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Background. Bladder cancer (BC) is one of the most serious genitourinary malignant diseases with a poor prognosis. Necroptosis
is a regulated form of cell death, and targeting necroptosis is emerging as a potential tumor therapy strategy. Nevertheless, the
roles of necroptosis-related long noncoding RNAs (nrlncRNAs) in BC remains to be illustrated. This work is aimed at studying
the clinical implications of nrlncRNAs in BC. Methods. The RNA-seq data and corresponding clinical data, downloaded from
The Cancer Genome Atlas (TCGA) database, were utilized to obtain prognostic nrlncRNAs and construct a prediction
nomogram for BC. The comprehensive profiling of the functional pathways, immune status, mutational landscape, and drug
sensitivity related to the necroptosis-related lncRNA signature (NerRLsig) was performed. Results. Herein, a signature
consisting of 12 necroptosis-related lncRNAs (AC015802.4, AL391807.1, AL078644.1, AC023825.2, AL132655.2, AP003352.1,
STAG3L5P-PVRIG2P-PILRB, AC024451.4, MAP3K14-AS1, AL731567.1, AC010542.5, and AC009299.2) was constructed. The
established signature can independently predict the poor overall survival of BC patients. Additionally, the NerRLsig had higher
diagnostic validity compared to other clinicopathological variables, with a greater area under the receptor operating
characteristic and concordance index curves. Finally, we found the differences in the functional signaling pathway, immune
status, mutational profile, and drug sensitivity between the two subgroups. Conclusion. This research revealed that the
prognostic NerRLsig and nomogram could accurately predict the prognosis of BC.

1. Introduction

Bladder cancer (BC), one of the most common urological neo-
plasms worldwide, is majorly nonmuscle-invasive with slow
progression but a high recurrence rate [1, 2]. While muscle-
invasive bladder cancer (MIBC) has worse outcomes and is
more prone to develop metastatic disease [3, 4]. Despite the
fact that immunotherapy using checkpoint inhibitors has rev-
olutionized cancer care, the response rates remain unsatisfac-
tory, with only a small percentage of patients responding to
this treatment [5, 6]. Therefore, novel therapeutic strategies
and individualized treatment plans for BC are needed.

Necroptosis is a regulated form of cell death character-
ized by cellular swelling and loss of cellular and organelle
integrity [7, 8]. When tumor necrosis factor (TNF) binds
to TNF receptor 1 (TNFR1) on the cell surface, RIPK1
(receptor-interacting serine/threonine kinase 1) is recruited
to form a complex with RIPK3. This complex then phos-
phorylates MLKL (mixed lineage kinase domain-like pseudo
kinase), leading to the execution of necroptosis [9, 10]. Sev-
eral researchers found that the expression of hub mediators
of the necrotic pathway is frequently downregulated in can-
cer cells, whereas high expression of necroptotic regulators
indicates a favorable survival outcome for cancer patients.
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For instance, high RIPK3 expression predicted a favorable
prognosis in colorectal cancer (CRC) [11], whereas low
RIPK1 expression contributed to an unfavorable prognosis
in hepatocellular carcinoma (HCC) [12]. Various chemo-
therapeutic agents or natural products have been shown to
inhibit tumor progression by inducing necroptosis; for
example, anthracycline and oxaliplatin-induced necroptosis
cause tumors to display features of immunogenic cell death
(ICD) and an activated anticancer immune response [13].
Pyruvate kinase M2 (PKM2) inhibitor shikonin-induced
necroptosis can overcome the cisplatin resistance in BC
[14]. These results suggest that triggering necroptosis in
tumor cells may represent an attractive new strategy for can-
cer therapy.

In the human genome, only a very small number of
protein-coding genes are present, and most of them are
noncoding RNAs that cannot code for proteins, of which
noncoding RNAs longer than 200 nucleotides are called
lncRNAs [15, 16]. They mainly regulate gene expression
by directly binding to microRNA [17, 18]. Abnormally
expressed lncRNA has been confirmed to be involved in
tumorigenesis and the development of BC, suggesting
lncRNA has great potential to become therapeutic targets
for BC [19, 20]. Nevertheless, these researches are gener-
ally limited to individual molecules. Recently, the role of
lncRNA in the regulation of tumor necroptosis has been
gradually discovered. For instance, Linc00176 could lead
to necroptosis of HCC cells by targeting downstream fac-
tors, such as miR-9 and miR-185 [21]. lncRNAs could reg-
ulate necroptosis in cardiomyocytes via RIPK1/RIPK3
[22]. Moreover, lncRNA has been proven to help tumor
cells evade immune destruction by limiting excessive
inflammation, indicating its crucial role in the tumor
microenvironment [23, 24]. However, the roles of
necroptosis-related lncRNAs (nrlncRNAs) in BC are
largely unknown.

Prognostic assessment is critical for monitoring follow-
up and treatment decisions in BC patients. At present, a
variety of staging and grading systems based on the clinico-
pathological characteristics of patients are recommended in
clinical practice guidelines, which have certain guiding sig-
nificance for the management and prognostic risk assess-
ment of BC patients [25, 26]. However, these assessment
methods still have limitations in the prognostic risk stratifi-
cation of patients and cannot well distinguish the prognostic
risk of patients with the same clinical stage or similar histo-
logical grades [27]. Several studies have reported the role of
prognostic gene models based on genomics data in the prog-
nosis prediction of BC patients [28–30]. Therefore, we cre-
ated a prognostic necroptosis-related lncRNA signature
(NerRLsig) for BC and investigated its potential ability in
assessing the immune landscape and mutational status and
predicting the effects of chemotherapy and targeted
therapies.

2. Materials and Methods

2.1. Data Acquisition. The RNA-seq data containing 406
bladder cancer specimens and 19 normal controls, were

acquired from the TCGA portal (https://tcga-data.nci.nih
.gov/tcga/) [31]. Correlative clinicopathological data and
somatic mutation data for BC patients were also obtained
from TCGA Bladder Cancer databases. Next, a list of 50
necroptosis-related genes (NRGs) was collated from the lit-
erature and Molecular Signatures Database (M24779.gmt
gene set). Drug sensitivity data of chemotherapy or targeted
drugs were available on the Genomics of Drug Sensitivity in
Cancer (GDSC) (http://www.cancerrxgene.org/) [32] data-
base and CellMiner database (https://discover.nci.nih.gov/
cellminer) [33]

2.2. Study Design. First, Pearson’s correlation analysis
between lncRNAs and NRGs was performed and candidate
nrlncRNAs were identified when the correlation coefficient
> 0:4 and p value < 0.05. Then, the differentially expressed
nrlncRNAs (DEnrlncRNAs) between tumor and adjacent
nontumorous specimens were screened via the “limma” R
package; log2 jfold changej > 1 and false discovery rate ð
FDRÞ < 0:05 were set as the cut-off value. Next, 406 cases
with survival data were randomly divided into two
cohorts, a training cohort and a testing cohort, in a ratio
of 7 : 3. The univariate Cox regression analysis was applied
to identify prognosis-related DEnrlncRNAs in the training
cohort (p < 0:01). The least absolute shrinkage and selec-
tion operator (LASSO) Cox regression analysis were car-
ried out to determine hub DEnrlncRNAs and construct a
prognostic NerRLsig. The risk score was computed accord-
ing to the following formula: risk score = sum ðexpression
for each lncRNA ∗ coefficient for each lncRNAÞ. Patients in
the training cohort were separated into the low-NerRLsig
and high-NerRLsig subgroups according to the median
risk score of the training set. Kaplan-Meier survival curves
were employed to compare the different OS between two
subgroups using the “survminer” R package. Receiver
operating characteristic (ROC) curves were conducted to
estimate the predictive capability of the NerRLsig using
the “survivalROC” R package. Risk scores for patients in
the test and entire cohorts were calculated using the for-
mula obtained from the training set, and patients were
classified into the high-NerRLsig and low-NerRLsig sub-
groups based on the median risk values in the training
set, and the prognostic value of the NerRLsig in the train-
ing and total sample sets was tested by Kaplan-Meier sur-
vival curves and ROC curves. Univariate and multivariate
Cox regression analyses were performed in the entire
cohort to test the independence of the NerRLsig in pre-
dicting the overall survival prognosis of patients with BC.
Next, a nomogram for predicting patient OS was built
and calibration plots were created to valuated the perfor-
mance of the nomogram using the “rms” R package. The
ROC curves of the predictive nomogram were also drawn
using “survivalROC” R package. Furthermore, confor-
mance indexes and ROC curves were employed to explore
whether the prediction accuracy of the NerRLsig has
advantages over traditional pathological variables. Addi-
tionally, the chi-square test and the Wilcoxon rank-sum
test were utilized to study the correlation between NerRL-
sig and clinical features.
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Figure 1: Continued.
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2.3. Function Analysis of the NerRLsig. The differentially
expressed genes (DEGs) between the two subgroups were
screened using the “edgeR” R package; log2 jfold changej >
1 and false discovery rate ðFDRÞ < 0:05 set as the cut-off
value. Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were conducted to
explore potential molecular and biological mechanisms
related to the NerRLsig, with p < 0:05 indicating enrichment
for significant functional annotation. To further explore the
mechanism of action, the gene set enrichment analysis
(GSEA) was performed to investigate the NerRLsig-related
signaling pathways, with p < 0:05 indicating enrichment for
significant functional annotation.

2.4. Immune Landscape Assessment and Mutation Analysis
of the NerRLsig. To systematically describe the link between
the immune microenvironment and prognostic signature,
we calculated the relative abundances of 22 tumor-
infiltrating immune cells using the CIBERSORT algorithm,
quantified 13 immune-associated signaling pathways using
the single-sample enrichment analysis (ssGSEA), and then

compared the differences in immune cells and immune-
related pathways between subgroups via the Wilcoxon
signed-rank test. In addition, transcriptomic data for com-
mon immune checkpoint inhibitors were extracted from
the TCGA bladder cancer dataset, and differences in
immune checkpoint expression levels between the two
groups were compared using the Wilcoxon signed-rank test.
Additionally, we created a waterfall plot using “maftools” R
package to initially explore the mutational status of patients
in the high-NerRLsig and low-NerRLsig groups.

2.5. Sensitivity to Chemotherapy Drugs of the NerRLsig. To
estimate the sensitivity of high-NerRLsig and low-NerRLsig
subgroups to different chemotherapeutics, we calculated
the half-maximal inhibitory concentrations (IC50s) of com-
mon chemotherapeutics using the “pRRophetic” R package
and compared the differences in IC50 values between sub-
groups using the Wilcoxon signed-rank test. Additionally,
Pearson’s correlation analysis was performed to determine
the correlation between hub nrlncRNAs and drug sensitivity.
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Figure 1: Selection of necroptosis-related lncRNAs in bladder cancer patients. (a) Sankey diagram for the network of necroptosis-related
genes and lncRNAs. (b) Volcano plot for the differentially expressed necroptosis-related lncRNAs. (c) Heatmap for the differentially
expressed necroptosis-related lncRNAs.
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2.6. Statistical Analysis. All statistical analyses were per-
formed using R 3.6.1 software. Statistical significance was
considered to be a p < 0:05 if not otherwise stated.

3. Results

3.1. Identification of Prognostic DEnrlncRNAs in BC. Herein,
we obtained 504 nrlncRNAs via Pearson’s coexpression

analysis (Figure 1(a) and Supplementary Table 1), of which
278 were differentially expressed between the tumor group
and normal groups (Supplementary Table 2). The
expression profiles of DEnrlncRNAs were visualized as
volcano and heatmaps (Figures 1(b) and 1(c)). These 278
DEnrlncRNAs were used as candidate markers for
subsequent prognostic model construction. Then, 42
prognostic DEnrlncRNAs, including AC104785.1,
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Figure 2: Construction a prognostic necroptosis-related lncRNA signature (NerRLsig) in the TCGA training set. (a) 42 differentially
expressed necroptosis-related lncRNAs were identified by univariate Cox analysis. (b) LASSO Cox regression. (c) Determination of the
optimal LASSO settings.
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Figure 3: Continued.
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Figure 3: Assessment and validation of the prognostic necroptosis-related lncRNA signature (NerRLsig). (a, e, i) The KM survival curves of
the low-risk group and the high-risk group in the TCGA training set, testing set, and entire set, respectively. (b–d) ROC curves were used to
assess the efficiency of the risk signature for predicting 1-year, 3-year, and 5-year survival rates in the TCGA training set. (f–h) ROC curves
were used to assess the efficiency of the risk signature for predicting 1-year, 3-year, and 5-year survival rates in the TCGA testing set. (j–l)
ROC curves were used to assess the efficiency of the risk signature for predicting 1-year, 3-year, and 5-year survival rates in the TCGA entire
cohort.
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AC074117.1, AC018809.1, AC015802.4, AL391807.1,
AC018653.3, AP005329.1, AC005387.1, AL078644.1,
AC068790.7, C8orf44, AC010618.2, AC023825.2,
ZKSCAN2-DT, AL132655.2, ZNF32-AS2, AP003352.1,
AC010326.3, LINC01355, STAG3L5P-PVRIG2P-PILRB,
AC024451.4, AC010168.2, FLJ12825, AC011477.3,
AC010491.1, LINC01833, LINC01936, ZNF436-AS1,

MAP3K14-AS1, AL731567.1, AC093788.1, AC080129.2,
AC010201.2, AC010542.5, BX322562.1, AL021707.8,
AL583785.1, AC004253.1, AC020911.1, AC008543.3,
AC009299.2, and ZNF32-AS1, were identified based on
univariate Cox regression analysis (p < 0:01) (Figure 2(a)
and Supplementary Table 3), which were enrolled in
LASSO regression analysis and 12 of them were
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Figure 4: Distribution of bladder cancer (BC) patients based on the risk score. (a, d, g) Risk curve and (b, e, h) scatter plot for the risk score
and survival status of each BC case. (c, f, i) Heatmap showing the expression profiles of necroptosis-related lncRNAs in the high-risk group
and the low-risk group.
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outperformed in the constructing the NerRLsig, including
AC015802.4, AL391807.1, AL078644.1, AC023825.2,
AL132655.2, AP003352.1, STAG3L5P-PVRIG2P-PILRB,
AC024451.4, MAP3K14-AS1, AL731567.1, AC010542.5,
and AC009299.2 (Figures 2(b) and 2(c) and Supplementary
Table 4). The risk score formula was as follows: ð
expression level of AC015802:4 ∗ ð−0:488Þ + expression level
of AL391807:1 ∗ ð0:166Þ + expression level of AL078644:1
∗ ð0:204Þ + expression level of AC023825:2 ∗ ð−1:212Þ +
expression level of AL132655:2 ∗ ð−0:005Þ + expression level
of AP003352:1 ∗ ð−0:045Þ + expression level of STAG3L5P
− PVRIG2P − PILRB ∗ ð−0:172Þ + expression level of AC
024451:4 ∗ ð−0:084Þ + expression level of MAP3K14 −AS1
∗ ð−0:140Þ + expression level of AL731567:1 ∗ ð0:025Þ +
expression level of AC010542:5 ∗ ð−0:003Þ + expression level
of AC009299:2 ∗ ð0:123ÞÞ. Based on the median risk score,
BC patients were separated into the high-NerRLsig and
low-NerRLsig subgroups.

3.2. Assessment and Validation of the NerRLsig. In the train-
ing set, Kaplan-Meier survival analysis revealed that the low-
NerRLsig group had a greater OS than the high-NerRLsig
group (p < 0:001) (Figure 3(a)). The same survival outcomes
were both observed in the test set (p = 0:001) and the entire
set (p < 0:001) (Figures 3(e) and 3(i)). Time-dependent ROC
analysis showed that the AUC of the risk score predicted OS
was 0.743 at 1 year, 0.732 at 3 years, and 0.716 at 5 years in
the training cohort (Figures 3(b)–3(d)); 0.699 at 1 year, 0604
at 3 years, and 0.641 at 5 years in the testing dataset
(Figures 3(f)–3(h)): and 0.728 at 1 year, 0.698 at 3 years,
and 0.698 at 5 years in the entire cohort (Figures 3(j)–3(l)).

Figures 4(a)–4(i) show the distribution of the risk score, sur-
vival status, and the expression heatmap of nrlncRNAs in
the training, testing, and entire cohorts.

3.3. Clinical Implications of the NerRLsig. Firstly, we con-
firmed that NerRLsig was an independent prognostic factor
for BC (p < 0:01) (Figures 5(a) and 5(b) and Supplementary
Table 5). Second, a predictive nomogram was created using
NerRLsig and clinicopathological characteristics to predict
1-, 3-, and 5-year OS in BC patients (Figure 5(c)). The
calibration curves demonstrated that the prognostic
nomogram was robust and precise (Figure 5(d)). Thirdly,
the AUCs of the nomogram in the ROC curves were 0.762,
0.739, and 0.778 at 1, 3, and 5 years, respectively (Figure 5
(e)). Additionally, as shown in Figure 5(f), the prognostic
signature concordance index values were significantly
higher than the other clinical variables. Finally, ROC curve
analysis revealed that the AUC value of 0.731 for the
NerRLsig was greater than as compared to traditional
clinical indicators (Figure 5(g)). Altogether, the above
results demonstrated that the NerRLsig could be employed
robustly and accurately to predict clinical outcomes in BC
patients. Additionally, the bar and scatter plots revealed
that the T status (p < 0:05) and clinical stage (p < 0:01)
were notably associated with the NerRLsig (Figure 6(a) and
Supplementary Table 6). Figures 6(b)–6(h) show the
differences in risk scores between subgroups with varied
clinical characteristics, with statistically significant
differences in risk scores within the clinical stage (p = 0:017
), T status (p = 0:025), and N status (p = 0:028).
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Figure 5: Prognostic value of the necroptosis-related lncRNA signature (NerRLsig) in the entire cohort. (a, b) Univariate and multivariate
Cox regression analyses for the NerRLsig as an independent prognostic factor. (c) A prognostic nomogram for the NerRLsig and other
clinicopathological factors. (d) 1-year, 3-year, and 5-year survival rate calibration curves of the line chart. (e) ROC curves of 1-, 3-, and
5-year survival. (f) Concordance indexes of both clinical features and risk score. (g) ROC curves of both clinical features and risk score.
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3.4. Functional Signaling Exploration of the NerRLsig. To
study the underlying action mechanisms of the NerRLsig in
BC, DEGs between the two subgroups were screened and
GO analysis indicated that the DEGs were primarily focused
on glycosaminoglycan binding, collagen-containing extracel-
lular matrix, and epidermis development (Figure 7(a)). KEGG
analysis revealed that the DEGs are mainly engaged in neuro-
active ligand-receptor interaction, PI3K-Akt signaling path-
way, calcium signaling pathway, focal adhesion, and
proteoglycans in cancer (Figure 7(b)). Additionally, GSEA
results demonstrated that focal adhesion, pathways in cancer,
WNT signaling pathway, TGF_BETA signaling pathway,
ECM receptor interaction, and leukocyte transendothelial
migration were remarkably enriched in the high-NerRLsig
group (Figures 7(c)–7(h) and Supplementary Table 7).

3.5. Immunity and Mutation Analyses of the NerRLsig. To
ascertain whether the NerRLsig was related to tumor immu-
nity, differences in immune infiltrating cells between the
low-NerRLsig and high-NerRLsig subgroups were compared
and the results are illustrated in Figure 8(a). Activated mem-
ory CD4 T cells, M0 macrophages, M1 macrophages, M2
macrophages, and resting mast cells were demonstrated to

be upregulated in the high-NerRLsig subgroup. In contrast,
B cell memory, plasma cells, CD8 T cells, naïve CD4 T cells,
regulatory T cells (Tregs), activated dendritic cells, and neu-
trophils were shown to be upregulated in the low-NerRLsig
group. The ssGSEA analysis identified differences between
the low-NerRLsig and the high-NerRLsig groups in terms
of several immune-related pathways, such as checkpoint,
cytolytic activity, and type II IFN response (Figure 8(b)).
In addition, we compared the differences in the expression
levels of immune checkpoints between two subgroups.
Results showed that patients in the high-NerRLsig group
have elevated LAG3 expression (p < 0:05), HAVCR2
(p < 0:001), CD274 (p < 0:01), CD276 (p < 0:001), PDCD1
(p > 0:05), TIGIT (p > 0:05), and CTLA4 (p > 0:05), while
the latter three were not statistically different (Figure 8(c)).
Taken together, the above results suggested that the immune
status was different between the low-NerRLsig and high-
NerRLsig subgroups, which could provide insight into the
development of tumor immunotherapy for BC. Additionally,
the waterfall plot showed mutational landscape in the high-
NerRLsig and low-NerRLsig subgroups (Figures 9(a) and 9
(b)). Genes such as TP53 (49%), TTN (38%), MUC16
(25%), ARID1A (24%), and KMT2D (23%) showed five
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Figure 6: The risk score correlated with clinicopathological features in bladder cancer. (a) Heatmap revealed a significant pT stage and
clinical stage between high-risk and low-risk groups. (b–g) The risk score in different age (b), gender (c), tumor grade (d), clinical stage
(e), pT stage (f), pN stage (g), and pM stage (h) of bladder cancer patients. ∗p < 0:05 and∗∗p < 0:01.
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Figure 7: Functional analysis of the necroptosis-related lncRNA signature (NerRLsig). Representative results of GO (a) and KEGG analyses
(b) of the NerRLsig. (c–h) Gene set enrichment analysis (GSEA) of the high-risk group based on the NerRLsig.
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major mutation frequencies in the high-NerRLsig subgroup,
while TP53 (45%), TTN (41%), KMT2D (27%), KDM6A
(26%), and ARID1A (24%) were the five most frequently
mutated genes in the low-NerRLsig subgroup.

3.6. Chemotherapy Efficacy Related to the NerRLsig. In addi-
tion to immune checkpoint blockades therapy, we also
attempted to explore whether there was an association
between the NerRLsig and sensitivity of BC patients to con-
ventional chemotherapeutic agents and common targeted
drugs. Results revealed that patients in the low-NerRLsig
subgroup patients had lower IC50 values for methotrexate
(Figure 10(a), p < 0:001) and axitinib (Figure 10(b), p <
0:01). In contrast, a high risk score was associated with a
lower IC50 values of chemotherapeutics such as bicaluta-
mide (Figure 10(c), p < 0:001), bleomycin (Figure 10(d), p
< 0:001), imatinib (Figure 10(e), p < 0:001), docetaxel
(Figure 10(f), p < 0:001), dasatinib (Figure 10(g), p < 0:001
), cisplatin (Figure 10(h), p < 0:001), bexarotene (Figure 10
(i), p < 0:001), sunitinib (Figure 10(j), p < 0:001), lapatinib
(Figure 10(k), p < 0:05), paclitaxel (Figure 10(l), p < 0:001),
thapsigargin (Figure 10(m), p < 0:001), vinblastine

(Figure 10(n), p < 0:05), sorafenib (Figure 10(o), p < 0:01),
and pazopanib (Figure 10(p), p < 0:001). Additionally, we
obtained the 17 drugs with the most statistically significant
differences by performing separate drug sensitivity analyses
for lncRNA in the prognostic model (Figure 10(q) and Sup-
plementary Table 8). The results demonstrated that
MAP3K14-AS1 expression had a positive correlation with
the sensitivity of erlotinib, afatinib, neratinib, gefitinib,
temsirolimus, dacomitinib, everolimus, lapatinib, and
ibrutinib, while was negatively correlated the sensitivity of
selumetinib, ARRY-162, encorafenib, pipamperone,
cobimetinib (isomer 1), vemurafenib, and carmustine. In
addition, the higher the expression of STAG3L5P-
PVRIG2P-PILRB in BC patients, the higher the sensitivity
of patients to decitabine.

4. Discussion

BC is a highly malignant cancer with a poor prognosis and
remains difficult to treat [2]. Although multimodality treat-
ments have allowed patients to live longer, treatment out-
comes remain poor [25]. In addition, patients with similar
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clinical features may also present with different prognoses
and responses to oncological treatment [34]. Effective and
individualized treatments must be researched for BC
patients. Herein, we created a prognostic NerRLsig to pre-
dict OS in BC patients. High-NerRLsig was associated with
worse clinical outcomes and certain oncogenic signaling
pathways. Additionally, by combining risk scores with other
clinical features, we created a nomogram that has the power
to predict OS in patients with BC in the TCGA dataset.
Finally, we found differences in immune composition, muta-
tional burden, and chemotherapeutic drug sensitivity
between the low-NerRLsig and high-NerRLsig subgroups.

In previous studies, prognostic lncRNA models have
been established in BC. For instance, a nine-ferroptosis-
related lncRNA signature and a four-pyroptosis-related
lncRNA signature have been developed to assess the risk of
BLCA patients and to inform clinical treatment [35, 36]. It
is therefore important to identify a prognostic NerRLsig in
BC. Here, 12 DEnrlncRNAs (AC015802.4, AL391807.1,
AL078644.1, AC023825.2, AL132655.2, AP003352.1,
STAG3L5P-PVRIG2P-PILRB, AC024451.4, MAP3K14-
AS1, AL731567.1, AC010542.5, and AC009299.2) were iden-
tified to construct a predictive signature. A recent report
indicated that significantly higher levels of MAP3K14-AS1
methylation were observed in tumor tissues compared to
normal colorectal cancer tissues [37]. However, the biologi-
cal role of most of them in tumorigenesis remains to be
elucidated.

The crucial roles of immune cells in the tumor microen-
vironment have been confirmed. For example, CD8+ T cells
were considered to be the main driver of anti-tumor immu-
nity, and CD8+ T cell exhaustion usually led to ineffective
control of persistent infections and cancers [38]. A recent
report demonstrated that dysregulation of the immune sys-
tem and inflammatory factor storm were common features
of high-risk NMIBC and COVID-19 [39]. M2 macrophages
have been demonstrated to promote tumor invasion and
metastasis by upregulating anti-inflammatory cytokines
and chemokines or to hinder the efficacy of chemotherapy
and radiotherapy by suppressing CD8+ T cell function, lead-
ing to tumor progression and poor outcomes [40]. In this
work, we found lower CD8 T cells and higher M2 macro-
phage infiltration in the high-NerRLsig group, suggesting
fewer numbers of infiltrated antitumor immune effector cells
and the stronger infiltrated inhibitory immune cells may
result in poor overcomes of patients in the high-NerRLsig
subgroup. Paradoxically, we also observed lower regulatory
T cells (Tregs) and increased M1 macrophages infiltration
in the high-NerRLsig subgroup, with the former playing a
negative role in triggering an effective antitumor immune
response and the latter playing a positive role [41, 42]. The
above results indicated that the regulatory role of
necroptosis-associated lncRNA in tumor immunity may be
bidirectional and complex; further analyses were necessary
to confirm their roles in immune regulation. Immune check-
point inhibitors exert immunosuppressive effects by
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inhibiting the generation of protective immunity [43]. The
results revealed upregulated expression of immune check-
points in the high-NerRLsig subgroup, which further sug-
gested that ICI treatment may be more effective in the
high-NerRLsig subgroup.

Moreover, we studied the relationship between the sig-
nature and chemotherapy drug response to facilitate person-
alized treatment decisions. We noted that patients in the
low-NerRLsig group were more sensitive to methotrexate
and axitinib, while patients in the high-NerRLsig group were
more sensitive to bicalutamide, bleomycin, imatinib, doce-
taxel, dasatinib, cisplatin, bexarotene, sunitinib, lapatinib,
paclitaxel, thapsigargin, vinblastine, sorafenib, and pazopa-
nib. Additionally, increased MAP3K14-AS1 expression was
associated with cancer cell resistance to erlotinib, afatinib,
neratinib, gefitinib, temsirolimus, dacomitinib, everolimus,
lapatinib, and ibrutinib, and increased expression of
STAG3L5P-PVRIG2P-PILRB was associated with cancer
cell sensitivity to decitabine. These data suggested that
MAP3K14-AS1 and STAG3L5P-PVRIG2P-PILRB could be
used exploited as therapeutic targets for drug design or adju-
vant therapy.

Indubitably, the potential limitations of our study cannot
be ignored. Firstly, the NerRLsig was built and validated
based on a publicly available database, more prospective
clinical data is needed to determine its clinical implications.
Secondly, experimental verification on hub nrlncRNAs is
needed. Finally, the response to immunotherapy and che-
motherapy needs to be further validated with clinical data
from other cohorts.

In conclusion, the research emphasized the prognostic
significance of the NerRLsig in BC. Clinical outcomes,
genetic variants, functional pathways, immunological het-
erogeneity, and drug responses of the prognostic signature
were also uncovered.
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