainstem tissues were cut at 20 μm using 
a cryostat (LEICA CM1950) at − 20  °C. Ten sections at 
intervals of 480 μm were sampled from each animal for 
further immunofluorescence analysis.

Prior to immunofluorescence staining, sections were 
rinsed with 0.01 M phosphate-buffered saline (PBS), per-
meabilized, blocked with 2% normal goat serum (pre-
pared in PBS supplemented with 0.1% BSA and 0.1% 
Triton X-100) for 5  min, and blocked with 10% normal 
goat serum (prepared in PBS supplemented with 0.1% 
BSA and 0.1% Triton X-100) for 20  min. The sections 
were then incubated overnight at 4 °C with the following 
primary antibodies: anti-c-fos (Abcam ab190289, 1:1000), 
anti-GFAP (Sigma G3893, 1:400), anti-Iba1 (GeneTex 
GTX635363, 1:200), and anti-TPH2 (Abcam ab211528, 
1:500). This was followed by incubation with second-
ary fluorescent-dye conjugated secondary antibodies 
(Thermo Fisher Scientific Inc.) at room temperature for 

1  h. After rinsing with 0.01  M PBS, the sections were 
mounted with media with 4′,6-diamidino-2-phenylindole 
(Abcam, Cambridge, UK). The fluorescent images were 
captured using a fluorescence microscopy system (Nikon 
M568E; Minato City, Tokyo, Japan). All described experi-
ments were performed in triplicate.

Statistical analysis
Continuous variables were expressed as the 
mean ± standard deviation. Data from two groups were 
compared using Student’s  t-test. Data from three or 
more groups were compared using one-way analysis of 
variance with Bonferroni’s post hoc test. Differences were 
considered statistically significant at p < 0.05.

Results
SNS alleviates pain and thermal hypersensitivity in L5 NRL 
rats
To evaluate the effect of SNS, we first evaluated mechani-
cal (von Frey test) and thermal (Hargreaves test) pain 
sensitivity in L5 NRL rats. The Sham group with the 
L5 root exposed but not ligated was used as a control. 
Compared to the Sham group, NRL + SES rats exhib-
ited a significantly lower paw withdrawal threshold and 
decreased paw withdrawal latency from post-injury day 1 
(PID1) to PID7 on the ipsilateral side (Fig. 2a, b) but not 
the contralateral side (Fig.  2c, d). To further investigate 
the therapeutic potential of SNS and the efficacy of dif-
ferent electrical frequencies, the pain behaviors of SNS 
rats following 2 Hz, 20 Hz, and 60 Hz stimulation were 
evaluated. On PID1, all frequencies of SNS increased 
the paw withdrawal thresholds and latencies compared 
to NRL + SES. On PID 3, 5, and 7, increased paw with-
drawal thresholds and latencies compared to NRL + SES 
were observed for 2-Hz and 20-Hz SNS, but not 60-Hz 
SNS (Fig. 2a, b). The pain and thermal sensitivities of the 
contralateral paw were unchanged (Fig.  2c, d). We then 
calculated the cumulative withdrawal thresholds and 
latencies for each rat (Fig. 2e–h). The results showed that 
L5 NRL resulted in significantly decreased ipsilateral 
cumulative withdrawal thresholds and latencies and that 
the decreases were ameliorated by 2-Hz and 20-Hz SNS, 
but not 60-Hz SNS.

Hyperactivation of SCDH superficial laminar neurons 
is normalized following SNS in L5 NRL rats
Based on the pain behavior test results, we wondered 
if the alterations in pain behavior were correlated with 

(See figure on next page.)
Fig. 2  Effects of SNS on pain and thermal hypersensitivity in L5 NRL rats. The paw withdrawal threshold and latency on the ipsilateral (a, b) and 
contralateral side (c, d) to NRL and SNS 1 day before NRL and PID 1, 3, 5, and 7 were recorded (N = 10). Data are expressed as mean ± SD. The area 
under the curve was calculated as the cumulative withdrawal threshold and latency on the ipsilateral (e, f) and contralateral side (g, h). ###p < 0.001 
compared to Sham. **p< 0.01 compared to NRL + SES. *p < 0.001 compared to NRL + SES
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Fig. 2  (See legend on previous page.)
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alterations in the neuronal activity of pain transmitting 
neurons. Therefore, we investigated the neuronal activity 
of L5 SCDH superficial laminar neurons.

Figure  3 presents the immunofluorescence images of 
frozen SCDH sections on PID1 and PID7. The border 
between the superficial and the deep laminae (dashed 
line) was established based on the difference in the het-
erogenic neuronal size characteristic of lamina IV ver-
sus the smaller cells characteristic of lamina III [27] (see 
magnification on the right in Fig.  3a). Co-staining of 
NeuN and c-fos is shown in Fig.  3b. Quantification of 
c-fos/NeuN co-localized neurons in the L5 SCDH super-
ficial laminar revealed a 4.8 and 5.9-fold increase in the 
number of activated neurons on PID1 and PID7, respec-
tively, in the NRL + SES group compared with the Sham 
group (Fig.  3c, d). On PID1, the numbers of activated 
superficial laminar neurons observed in 2 Hz, 20 Hz, and 
60  Hz SNS groups were 62.7%, 72.8%, and 75.3% less, 
respectively, compared with NRL + SES group. Whereas 
on PID7, the numbers of activated superficial lami-
nar neurons were 51.8%, 76.9%, and 42.0% less in 2 Hz, 

20 Hz, and 60 Hz SNS groups, respectively, compared to 
NRL + SES. Comparison of the different SNS frequencies 
showed that 20-Hz SNS resulted in a greater decrease in 
the SCDH c-fos signal compared to 2 Hz and 60 Hz on 
PID7. In contrast, there was no difference among the 
results of 2-Hz, 20-Hz and 60-Hz SNS on PID1.

Modulatory effect of SNS on expression of spinal cord 
NF‑κB, TNF‑α, IL‑1β, and IL‑6 in L5 NRL rats
Previous studies have shown that neuroinflammation in 
the SCDH plays an essential role in the formation of NP 
in NRL animal models [6, 28]. Therefore, we investigated 
whether SNS impacted the inflammatory response in the 
SCDH after L5 NRL.

Expression of the inflammatory mediator NF-κB and 
proinflammatory cytokines TNF-α, IL-1β, and IL-6 on 
PID1 and PID7 were measured by Western blotting (Fig. 4). 
On PID1, the expression of IL-1β and IL-6 was signifi-
cantly elevated by 2.2-fold and 1.4-fold, respectively, in 
the NRL + SES group compared to the Sham group. We 
also observed a trend of elevated expression of NF-κB and 

Fig. 3  Activity of SCDH superficial laminar neurons following SNS in L5 NRL rats on PID1 and PID7. Transverse sections of the L5 spinal 
cord were obtained from NRL rats on PID1 (N = 4) and PID7 (N = 5). The border between the superficial (lamina I–III) and deep lamina 
was set by the heterogenic neuronal size of lamina IV, compared to the smaller cells of lamina III [27], as indicated by the dashed lines (a). 
Double-immunofluorescence staining of neuronal marker NeuN (green) and c-fos (red) (b). Colocalization of NeuN and c-fos appears yellow in the 
merged image. Quantification of the number of NeuN/c-fos co-localized cells in a single SCDH section on PID1 (c) and PID7 (d). Scale bar = 200 μm. 
Data are expressed as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
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TNF-α on PID1, although it was not statistically significant 
(Fig. 4b). On PID7, the levels of spinal cord NF-κB, TNF-
α, IL-1β, and IL-6 were all significantly elevated by 1.6-fold, 
1.8-fold, 1.6-fold, and 1.7-fold in the NRL + SES group 
compared to the Sham group, respectively (Fig.  4c). On 
PID1, none of the SNS groups showed significant changes 
in the expression of spinal cord NF-κB, TNF-α, IL-1β, and 
IL-6 compared to NRL + SES (Fig. 4b). However, on PID7, 
we observed that 20-Hz SNS reduced the expression of 
TNF-α, 2-Hz and 20-Hz SNS reduced the expression of 
NF-κB, and all frequencies of SNS reduced the expression 
of IL-1β and IL-6 (Fig. 4c).

Effects of various SNS frequencies on astrocyte 
proliferation and microglia activation on PID7 in the SCDH 
in L5 NRL rats
Since spinal cord astrocytes and microglia are also involved 
in neuroinflammation and the formation of NP [29–32], we 
investigated whether astrocyte proliferation and microglia 
activation occurred in SCDH in the rat model of acute NP. 
Figure  5a shows the immunofluorescence staining results 
of GFAP in frozen SCDH sections on PID7. Quantifica-
tion of ipsilateral GFAP signal in the L5 spinal cord (Fig. 5a, 
magnification) revealed a 4.9-fold increase in the GFAP 
area and a 4.1-fold increase in the GFAP integrated density 
in the NRL + SES group compared with the Sham group 
(Fig. 5b). Notably, the increased ipsilateral signal was ame-
liorated by 2-Hz and 20-Hz SNS, but by not 60-Hz SNS 
(Fig. 5b). The contralateral GFAP area and integrated den-
sity were not affected by L5 NRL and SNS (Fig. 5c).

We also analyzed the immunofluorescence signal for 
Iba1 in L5 SCDH (Fig. 6a). The results revealed a 2.3-fold 
increase in the ipsilateral Iba1 area and a 4.8-fold increase 
in the Iba-1 integrated density in the NRL + SES group 
compared with the Sham group (Fig. 6b). The increase in 
the ipsilateral Iba1 signal was mitigated by 2-Hz and 20-Hz 
SNS, but not 60-Hz SNS (Fig.  6b). On the contralateral 
side, the difference in the Iba1 area and integrated density 
were not significant among all groups (Fig. 5c).

Upregulation of TPH2+ neuronal activity in the rostral 
ventromedial medulla following SNS in L5 NRL rats
To investigate the potential involvement of additional 
pain modulatory pathways, we analyzed the activity of the 
periaqueductal gray matter–rostral ventromedial medulla 
(PAG–RVM) descending pain modulation pathway. Fig-
ure  7 shows the immunofluorescence staining results of 

frozen RVM sections on PID 1. Colocalization of c-fos and 
TPH2 indicated the presence of activated serotoninergic 
neurons (Fig. 7b). Quantification of c-fos+/TPH2+ cells in 
the raphe magnus (RMg) nucleus revealed a 1.9-fold and 
3.2-fold increase of c-fos + /TPH2+ cells following 2-Hz 
and 20-Hz SNS, respectively, compared to the Sham group 
(Fig.  7c). The changes in c-fos + /TPH2+ signals in the 
NRL + SES and NRL + 60  Hz groups were not significant 
compared to the Sham group.

Discussion
A detailed characterization of the effect of SNS on NP 
models will increase our understanding of the mecha-
nism of PNS to help achieve optimal pain relief. Moreo-
ver, research focusing on acute NP conditions may help 
broaden the range of clinical applications of PNS to 
benefit more patients in need. The main contribution 
of this study is demonstrating the analgesic efficacy of 
2-Hz and 20-Hz SNS by showing alleviated pain behav-
iors and reduced SCDH hyperactivation in L5 NRL rats. 
Our results suggest that SNS plays an important role in 
pain modulation by reducing spinal cord inflammatory 
proteins and glial cell activation. Moreover, we showed 
an early increase in the activity of descending pain inhi-
bition following 2-Hz and 20-Hz SNS, which may act in 
combination with the anti-inflammatory effect to achieve 
analgesia.

L5 NRL is a well-established rodent model of chronic 
NP that exhibits both pain and thermal hypersensitivity 
[25, 33]. In this study, the behavioral experiments vali-
dated the acute NP rat model of L5 NRL by showing that 
mechanical and thermal hypersensitivity occurred early 
on PID1 and were maintained until PID7. Although acute 
NP is increasingly clinically recognized [34], experimen-
tal models of acute NP are limited compared to those 
of chronic NP. Przewłocka et al. utilized crushing injury 
of the sciatic nerve as a model of acute NP and showed 
the development of allodynia on PID2; however, that 
study included no histological or biochemical analyses 
to supplement the pain behavioral test results [35]. In the 
current study, the behavioral phenotype of NP was sup-
ported by histological examination performed on both 
PID1 and PID7, revealing the hyperactivation of super-
ficial laminar neurons in the SCDH, which are the major 
projection neurons in the spinothalamic tract.

In the present study, SNS was performed at three 
frequencies, namely 2  Hz, 20  Hz, and 60  Hz. Nerve 

(See figure on next page.)
Fig. 4  Effect of SNS on the expression of spinal cord NF-κB, TNF-α, IL-1β, and IL-6 in L5 NRL rats. Spinal cord tissues were obtained from NRL rats 
(N = 5) on PID1 and PID7. Tissue lysates were analyzed by immunoblotting with specific antibodies against NF-κB, TNF-α, IL-1β, and IL-6 (a). α-tubulin 
was used as an internal control. Relative levels of spinal cord NF-κB, TNF-α, IL-1β, and IL-6 on PID1 were quantified by densitometric analysis using 
ImageJ software (b). Relative levels of spinal cord NF-κB, TNF-α, IL-1β, and IL-6 on PID7 were quantified by densitometric analysis using ImageJ 
software (c). Data are expressed as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4  (See legend on previous page.)
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stimulation at frequency in the range of 2–30  Hz is 
reported to exert an anti-inflammatory effect [36, 37]. 
Besides vagus nerve stimulation, which has already been 
approved for the treatment of systemic inflammatory 
cognitions [38], PNS on somatic nerves is reported to 
reduce inflammation [36, 39]. A study by Gürgen et  al. 
demonstrated that perilesional transcutaneous electrical 
stimulation inhibited proinflammatory cytokines, includ-
ing TNF-α, IL-1β, and IL-6, and improved wound heal-
ing [21]. Tu et al. proposed that, following PNS on sacral 
nerves, afferent signals were transmitted to the brainstem 
and that the efferent anti-inflammatory output is trans-
mitted by the vagus nerve [40]. Despite recent reports of 
the use of SNS to treat chronic pain [41], whether SNS 
affects inflammation remains unclear. Notably, it has 
been reported that 60–100  Hz stimulation resulted in 
paresthesia of the innervated region and produced anal-
gesic effects via the gate-control mechanism [42, 43]. As 
a result, a tingling sensation is not uncommon in patients 
receiving higher frequency stimulation [44].

In this study, the biochemical analyses were performed 
on PID1 and PID7. We sampled the tissues on PID1 to 
capture the analgesic effect that occurred early on PID1 
in animal experiments. We investigated the morphologies 

on PID7 because it was reported that the first 7 days rep-
resent the developmental phase and the acute-to-chronic 
transition of NP [33]. Our results showed that, on PID1, 
all three frequencies of SNS alleviated the pain and ther-
mal hypersensitivity induced by L5 NRL. However, only 
2-Hz and 20-Hz SNS showed sustained analgesia on PID 
3, 5, and 7. SNS with 60 Hz frequency only achieved anal-
gesia on PID1 and the effect gradually declined. Although 
suppression of hyperactivated superficial SCDH neurons 
was observed at all frequencies on PID7, 60-Hz SNS had 
a lower efficacy. It is probable that the magnitude of sup-
pression of hyperactivated superficial SCDH neurons 
resulting from 60-Hz SNS was insufficient to achieve 
analgesia. Additionally, it was also reported that the 
effect of high-frequency PNS may decline over time due 
to habituation [43], which might contribute to the differ-
ent analgetic efficacy observed between 2 Hz, 20 Hz, and 
60 Hz on PID7. Taken together, these results suggest that 
the mechanism through which 2-Hz, 20-Hz, and 60-Hz 
SNS achieve anti-nociception on PID1 may not be the 
same.

In light of the anti-inflammatory potential of SNS [21, 
36], we hypothesized that modulation of CNS neuroin-
flammation may contribute to the observed differences 

Fig. 5  Proliferation of SCDH astrocytes on PID7 following SNS at various frequencies in L5 NRL rats. Transverse sections of L5 spinal cord were 
obtained from NRL rats on PID7 (N = 5). Immunofluorescence staining of the astrocyte marker GFAP (green) on PID7 (a). The right panels show 
magnification (× 10) of the ipsilateral SCDH. The relative area and integrated density of ipsilateral and contralateral GFAP signal was quantified using 
ImageJ software (b, c). Scale bars = 500 μm and 200 μm (magnification). Data are expressed as mean ± SD. *p < 0.05, **p < 0.01. ***p < 0.001
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in the effects of different SNS frequencies. Therefore, we 
investigated the neuroinflammatory response following 
L5 NRL and SNS. In the case of peripheral nerve injury, 
local inflammation at the injury site is followed by a prox-
imal inflammatory response in the spinal cord [45]. Pre-
vious studies of peripheral nerve injury by Murphy et al. 
and Costigan et al. have revealed increased expression of 
proinflammatory cytokines, including TNFα, IL-1β, and 
IL-6, in the SCDH on PID7 after nerve injury and it is 
known that these cytokines are required for the develop-
ment of pain [46, 47]. Consistent with those results, we 
demonstrated elevated expression of spinal cord IL-1β, 
IL-6, NF-κB, and TNF-α on day 7 after NRL. Our meas-
urements of spinal cord inflammatory proteins showed 
that, although elevated expression of NF-κB and g TNF-α 
was not observed until PID7, increases in IL-1β and IL-6 
expression occurred early on PID1. This result is compat-
ible with a previous report that increased expression of 
IL-1β and IL-6 preceded TNF-α [48]. Overall, these find-
ings suggest that IL-1β and IL-6 may be key initiators of 
neuroinflammation in NP and are thus potential thera-
peutic targets in the early stage of NP [45].

Next, because glial cells in the CNS are recog-
nized as a major source of intrathecal IL-1β, IL-6, 

and TNFα [49], we investigated astrocyte prolifera-
tion and microglia activation in the SCDH following 
L5 NRL. Our results demonstrated astrocyte prolif-
eration and microglia activation in the ipsilateral spi-
nal cord on PID7. Neuronal–glial interactions play an 
important role in sensitizing and maintaining NP [50, 
51]. In particular, Nam et  al. showed that optogeneti-
cally induced spinal astrocyte activation governed the 
induction of pain hypersensitivity [9], while Gao et  al. 
found that chemokine production in spinal cord astro-
cytes contributed to central sensitization of NP [52]. 
Furthermore, Ji et al. reported that spinal microglia are 
important contributors to NP development after nerve 
injury, and several studies have found that inhibiting 
microglial activation reduces hyperalgesia after nerve 
damage [53, 54]. Taken together, these findings identify 
SCDH astrocytes and microglia as potential therapeu-
tic targets for NP. Relevant to this important point, we 
demonstrated that 2-Hz and 20-Hz SNS significantly 
ameliorated L5 NRL-induced astrocytic gliosis and 
microglial activation. The suppression of glial cell acti-
vation is also consistent with our finding of decreased 
expression of inflammatory proteins in the spinal cord 
after 2-Hz and 20-Hz SNS. Together, these results 

Fig. 6  Activation of SCDH microglia on PID7 following SNS at various frequencies in L5 NRL rats. Transverse sections of L5 spinal cord were obtained 
from NRL rats on PID7 (N = 5). Immunofluorescence staining of the microglia marker Iba1 (red) on PID7 (a). The right panels show magnification (× 
10) of the ipsilateral SCDH. The relative area and integrated density of ipsilateral and contralateral Iba1 signal was quantified using ImageJ software 
(b, c). Scale bars = 500 μm and 200 μm (magnification). Data are expressed as mean ± SD. *p < 0.05, **p < 0.01. ***p < 0.001
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Fig. 7  TPH2+ neuronal activity in the RVM following SNS at various frequencies compared to Sham stimulation in L5 NRL rats on PID1. 
Transverse sections of rostral brainstem were obtained from NRL rats on PID1 (a) (N = 3). Magnification of the RMg (A, right panel). 
Double-immunofluorescence staining of the serotoninergic neuron marker TPH2 (green) and c-fos (red) (b). Quantification of the number of 
TPH2/c-fos co-localized cells (c). Scale bar = 50 μm. Data are expressed as mean ± SD.*p < 0.05, **p < 0.01
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demonstrate the efficacy of 2  Hz and especially 20-Hz 
SNS in reducing spinal cord neuroinflammation in the 
L5 NRL NP rat model. Furthermore, our results sug-
gested 20-Hz SNS may exert a better anti-inflammatory 
efficacy in the spinal cord.

Importantly, we noted that the analgesic effect of 
SNS in the behavioral experiments occurred early on 
PID1, whereas the anti-inflammatory effect of SNS 
was not significant until PID7. In light of the differ-
ent results between the behavioral experiments and 
biochemical analysis, we hypothesized that other anti-
nociceptive mechanisms may be involved. Given that 
the PAG–RVM descending pain modulation pathway 
is an early responder to pain and the RVM is activated 
30 min after exposure to noxious stimuli [55], we hypoth-
esized that descending pain modulation may contribute 
to the analgesic effect of SNS on PID1. Serotonin (5-HT) 
is the major neurotransmitter involved in pain modula-
tion in the RVM and the descending serotonergic path-
ways mainly originate from the 5-HT rich RMg [56, 57]. 
Activation of this descending serotoninergic pathway has 
been shown to attenuate both mechanical and thermal 
hyperalgesia [56, 58]. As predicted, our results revealed 
that 2-Hz and 20-Hz SNS induced increased activity of 
serotoninergic neurons located at the RMg of the RVM 
on PID1. Early activation of the RVM descending pain 
modulation pathway could explain the reduced pain and 
thermal hypersensitivity behavioral test results on PID1.

Furthermore, our results showed that while the differ-
ences in the level of spinal cord IL-1β and IL-6 between 
L5 NRL rats with and without SNS were not significant 
on PID1, 2-Hz and 20-HZ SNS were able to attenuate 
the increased expression of spinal cord IL-1β and IL-6 on 
PID7. A reasonable explanation to this finding is the early 
resolution of neuroinflammation [20, 59]. Since neuroin-
flammation is a major contributor of central pain sensiti-
zation and central sensitization plays an important role in 
the formation of NP, early treatment with neuromodula-
tory techniques is proposed to have an additional advan-
tage to block pain-induced maladaptive plasticity and 
neuroinflammation following neuronal injury, thereby 
preventing the acute-to-chronic pain transitioning [60, 
61]. As a result, the therapeutic effect of early SNS treat-
ment is likely a combination of increased descending pain 
inhibition, decreased and early-resolved neuroinflamma-
tion, and attenuated central pain sensitization [60].

Taken together, these results suggest that 2-Hz and 
20-Hz SNS are effective in alleviating acute NP fol-
lowing L5 NRL in a rat model by suppressing SCDH 
neuroinflammation and facilitating descending pain 
inhibition. Comparisons between different stimulation 
frequencies suggest a neuromodulatory role of 2-Hz and 
20-Hz SNS compared to the paresthesia effect of 60 Hz. 

Furthermore, our results demonstrate better efficacy of 
20 Hz compared to 2 Hz for suppressing neuroinflamma-
tion and facilitating descending pain inhibition.

This study is subject to several limitations. Although we 
demonstrated the efficacy of SNS as a treatment for NP, 
the exact molecular mechanism of electrical peripheral 
neurostimulation has not been explored. Next, the timing 
of when SNS is performed may be less clinically applica-
ble. Since this pilot study aimed to validate the potential 
therapeutic effect of SNS on NP and identify the optimal 
frequency, we performed SNS 2 h after L5 NRL. Future 
studies should investigate the optimal timing of SNS fol-
lowing injury to alleviate acute NP. Understanding the 
basis of these processes may provide insight to improve 
the currently available neurostimulation techniques to 
achieve better patient satisfaction. In-depth knowledge 
about the pathobiology of NP and the responses of neu-
ral–glial interactions to PNS may reveal additional thera-
peutic targets.

Conclusions
In conclusion, our work has shown the analgetic effect 
of 2-Hz and 20-Hz SNS in an acute NP rodent model. 
We demonstrated regulation of inflammatory protein 
expression, astrocytic gliosis, and microglia activation 
following 2-Hz and 20-Hz SNS. During the early post-
injury period, SNS might facilitate the descending pain 
modulatory pathway. Overall, our work has provided new 
insights into the cellular mechanisms of SNS and demon-
strated its beneficial effect in acute NP.
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