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P H Y S I C S

New fluctuation theorems on Maxwell’s demon
Qian Zeng1 and Jin Wang2*

With increasing interest in the control of systems at the nano- and mesoscopic scales, studies have been focused 
on the limit of the energy dissipation in an open system by refining the concept of the Maxwell’s demon. To 
uncover the underlying physical principle behind a system controlled by a demon, we prove a previously un-
explored set of fluctuation theorems. These fluctuation theorems imply that there exists an intrinsic nonequilibrium 
state of the system, led by the nonnegative demon-induced dissipative information. A consequence of this anal-
ysis is that the bounds of both work and heat are tighter than the limits predicted by the Sagawa-Ueda theorem. 
We also suggest a possible experimental test of these work and heat bounds.

INTRODUCTION
In the history of physics, the well-known Maxwell’s demon was 
proposed to act as a rebel against the authority of the thermodynamic 
second law (1). It decreases the entropy in a thermally isolated sys-
tem and finally rescues the whole universe from the heat death. De-
spite the myth of its existence (2, 3), the demon reflects the habitus 
of the universal system, especially at microscales: The system inter-
acting with a demon becomes open and thus behaves far away from 
thermal equilibrium. There is a deep connection between the non-
equilibrium thermodynamics involved in the Maxwell’s demon and 
the information theory, such as in the much-studied cases of Szilard 
engine (4) and Landauer principle (5, 6). The physical nature of 
information may be revealed by the study on the demon. For this 
reason, many efforts have been devoted to this direction. The related 
works have shown their importance in the theoretic and experimental 
areas of nano- and mesoscopic system analysis and control (7–15).

As a central concept in modern thermodynamics, the entropy 
production quantifies the energy dissipation in a stochastic system. 
One of the fundamental properties of the entropy production is that 
it follows the Jarzynski equality (16) or the integral fluctuation theo-
rem, which is regarded as the generalized second law from a micro-
scopic perspective. To analyze the demon’s effect, several pioneering 
works attempted to construct an improper entropy production, 
which disobeys the Jarzynski equality (17–22). This thought follows 
the original idea of Maxwell. One representative of this construc-
tion was given by Sagawa and Ueda (23, 24), where a fluctuation 
theorem (Sagawa-Ueda theorem) has been developed for the im-
proper entropy production by taking into account the information 
acquired by the demon. Correspondingly, a generalized second law 
arises from this fluctuation theorem: The demon cannot extract 
work more than the acquired information on average. This result 
gives plausible interpretation on the Szilard’s engine and many oth-
er models, respectively. However, there are still unsolved problems 
in the frameworks of this kind for the following reasons.

First, the improper entropy production arises because the sys-
tem dynamics is measured in an inconsistent manner where a part 
of the demon’s contribution is missing. Thus, the improper entropy 
production measures the energy dissipation incorrectly. Intuitively, 

the demon controls not only the system state but also the energy 
exchanges, such as the work and heat between the system and the 
baths. Thus, the demon contributes to the entropies in both the sys-
tem and the baths. With this thought, one can construct different 
improper entropy productions by neglecting any part of the de-
mon’s contribution (from either the system or the baths, or parts of 
them). Correspondingly, there exist different fluctuation theorems 
for these entropy productions, which can lead to different second 
law inequalities for work or heat. The first question is which in-
equality is more appropriate? Second, the equality in a second law 
inequality always represents the thermal equilibrium state of the 
system. However, a system is supposed to be in a nonequilibrium 
state when controlled by a demon. This indicates that if the demon 
works efficiently, then the equality in the second law in previous 
frameworks does not always hold. It has been reported by several 
works (25–28) in the examples of the information processing that 
the upper bound of the extracted work is less than the bound pre-
dicted by the Sagawa-Ueda theorem. This reveals the fact that when 
the system is at a controlled nonequilibrium state, there exists an 
additional energy dissipation, which is not estimated by the previ-
ous frameworks. The second question is where this energy dissipa-
tion originated?

The motivation of this paper is to draw a clearer picture of the 
Maxwell’s demon. We note the fact that the controlled system actu-
ally follows the second law when the dynamics is properly mea-
sured. One can quantify the correct entropy productions at different 
coarse-grained levels for the demon’s control. Every improper en-
tropy production can give rise to a missing part of the demon’s con-
tribution. None of these entropy productions fulfills the task of 
complete characterization of the demon unless we take the total 
contribution into account. The puzzle of the demon obviously involves 
the interactions between the system and the demon during the whole 
dynamics. In the thermodynamics, it is appropriate to describe 
these interactions by using the informational correlation—the 
dynamical mutual information (29–31) defined as ​i  =  log  ​p [ x(t ) ∣ y(t ) ] _ p [ x(t ) ] ​​ , 
where x(t) and y(t) represent the two simultaneous trajectories of 
the two interacting systems, respectively, and p denotes the proba-
bility (density) of the trajectories. With this quantification at the 
trajectory level, it is natural to introduce the concept of dissipative 
information (32–36) to quantify the time irreversibility of the dy-
namical mutual information

	​​ ​ I​​  =  i − ​   i ​​	 (1)
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where ​​   i ​  =  log  ​ p [ ​   x ​(t ) ∣ ​    y ​(t ) ] _ p [ ​   x ​(t ) ] ​​  is the dynamical mutual information 
along the time-reversed trajectories. We will show that I rightly 
quantifies the demon’s total contribution. For a complete ther-
modynamical description, one should develop a set of fluctuation 
theorems, which includes not only the entropy production in the 
system but also the dissipative information, rather than the con-
struction of improper entropy productions. The fluctuation theo-
rems on the entropy productions reflect the nonequilibrium dynamics 
in the controlled system. Different from the ordinary fluctuation 
theorems for one single system, the fluctuation theorem on the dis-
sipative information quantifies the nonequilibrium interactions or 
binary relations. It is thus reasonable to believe that when the demon 
works efficiently, there exists an intrinsic nonequilibrium state (due to 
the binary relations) characterized by a positive averaged dissipative 
information. This is the source of the inevitable energy dissipation 
in many cases of the demon.

RESULTS
Fluctuation theorems and inequalities
Let us consider that a demon controls a system that is coupled with 
several thermal baths. The system and the demon are initially at the 
states x0 and y, respectively. Then, the demon performs a control to 
the system with a protocol (y) based on y. For simplicity, the cor-
respondence between y and (y) is assumed to be bijective. Conse-
quentially, the system’s trajectory x(t) is correlated to the demon 
state y. As a reasonable assumption, the demon does not alter the 
control protocol while the demon state y is unchanged during the 
dynamics. Driven by thermal baths, the stochasticity of the system 
allows the time-reversal trajectory ​​ ~ x ​(t ) ≡ x( − t)​ to be under the 
identical protocol. Here, the initial state of ​​ ~ x ​(t)​ corresponds exactly 
to the final state of x(t) denoted by xt.

When (y) or y is displayed explicitly in the system dynamics, an 
entropy production can be given by log ratio between the probabil-
ities (densities) of x(t) and ​​ ~ x ​(t)​ conditioning on y

	​​ ​ X∣Y​​ =  log   ​ 
p [ x(t ) ∣  y]

 ─ p [ ​   x ​(t ) ∣  y] ​  =   ​s​ X∣Y​​ +  ​s​ X∣Y​​​	 (2)

where the subscript X∣Y means that the thermodynamical entity of 
the system (X) is controlled by a given protocol of the demon (Y). In 
addition, X∣Y can be viewed as the total stochastic entropy change con-
sisting of the contributions from the system and the baths at the micro-
scopic level (37). This is because the total entropy change can be given by 
the second equality in Eq. 2. Here, sX∣Y = −log p(xt∣y)−[−log p(x0∣y)] 
quantifies the stochastic entropy difference of the system between 
the final and initial states; ​ ​s​ X∣Y​​  =  log ​p [ x(t ) ∣​x​ 0​​, y] _ p [ ​ ~ x ​(t ) ∣​x​ t​​, y] ​​ represents the 

stochastic entropy flow from the system to the baths, which is also 
identified as the heat transferred from the baths to the system as 
QX∣Y = − TsX∣Y, which has been proven in the detailed fluctuation 
theorem in the Langevin or Markovian dynamics (38, 39). Thus, 
sX∣Y is recognized as the (stochastic) entropy change in the baths. 
On the other hand, when the demon’s control (y) or the demon 
state y is unknown in the system dynamics, the entropy production 
can be measured properly at the coarse-grained level. That is to say, 
one needs to average or integrate the demon’s control information 
out of the dynamics, i.e., to obtain the marginal probability p[x(t)] = 

∑yp(y)p[x(t)∣y] with implicit control conditions. Then, another 
entropy production, which is a coarse-grained version of X∣Y, can 
be given by

	​​ σ​ X​​  =  log ​ 
p [ x(t ) ]

 ─ p [ ​   x ​(t ) ] ​  =  Δ ​s​ X​​ + δ ​s​ X​​​	 (3)

In the second equality in Eq. 3, ​ ​s​ x​​  =  log  ​p(​x​ 0​​) _ p(​x​ t​​)
 ​​ and ​ ​s​ X​​  =  log  ​

p [ x(t )∣​x​ 0​​] _ p [ ​ ~ x ​(t )∣​x​ t​​]
 ​​ are recognized as the coarse-grained entropy changes in the 

system and in the baths, respectively. Thus, X quantifies the total 
entropy change at the coarse-grained level with the lack of the de-
mon’s control information. An illustrative case for showing the dif-
ferences between the entropy productions can be found in Fig. 1. It 
is interesting that both X∣Y and X follow the Jarzynski equalities

	​ 〈exp (− ​​ X∣Y​​ ) 〉  =  1, and〈exp (− ​​ X​​ ) 〉  =  1​	 (4)

where the average 〈 exp ( − X∣Y)〉 is taken over the ensembles of the 
system and the demon’s state. One should note that for every proto-
col, X∣Y obeys the detailed Jarzynski equality under every possible 
control protocol, i.e., 〈 exp ( − X∣Y)〉X∣Y = 1, where the average 〈·〉X∣Y is 
taken over the ensemble of the system while y is fixed. For a com-
plete view of the controlled nonequilibrium thermodynamics of the 
system, it is appropriate to take the average of the detailed Jarzynski 
equality on both sides over the ensemble of the demon’s state with 
the notation 〈·〉 ≡ 〈〈·〉X∣Y〉Y. Notice that together, the two Jarzynski 
equalities in Eq. 4 provide a new sight that the second law holds for 
the system at both two levels of the knowledge of demon’s control.

In general, the two entropy productions shown above are differ-
ent from each other. The gap between them indicates the demon’s 
contribution to entropy production, which is exactly the dissipative 
information I shown in Eq. 1, where the trajectory y(t) is fixed 

Fig. 1. The entropy productions at the finest and coarse-grained levels under 
the demon’s control. A particle (shown as the blue circle) is confined in a box. The 
state of the particle can be represented by 0 or 1 when the particle is contained in 
the corresponding half of the box. A demon controls the particle system by exert-
ing different potentials to the system. A trajectory of the particle in the position 
representation is given by x(t) = {x0 = 0, xt = 1}. In the first row, the detailed informa-
tion of the potential is unknown and the entropy production X can only be mea-
sured by using the coarse-grained dynamics. In the second row, the demon exerts 
an explicit potential to the system corresponding to y = 1, and the entropy produc-
tion at the fine level is given by X∣y = 1 at the finest level. In the third row, the demon 
exerts another potential explicitly, and the entropy production is given by X∣y = 0. 
The three entropy productions are not equal to each other in general.



Zeng and Wang, Sci. Adv. 2021; 7 : eabf1807     4 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 9

at a single value of state y. This can be seen from the following 
relationship

	​​ ​ X∣Y​​  = ​ ​ X​​ + ​​ I​​​	 (5A)

The detailed contributions of the demon to the system and the 
baths can be revealed by the decomposition of dissipative informa-
tion and the relations between the entropy changes shown in Eqs. 2 
and 3 in the following equalities

	​​​
{

​​​
​​ I​​  =  i + i

​  ​s​ X∣Y​​  =   ​s​ X​​ + i​  
 ​s​ X∣Y​​  =   ​s​ X​​ + i

  ​​​	 (5B)

Here, i = i0 − it is the information change of the system during 
the dynamics, with ​​i​ 0​​  =  log ​p(​x​ 0​​∣y) _ p(​x​ 0​​) ​​  and ​​i​ t​​  =  log ​p(​x​ t​​∣y) _ p(​x​ t​​)

 ​​  being the 
state mutual information between the system state and the demon’s 
state at initial and final time, respectively, which has been intro-
duced in (40,  41); ​i  =   − ​ ~ ​​ is the time-irreversible information 
transfer from the demon to the system. Here, ​  =  log ​p [ x(t ) ∣​x​ 0​​, y] _ p [ x(t ) ∣​x​ 0​​] ​​ and  
​​ ~ ​  =  log ​p [ ​ ~ x ​(t ) ∣​x​ t​​, y] _ p [ ​ ~ x ​(t ) ∣​x​ t​​]

 ​​ quantify the information transferred (42–44) 
from the demon to the system along the forward-in-time and back-
ward-in-time trajectories, respectively. The information transfer is 
an informational measure of how the dynamics of the system de-
pends on the demon by using the comparison between the system 
dynamics at different coarse-grained levels under the demon’s con-
trol (p[x(t)∣x0, y] and p[x(t)∣x0]). In Eq. 5B, the second equality 
identifies the role of i that it can be regarded as the demon’s con-
tribution to the entropy change in the system; the third equality in-
dicates that i depicts the demon’s contribution to the baths. Then, 
the role of dissipative information is clear: It describes how the de-
mon influences the entropy production through the nonequilibri-
um binary relation or interaction (see Fig. 2). Moreover, this effect 
can be quantified precisely in the following fluctuation theorem

	​ 〈exp (− ​​ I​​ ) 〉  =  16​	 (6)

This is a new fluctuation theorem, which is quite different from 
the Jarzynski equality because it is for the nonequilibrium thermo-
dynamics of the binary interactions between the systems rather than 
for a single system.

To resolve the puzzle of the demon, we first review the con-
struction of the improper entropy productions. A construction,  = 
sX + sX∣Y is an improper entropy production because it violates 

Jarzynski equality 〈 exp ( − )〉 ≠ 1, and the two entropy changes sX 
and sX∣Y are measured at different levels of the knowledge of the 
demon’s control according to Eqs. 2 and 3. On the other hand,  
arises because i is neglected in X∣Y,  = X∣Y − i, suggested by 
Eq. 5B. This indicates that in Eq. 4, the Jarzynski equality for X∣Y 
can be satisfied by adding the contribution of i to . This is the 
core of Sagawa-Ueda theorem, which emphasizes I = − i as the 
key characterization of the demon. Following the similar idea, one 
can construct different improper entropy productions. For in-
stance, consider ′ = sX∣Y + sX, where sX∣Y and sX are measured 
in an inconsistent manner in the dynamics, thus 〈 exp ( − ′)〉 ≠ 1. By 
adding i into ′, one has X∣Y = ′ + i, which gives rise to the same 
Jarzynski equality for X∣Y in Eq. 4. However, neither i nor i 
quantifies the total demon’s contribution because i gives the de-
mon’s influence on the system, while i gives the demon’s influence 
on the baths. Therefore, only the dissipative information I involv-
ing both the demon’s control on the system and baths can take into 
account the overall contribution of the demon. Unlike in previous 
works, the relation in Eq. 5A, together with the corresponding set of 
fluctuation theorems in Eqs. 4 and 6, provides the full clear picture 
of Maxwell’s demon.

We further derive a series of inequalities to obtain the bounds on 
the dissipative entities (entropy productions and dissipative infor-
mation). By applying Jensen’s inequality 〈 exp ( − O)〉 ≥ exp ( − 〈O〉) 
to Eqs. 4 and 6, respectively, we have

	​​​
{

​​​
〈 ​​ X∣Y​​ 〉  ≥  0, or 〈 ​s​ X∣Y​​ 〉  ≥  − 〈 ​s​ X∣Y​​ 〉

​   〈 ​​ X​​ 〉  ≥  0, or〈 ​s​ X​​ 〉  ≥  − 〈 ​s​ X​​ 〉​   
〈 ​​ I​​ 〉  ≥  0, or 〈i〉  ≥  − 〈i〉

 ​​​	  (7)

The first two are the second law inequalities at different coarse-
grained levels of the demon’s control corresponding to the Jarzynski 
equalities in Eq. 4, while the last inequalities about I shows the pre-
viously unknown feature of the nonequilibrium behavior brought 
by the demon. To see this, take the average on both sides of Eq. 5A 
over the ensembles; we have 〈X∣Y〉 = 〈X〉 + 〈I〉. Combining with 
Eq. 7, one sees that 〈X∣Y〉 quantifies the true (utmost) entropy pro-
ductions in the system. A lower bound of 〈X∣Y〉 different from 
that obtained from the second law in Eq. 7 (which is zero) is given 
by the following inequality

	​ 〈 ​​ X∣Y​​ 〉  ≥  〈 ​​ I​​ 〉  ≥  0​	 (8)

In Eq. 8, 〈X∣Y〉 = 0 at the finest level indicates that the system is 
in a quasi-static (equilibrium) process, where every control proto-
col is applied infinitely slowly. Such a demon does not work effi-
ciently in practice. High efficiency means achieving the control in a 
finite time, which leads to a nonequilibrium process. Consequen-
tially, the lower bound of 〈X∣Y〉 is always a positive number rather 
than 0. Although measured properly, 〈X〉 does not reflect the true 
nonequilibrium thermodynamics of the system because of the coarse-
graining. Meanwhile, 〈X〉 does not need to be strictly positive when 
the system is actually in nonequilibrium. However, there always exists 
a positive dissipative information (〈I〉 > 0), which is contained in 
the true entropy production 〈X∣Y〉. This is due to the nonequilibrium 
part of the dynamical mutual information for the binary relation-
ship between the demon and the system. The exceptions can be seen 
in the cases where a demon controls the system with a unique and 
deterministic protocol or noise-free protocols; we have 〈I〉 = 0 as 

Fig. 2. Detailed contributions of the demon to the entropy changes in the sys-
tem (denoted by i) and the baths (denoted by i), respectively. 
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〈X〉 = 〈X∣Y〉 during the dynamics. Otherwise, there exists an intrin-
sic nonequilibrium state of the system in general, which is character-
ized by an inevitable energy dissipation given by 〈X∣Y〉 = 〈I〉 > 0.

We should stress that the dissipative information given by Eq. 1 
may fail to work as a dissipative entity when the demon state can 
change during the dynamics. This is because there is no fluctuation 
theorem or inequality that can guarantee the universal nonnegativ-
ity of the average of Eq. 1 (32, 34). However, we can show that with 
the proper categorization of the individual subdynamics of the sys-
tem and the demon from the total dynamics, the fluctuation theo-
rems in Eqs. 4 and 6 and the inequalities in Eqs. 7 and 8 still hold for 
the system and the demon in the subdynamics, respectively. This 
indicates the universality of the presented fluctuation theorems and 
the inequalities about the demon model. The subdynamics categori-
zation method and the detailed derivations are shown in section S3.

New bounds for work and heat
A consequence of Eq. 8 is that the bounds on the heat and work 
should be revised beyond the second law. To see this, let us assume 
that the system is coupled with a thermal bath with temperature 
T for simplicity. Then, the system dynamics can be given by the 
Langevin dynamics. The Hamiltonian of the system depends on the 
system state and the control protocol denoted by H(x, y) ≡ H(x, 
(y)) [y and (y) is one-to-one correspondence to each other]. The 
change in the Hamiltonian, depending on concrete demon state, 
can be given by HX∣Y = H(xt, y) − H(x0, y). With the assumption 
of the local detailed balance condition (38), the entropy production 
can be given in terms of the stochastic heat absorbed by the system 
X∣Y = sX∣Y − T−1QX∣Y, where the heat can be given by QX∣Y = − TsX∣Y.  
According to the thermodynamic first law, stated as HX∣Y = 
QX∣Y + WX∣Y with WX∣Y being the stochastic work performed on 
the system, X∣Y can be rewritten in terms of the work X∣Y = 
T−1[WX∣Y − FX∣y]. Here, FX∣y is the Helmholtz free energy 
difference depending on the concrete demon state y, given by 
FX∣y = 〈HX∣Y〉X∣Y − T〈sX∣Y〉X∣Y. The probability weights in the 
averages of the state variables in FX∣y should be distinguished at 
the initial and final states: The weights p(x0∣y) and p(xt∣y) with 
concrete demon state y are used for x0 and xt, respectively. Then, 
according to the inequality for X∣Y in Eq. 7, we reach the ordinary 
second law inequalities for the heat and work

	​ 〈 ​Q​ X∣Y​​ 〉  ≤  T〈 ​s​ X∣Y​​ 〉, and 〈 ​W​ X∣Y​​ 〉  ≥   ​F​ X∣Y​​​	 (9)

Here, FX∣Y = 〈FX∣y〉Y = 〈HX∣Y〉 − T 〈sX∣Y〉 is recognized as 
the averaged free energy difference of the system controlled by the 
demon, and FX∣Y no longer depends on concrete demon states.

Note that different constructions of improper entropy produc-
tions can lead to the same form of the second law in Eq. 9. For ex-
ample, the Sagawa-Ueda theorem suggested to use the coarse-grained 
entropy change 〈sX〉 instead of the true entropy change 〈sX∣Y〉 
but still use the true heat and work given in Eq. 9 in the statement 
of the second law. The reason is that the entropy change 〈sX〉 and 
the true heat and work in Eq. 9 can be measured properly in prac-
tice. On the other hand, the correlation between the demon and the 
system may be unknown in practice. This correlation can be quan-
tified by the information change 〈i〉 = 〈sX∣Y〉 − 〈sX〉 by noting the 
relation in Eq. 5B. Then, the averaged heat 〈QX∣Y〉 in Eq. 9 can some-
times be greater than the coarse-grained entropy change, i.e., 
〈QX∣Y〉 ≥ T〈sX〉, and the second law is seemingly violated. Following 

the Sagawa-Ueda theorem, the free energy difference can be given 
as follows (40)

	​ F  =  〈 ​H​ X∣Y​​ 〉 − T〈 ​s​ X​​ 〉  =   ​F​ X∣Y​​ + T〈i〉​	

where the averaged change in the Hamiltonian 〈HX∣Y〉 is used the 
same as in Eq. 9 but with a different entropy change 〈sX〉. Then, the 
averaged work 〈WX∣Y〉 in Eq. 9 does not satisfy the second law 
seemingly, since 〈WX∣Y〉 can sometimes be less than the free energy 
difference F, i.e., 〈WX∣Y〉 ≤ F. According to the Sagawa-Ueda 
theorem, by adding the information change into the entropy change 
〈sX〉 and the free energy difference F, the averaged heat and work 
can satisfy the following second law inequalities

	​​
〈 ​Q​ X∣Y​​ 〉  ≤  T〈 ​s​ X​​ 〉 + T〈i〉  =  T〈 ​s​ X∣Y​​ 〉

​   
〈 ​W​ X∣Y​​ 〉  ≥  F − T〈i〉  =   ​F​ X∣Y​​

 ​​	

This can clarify the equivalence between the second law inequal-
ities given in Eq. 9 and those given by the Sagawa-Ueda theorem. 
Furthermore, the terms 〈sX∣Y〉 and FX∣Y in Eq. 9 can be recog-
nized as the true/complete entropy change and the true/complete 
free energy difference with the complete knowledge of the demon 
control. In this sense, we refer to Eq. 9 as the complete form of the 
second law. On the other hand, all the improper entropy produc-
tions are generated by decomposing the total entropy production 
X∣Y in different ways, and thus, they can lead to the same complete 
form in Eq. 9.

Now, we take the dissipative information into account. By 
noting Eq. 8, we reach tighter bounds for the heat and the work 
compared to Eq. 9

	​​ 〈 ​Q​ X∣Y​​ 〉  ≤  T〈 ​s​ X∣Y​​ 〉 − T〈 ​​ I​​ 〉  ≤  T〈 ​s​ X∣Y​​ 〉  =  T〈 ​s​ X​​ 〉 + T〈i〉
​     

〈 ​W​ X∣Y​​ 〉  ≥   ​F​ X∣Y​​ + T〈 ​​ I​​ 〉  ≥   ​F​ X∣Y​​  =  F − T〈i〉
 ​​	 (10)

where in the looser bounds (the last equalities in Eq. 10), the free 
energy difference F, the information change 〈i〉, and the entropy 
change 〈sX〉 are used in the Sagawa-Ueda theorem, as shown 
above. Here, we obtain a smaller upper bound for the heat and a 
larger lower bound for the work than the ordinary second law in 
Eq. 9, which can also be formulated by the Sagawa-Ueda theorem. 
These tighter bounds clearly indicate the nontrivial nonequilibrium 
state of a system controlled by a demon. On the basis of the above 
discussion, the looser bounds of the heat and work in the second 
inequalities (see also Eq. 9) represent the equilibrium limit while the 
demon does not work efficiently. However, when the environments 
are complex and noisy, the interacting systems have to pay positive 
amounts of energy dissipation costs to maintain the connections to 
each other. These necessary energy dissipations can show how far 
the systems are away from the equilibrium but cannot be predicted 
by (the complete form of) the second law in Eq. 9. This is because 
the second law (and other generalized forms) is based on the en-
tropy production, which can only provide the equilibrium bound 
(looser bounds in Eq. 10) for the total dissipation. On the other 
hand, the dissipative information can quantify the energy dissipa-
tions led by the interactions by the amount of T〈I〉. This yields the 
tighter bounds in Eq. 10. Here, we stress again the looser bounds in 
Eq. 10 (the last equalities) can be predicted by the Sagawa-Ueda the-
orem by taking the information change into account, as dis-
cussed above.



Zeng and Wang, Sci. Adv. 2021; 7 : eabf1807     4 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 9

Usually in the practical model of Maxwell’s demon such as the 
Szilard’s type demon, the action of the demon is divided into two 
different processes: measurement and feedback control. In the mea-
surement process, the demon observes the system and acquires the 
information of the system state. The demon needs to match its state 
with the system during the measurement, and the system can be 
viewed as the outer controller of the demon. Here, we can use X to 
present the demon and Y to denote the system (observed by the 
demon) in the measurement process. In this situation, an inevitable 
heat from the demon X to its environmental bath, or say, the mea-
surement heat Qmea can be generated from the demon X during the 
information acquirement (45, 46), which is the negative heat (−QX∣Y) 
from the bath to the demon X, Qmea = − QX∣Y = TsX∣Y, where sX∣Y 
is the entropy change in the bath. In the feedback control process 
(we let demon =Y and controlled system =X), the demon Y extracts 
a positive work Wext from the system X with an additional energy 
dissipation, which is the negative work performed on the system 
Wext = − WX∣Y. Then, the bounds for Qmea and Wext can be given by 
the complete form of the second law in Eq. 9, where the equalities 
hold for infinitely slow quasi-static or equilibrium processes. How-
ever, if the demon works efficiently, then we come to a nonequilib-
rium situation where an amount of positive energy dissipation is 
necessary and originated from the dissipative information. Thus, 
new bounds for the heat Qmea from the demon and the work Wext 
from the system can be given by Eq. 10 in the form of

	 ​​〈 ​Q​ mea​​ 〉  ≥  T〈 ​​ I​​ 〉 − T〈 ​s​ X∣Y​​ 〉  ≥  − T〈 ​s​ X∣Y​​ 〉  =  − T〈 ​s​ X​​ 〉 − T〈i〉
​     

〈 ​W​ ext​​ 〉  ≤  −  ​F​ X∣Y​​ − T〈 ​​ I​​ 〉  ≤  −  ​F​ X∣Y​​  =  − F + T〈i〉
 ​​ 	 (11)

In Eq. 11, the equivalent relationship between the Sagawa-Ueda 
theorem and the complete form of the second law has been shown 
in the last equalities, where F and 〈sX〉 denote the free energy dif-
ference and the entropy change with incomplete knowledge of the 
demon. We give the interpretation about Eq. 11 as follows.

The information change 〈i〉 = I0 − It can often be negative in the 
measurement process because the final mutual information be-
tween the system and the demon is always larger than the initial 
mutual information. If the initial mutual information I0 and the en-
tropy change 〈sX〉 can be neglected in the measurement process, 
then we have that the true entropy change is equal to the informa-
tion obtained from the system, 〈sX∣Y〉 = − It. For example, the 
demon and the system are often uncorrelated at the beginning of 
the measurement process, where I0 = 0. In addition, the demon can 

be in the same equilibrium state at the initial and final time of the 
coarse-grained dynamics, and then we have 〈sX〉 (see the measure-
ment case in the “Illustrative Cases” section below). Then, the in-
equality for the measurement heat reduces to 〈Qmea〉 ≥ T 〈I〉 + TIt ≥ 
TIt in Eq. 11. The looser bound TIt is the minimal energy require-
ment for the demon to obtain the information It from the system in 
the equilibrium or noise-free (no-measurement-error) limit. The 
dissipative information T 〈I〉 quantifies the additional energy cost 
for the demon to establish the correlation to the system under the 
nonequilibrium and noisy condition. Thus, we have the tighter lower 
bound 〈I〉 + TIt for the heat in Eq. 11. This means that there is more 
heat generated in the measurement than the estimations given by 
the complete form of the second law.

On the other hand, the information change 〈i〉 = I0 − It can 
usually be positive in the feedback control process. This is because 
the demon can use the (initially) obtained information I0 to extract 
work, and the correlation between the demon and the system can 
decrease after the control It < I0. If the final mutual information It 
and the incomplete free energy difference F can vanish in the con-
trol process, then we find that the initial information I0 works as the 
true/complete free energy difference in this situation, FX∣Y = − TI0. 
For example, in the model of the Szilard’s type demon, the con-
trolled system is assumed to be at the same equilibrium state at the 
initial and final time of the dynamics, and then we have the incom-
plete free energy difference F = 0. This equilibrium state of the 
system can be independent of the demon. The demon and the sys-
tem are correlated right after the initial time I0 > 0 and finally un-
correlated at the end, where It = 0. Then, we have the inequality for 
the work from Eq. 11 as 〈Wext〉 ≤ TI0 − T〈I〉 ≤ TI0. The looser 
bound for the work, TI0, has been predicted by the Sagawa-Ueda 
theorem, which represents that the work can be extracted under the 
equilibrium or noise-free condition. However, the tighter upper 
bound TI0 − T 〈I〉 indicates that there should be a waste of informa-
tion that cannot be used to extract work in the nonequilibrium and 
noisy operations. This wasted information can be quantified by the 
dissipative information 〈I〉. This means that there is less work ex-
tracted in the feedback control than the estimations given by the 
Sagawa-Ueda theorem.

Illustrative cases
To illustrate our idea in this paper, we calculate the cases of the in-
formation ratchets shown in Fig. 3, which can be tested in the ex-
periments. A potential with the two wells is exerted on a confined 

Fig. 3. The confined particle works as a demon or is controlled by a demon. In (A) and (B), the particle is used as a demon and measures the system state before the 
control. The system state, denoted by y, is represented by the location of the lower well (0 or 1) in the potential. In (A), y = 1; and in (B), y = 0. The final state of the particle, 
denoted by xt, is taken as the state of y. In (C) and (D), the particle is controlled by a demon. The initial state of the particle, denoted by x0, is represented by h or l when 
the particle is at the higher or the lower well. When spotting the state x0 = h, the demon reverses the potential and extracts a positive work of V from the particle system.
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particle. The height between the two wells is equal to V > 0. While 
under the equilibrium, the probabilities that the particle is at the 
lower and the higher well can be quantified by pl = [1 + exp ( − V)]−1 
and ph = 1 − pl, respectively, (pl > 1/2). An outside controller can 
control the particle by reversing the profile of the potential, i.e., by 
raising the lower well up to V and lowering the higher well down to 
0. The action of the controller is assumed to be fast enough before 
the particle reacts. For no loss of generality, the temperature of the 
environmental bath is assumed to be at T = 1.

If the particle works as a demon [shown in Fig. 3  (A and B)], 
then the particle is supposed to measure the state of the controlled 
system at first. The state of the particle is denoted by x = 0 or 1 when 
at the left or the right well, respectively. The system state can be 
represented by the location of the lower well with the value of y = 0 
or 1 with equal probability p(y = 0) = p(y = 1) = 1/2. The particle is 
initially under the equilibrium until the system state changes. Cor-
respondingly, the potential is reversed by the system immediately, 
and the particle starts measuring the current system state. When the 
equilibrium is achieved, the final state xt of the particle is taken as an 
observation of y. The probability of the measurement error can be 
given by the probability of the particle at the higher well pXt∣Y(xt ≠ 
y∣y) = ph. On the other hand, the measurement precision is charac-
terized by the probability of the particle at the lower well pXt∣Y(xt = 
y∣y) = pl. By noting the definitions and relationships shown in Eq. 
2, the averaged measurement heat generated by the particle can be 
given by 〈Qmea〉 = (1/2 − ph)V, and the entropy change can be evalu-
ated by 〈sX∣Y〉 = − It (see eqs. S26 to S28). Here, It = log 2 − S ≥ 0 is 
the final mutual information that measures the correlation be-
tween the observation xt and the state y (40, 41), where the Shannon 
entropy S is given by S = − pl log pl − ph log ph. Then, according to 
Eq. 11 and as shown in the above discussions, the tighter bound of 
〈Qmea〉 in this case can be given by

	​ 〈 ​Q​ mea​​ 〉  ≥  〈 ​​ I​​ 〉 + ​I​ t​​  ≥ ​ I​ t​​​	 (12)

Here, the dissipative information 〈I〉 can be calculated by using 
the probabilities of the forward and backward trajectories x(t) = {x0, 
xt} and ​​ ~ x ​(t ) = {​x​ t​​, ​x​ 0​​}​, respectively. By inserting these probabilities 
into Eq. 1, we have the expression ​〈 ​​ I​​ 〉  =  log ​√ 

_
 2 ​p​l​ 

2​ + 2 ​p​h​ 2 ​ ​  ≥  0​ (see 
eq. S29). Although the measurement precision characterized by pl 
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Fig. 5. The true efficacy ​  = ​ 〈 ​W​ ext​​ 〉 _ ​I​ 0​​  ​​ and the best efficacy ​​​ max​​  =  1 − ​ ​I​ c​​ _ ​I​ 0​​​​ of the 
demon given in Eq. 15A and Eq. 15B. The measurement precision is character-
ized by the probability p(y = x0∣x0) = 1 − ϵ. The extracted work Wext can be positive 
and monotonically increasing in the range of the measurement precision p(y = 
x0∣x0) ∈ [0.73,1] in this case. Meanwhile, the best efficacy max of the demon also 
monotonically increases (goes up to 1) in this range of the measurement precision, 
and max works as the upper bound of the true efficacy .

Fig. 4. The bounds for the measurement heat (Eq. 12), the extracted work (Eq. 13), and the true entropy productions (Eq. 8) of the illustrative cases. The tradi-
tional bounds are given by the Sagawa-Ueda theorem, and the tighter bounds are provided by the presented fluctuation theorems. Due to the Sagawa-Ueda theorem, 
the traditional lower bounds for the true entropy productions are given by zeros. In (A), the averaged measurement heat 〈Qmea〉 (solid line), the traditional lower bound It 
(dotted line), and the new lower bound It + 〈I〉 (dash line) in the measurement are plotted as functions of the measurement precision pl. The potential height V is raised 
from 0 to 1. Correspondingly, pl is increased from 0.50 to 0.73 monotonically. The corresponding dissipative information 〈I〉 (dash line) and the entropy production 〈X∣Y〉 
(solid line) in the measurement are shown as the functions of the precision pl in (B). In (C), the extracted work 〈Wmea〉 (solid line), the traditional upper bound I0 (dotted 
line), and the new upper bound I0 − Ic (dash line) are plotted as functions of the measurement precision 1 − ϵ, where 1 − ϵ is ranged from 0.5 to 1, and the potential height 
is V = 1. The corresponding dissipative information 〈I〉 (dash line) and the entropy production 〈X∣Y〉 (solid line) are shown in (D).
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increases as the potential height V increases, higher precision also 
raises up both the averaged measurement heat and the lower bound 
of the energy dissipation quantified by the dissipative information 
in this case. The numerical results can be found in Fig. 4 (A and B).

Next, we use a demon to extract positive work from the particle 
system [shown in Fig. 3  (C and D)]. In this case, the state of the 
particle can be denoted by x = l or h when at the lower or the higher 
well, respectively. Initially, the particle is under equilibrium. The 
demon measures the state of the particle at first and obtains the ob-
servation y. The demon plays the feedback control according to the 
observation y. When the particle is observed to be at the higher well, 
the demon reverses the potential immediately and extracts an 
amount of work Wext = V. After the control, the demon does noth-
ing until the particle goes to the equilibrium again. For a practical 
thought, the demon’s measurement can have a random error, and 
this error certainly lowers the efficiency of the work extraction. 
Here, we simply assume that the measurement error occurs with 
stable probability pY∣X0(y ≠ x0∣x0) = ϵ. By using Eq. 2 and noting 
the thermodynamical first law, the extracted work can be given by 
〈Wext〉 = (ph − ϵ)V, on average, and the true/complete free energy 
difference is equal to the mutual information change during the dy-
namics, FX∣Y = − I0 (see eqs. S30 to S33). Here, the incomplete free 
energy difference suggested by the Sagawa-Ueda theorem (see 
Eq. 11) vanishes in this case, F = 0. The mutual information I0 = SY − 
Sϵ ≥ 0 represents the initial correlation between the demon and the 
particle, where the Shannon entropies can be given by SY = − py 
log py − (1 − py) log (1 − py) and Sϵ = − ϵ log ϵ − (1 − ϵ) log (1 − ϵ), 
with py = pl(1 − ϵ) + phϵ representing the probability of the observa-
tion y = l. Then, because of Eq. 11 and as shown in the above discus-
sions, the bound of 〈Wext〉 can be given by

	​ 〈 ​W​ ext​​ 〉  ≤ ​ I​ 0​​ − ​I​ c​​  ≤ ​ I​ 0​​​	 (13)

Here, the mutual information Ic = SY − S ≥ 0 measures correla-
tion between the demon and the particle right after the control, 
where the Shannon entropy is S = − pl log pl − ph log ph. It is import-
ant to note that Ic is actually the information that is not used to 
extract the work but can merely dissipate into the bath as the dissi-
pative information 〈I〉 = Ic. This result can be verified by evaluating 
Eq. 1 (see eq. S18). For this reason, the demon can only extract work 
less than the mutual information difference before and after the 
control, quantified by I0 − Ic. We can see that higher measurement 
precision characterized by 1 − ϵ can increase the averaged extracted 
work (with fixed potential height V); meanwhile, the inevitable dis-
sipative information is decreased by the increasing precision in this 
case. The numerical results are shown in Fig. 2 (C and D). Also, we 
can note that the dissipative information 〈I〉 bounds the entropy 
production 〈X∣Y〉 from the below in both the cases of the measure-
ment and feedback control [see Fig. 4 (B and D)]. This verifies the 
inequality in Eq. 8.

On the other hand, we find that the tighter upper bound in Eq. 
13 is equivalent to the information process second law (26–28) by 
noting I0 − Ic = S − Sϵ. Here, S and Sϵ can be regarded as the Shannon 
entropies of a “0,1” tape before and after the information process-
ing, respectively (25). This indicates that the proposed fluctuation 
theorems in this paper can be applied to the area of thermodynam-
ics computing from a general perspective. In addition, the looser 
bounds for the heat and work in Eqs. 12 and 13 are predicted by the 
second law (Sagawa-Ueda theorem), and these bounds can only be 

achieved in the quasi-static (or equilibrium) or noise-free control 
protocols.

Here, we also relate our case of the work extraction to the effica-
cy parameter , which appeared in the experimental and theoretical 
works (8, 23). Here,  can be shown as the departure of the fluctuation 
of an improper entropy production  = X∣Y − i0 from unity, i.e.,

	​ 〈exp (−  ) 〉  =    ≠  1​	 (14A)

where X∣Y is the total (proper) entropy production and satisfies the 
fluctuation theorem in Eq. 4, and i0 is the initial stochastic mutual 
information with average 〈i0〉 = I0 ≥ 0. The final mutual informa-
tion It is supposed to vanish after the control. The parameter  was 
interpreted as the efficacy parameter of the demon, and the demon 
can behave better under a high value of . However, that appears 
to be not the case. By applying the Jensen inequality to Eq. 14A, 
we can obtain the following inequality for ,

	​ 〈 ​​ X∣Y​​ 〉  ≥ ​ I​ 0​​ − log ​	 (14B)

where the identity 〈X∣Y〉 = 〈〉 − I0 has been used in Eq. 14B. We see 
that the lower bound in Eq. 14B can be negative, especially at the 
high values of . However, a negative bound of the total (or proper) 
entropy production 〈X∣Y〉 cannot be achieved. Thus, the parameter 
 appears to be lack of the physical meaning of the efficacy of the 
demon in this situation. More detailed discussions and derivations 
can be found in the “Meaning and bounds of the parameter ” sec-
tion in section S2. From the perspective of our theory and by noting 
Eq. 13, the following ratio can be used to quantify the demon’s best 
efficacy that can be achieved instead of 

	​​ ​ max​​  =  1 − ​ ​I​ c​​ ─ ​I​ 0​​ ​​	 (15A)

From Eq. 13, max satisfies the inequality as follows

	​   = ​  〈 ​W​ ext​​ 〉 ─ ​I​ 0​​ ​   ≤ ​ ​ max​​  ≤  1​	 (15B)

where  is the ratio of the extracted work 〈Wext〉 to the maximum 
work I0 that can be extracted in the quasi-static or noise-free limit. 
Thus,  measures the true efficacy of the demon in the work ex-
traction. Equation 15B gives a clear physical meaning to the ratio 
max:max quantifies ratio of the maximum work I0 − Ic to the quasi-
static or noise-free limit work I0, with the minimal wasted (or dissi-
pative) information (Ic) considered. In the presented case of the 
work extraction, ​​​ max​​  =  1 − ​ ​I​ c​​ _ ​I​ 0​​​  = ​  S − ​S​ ϵ​​ _ ​S​ Y​​ − ​S​ ϵ​​

​​ can be shown as a mono-
tonically increasing function of the precision probability of the 
measurement pY∣X0(y = x0∣x0) = 1 − ϵ. Here, y = x0 indicates the 
correct measurement. The meanings of the entropies S, SY, and Sϵ 
have been provided in the above case of the work extraction. When 
the error-free condition p(y = x0∣x0) = 1 is achieved, the best effica-
cy max can go up to 1 (see Fig. 5). Thus, this max follows the intu-
ition that the measurement accuracy can enhance the efficacy of the 
work extraction.

DISCUSSION
Traditional analysis on the Maxwell’s demon focuses on how the 
second law is violated by the system and is rescued by some hidden 
demon-induced entities. These entities were believed as the key 
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characterization of the demon. In contrast, we show that the system 
does not disobey the second law whether the demon is hidden or 
not, which can be seen in the set of fluctuation theorems (Eq. 4) 
for the entropy productions when they are correctly measured (Eqs. 2 
and 3). Intrinsically, the nonequilibrium behavior of the system led 
by the demon is due to the time-irreversibility of the binary rela-
tionship between them, which is quantified by the dissipative in-
formation (Eq. 1). In addition, we prove another new fluctuation 
theorem for this dissipative information (Eq. 6). This theorem (Eq. 
6) combining with the other fluctuation theorems (Eq. 4) for the 
entropy productions gives a precise quantification of the effect of 
the demon. An apparent result following these theorems is that 
there exists an inevitable energy dissipation originated from the 
positive dissipative information, which leads to the tighter bounds 
for the work and the heat (Eq. 11) than that estimated by the com-
plete form of the second law or the Sagawa-Ueda theorem (Eq. 9). 
We also suggest a possible realization of the experimental estima-
tion of these work and heat bounds, which can be measured and 
tested. These results offer a general picture of a large class of the 
models of the Maxwell’s demon.

MATERIALS AND METHODS
Proof of the fluctuation theorems
The probabilities (densities) p[x(t)∣y] and p[x(t)] are assumed to be 
nonnegative and to be normalized, i.e., p[x(t)∣y], p[x(t)] ≥ 0, re-
spectively, ∫p[x(t)∣y]Dx(t) = 1 and ∫p[x(t)]Dx(t) = 1. Besides, we 
need that the differentials, with respect to the time-forward and 
backward trajectories, are equal to each other, i.e., ​Dx(t ) = D​ ~ x ​(t)​. 
For the entropy productions and the dissipative information in Eqs. 
1 to 3, we obtain the equalities

	​​

〈exp (− ​​ X∣Y​​ ) 〉  =  ∫ dy∫ p(y ) p [ x(t ) ∣ y ]  ​ 
p [ ​   x ​(t ) ∣ y]

 ─ p [ x(t ) ∣ y] ​ Dx(t ) = 1

​     〈exp (− ​​ X​​ ) 〉  =  ∫ p [ x(t ) ] ​ 
p [ ​   x ​(t ) ]

 ─ p [ x(t ) ] ​ Dx(t ) = 1​    

〈exp (− ​​ I​​ ) 〉  =  ∫ dy∫ p [ x(t ) ] p [ y∣x(t ) ] ​ 
p [ y ∣ ​    x ​(t ) ]

 ─ p [ y  ∣  x(t ) ] ​  Dx(t ) = 1

​​	

In the last equation for I, by noting the relation in the probabilities 
that ​p [ y ∣  x(t ) ] = ​p(y ) p [ x(t ) ∣y] _ p [ x(t ) ] ​​ , we have ​​​ I​​ =  i − ​   i ​ =  log   ​ p [ y ∣ x(t ) ]  _ p [ y ∣ ​    x ​(t ) ] ​​. This 
completes the proof on the fluctuation theorems in Eqs. 4 and 6.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/23/eabf1807/DC1

REFERENCES AND NOTES
	 1.	 J. C. Maxwell, Theory of Heat (Greenwood Press, ed. 3, 1970).
	 2.	 O. R. Shenker, Maxwell’s Demon 2: Entropy, classical and quantum information 

computing. Stud. Hist. Philos. Sci. B 35, 537–540 (2004).
	 3.	 K. Maruyama, F. Nori, V. Vedral, Colloquium: The physics of Maxwell’s demon 

and information. Rev. Mod. Phys. 81, 1–23 (2009).
	 4.	 L. Szilard, über die entropieverminderung in einem thermodynamischen system bei 

eingriffen intelligenter Wesen. Z. Physik 53, 840–856 (1929).
	 5.	 R. Landauer, Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 

5, 183–191 (1961).
	 6.	 M. Esposito, C. Van den Broeck, Second law and Landauer principle far from equilibrium. 

Europhys. Lett. 95, 40004 (2011).
	 7.	 S. Deffner, C. Jarzynski, Information processing and the second law of thermodynamics: 

An inclusive, Hamiltonian approach. Phys. Rev. X 3, 041003 (2013).

	 8.	 S. Toyabe, T. Sagawa, M. Ueda, E. Muneyuki, M. Sano, Experimental demonstration 
of information-to-energy conversion and validation of the generalized Jarzynski equality. 
Nat. Phys. 6, 988–992 (2010).

	 9.	 D. Mandal, C. Jarzynski, Work and information processing in a solvable model 
of Maxwell’s demon. Proc. Natl. Acad. Sci. U.S.A. 109, 11641–11645 (2012).

	 10.	 J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, J. P. Pekola, On-chip Maxwell’s 
demon as an information-powered refrigerator. Phys. Rev. Lett. 115, 260602 (2015).

	 11.	 V. Serreli, C. F. Lee, E. R. Kay, D. A. Leigh, A molecular information ratchet. Nature 445, 
523–527 (2007).

	 12.	 M. Alvarez-Perez, S. M. Goldup, D. A. Leigh, A. M. Z. Slawin, A chemically driven molecular 
information ratchet. J. Am. Chem. Soc. 130, 1836–1838 (2008).

	 13.	 A. B. Boyd, J. P. Crutchfield, Maxwell demon dynamics: Deterministic chaos, the Szilard 
map, and the intelligence of thermodynamic systems. Phys. Rev. Lett. 116, 190601 (2016).

	 14.	 T. McGrath, N. S. Jones, P. R. ten Wolde, T. E. Ouldridge, Biochemical machines for the 
interconversion of mutual information and work. Phys. Rev. Lett. 118, 028101 (2017).

	 15.	 P. P. Potts, P. Samuelsson, Thermodynamic uncertainty relations including measurement 
and feedback. Phys. Rev. E 100, 052137 (2019).

	 16.	 C. Jarzynski, Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 
2690–2693 (1997).

	 17.	 M. Esposito, G. Schaller, Stochastic thermodynamics for “Maxwell demon” feedbacks. 
Europhys. lett. 99, 30003 (2012).

	 18.	 P. Strasberg, G. Schaller, T. Brandes, M. Esposito, Quantum and information 
thermodynamics: A unifying framework based on repeated interactions. Phys. Rev. X 7, 
021003 (2017).

	 19.	 J. M. Horowitz, M. Esposito, Thermodynamics with continuous information flow.  
Phys. Rev. X 4, 031015 (2014).

	 20.	 K. Ptaszynski, M. Esposito, Thermodynamics of quantum information flows. Phys. Rev. 
Lett. 122, 150603 (2019).

	 21.	 J. M. Horowitz, H. Sandberg, Second-law-like inequalities with information and their 
interpretations. New J. Phys. 16, 125007 (2014).

	 22.	 D. Hartich, A. C. Barato, U. Seifert, Stochastic thermodynamics of bipartite systems: 
Transfer entropy inequalities and a Maxwell’s demon interpretation. J. Stat. Mech. Theory 
Exp. 2014, P02016 (2014).

	 23.	 T. Sagawa, M. Ueda, Generalized Jarzynski equality under nonequilibrium feedback 
control. Phys. Rev. Lett. 104, 090602 (2010).

	 24.	 J. M. R. Parrondo, J. M. Horowitz, T. Sagawa, Thermodynamics of information. Nat. Phys. 
11, 131–139 (2015).

	 25.	 A. C. Barato, U. Seifert, Unifying three perspectives on information processing 
in stochastic thermodynamics. Phys. Rev. Lett. 112, 090601 (2014).

	 26.	 A. B. Boyd, D. Mandal, J. P. Crutchfield, Identifying functional thermodynamics 
in autonomous Maxwellian ratchets. New J. Phys. 18, 023049 (2016).

	 27.	 C. Aghamohammadi, J. P. Crutchfield, Thermodynamics of random number generation. 
Phys. Rev. E 95, 062139 (2017).

	 28.	 A. B. Boyd, M. Dibyendu, J. P. Crutchfield, Thermodynamics of modularity: Structural costs 
beyond the Landauer bound. Phys. Rev. X 8, 031036 (2018).

	 29.	 T. M. Cover, J. A. Thomas, Elements of Information Theory (Wiley, ed. 2, 2006).
	 30.	 F. Tostevin, P. Rein ten Wolde, Mutual information between input and output trajectories 

of biochemical networks. Phys. Rev. Lett. 102, 218101 (2009).
	 31.	 A. C. Barato, D. Hartich, U. Seifert, Rate of mutual information between coarse-grained 

non-Markovian variables. J. Stat. Phys. 153, 460–478 (2013).
	 32.	 G. Diana, M. Esposito, Mutual entropy production in bipartite systems. J. Stat. Mech. 

Theory Exp. 16, P04010 (2014).
	 33.	 Q. Zeng, J. Wang, Information landscape and flux, mutual information rate 

decomposition, and connections to entropy production. Entropy 19, 678 (2017).
	 34.	 Q. Zeng, J. Wang, Non-Markovian nonequilibrium information dynamics. Phys. Rev. E 98, 

032123 (2018).
	 35.	 X. Fang, K. Kruse, T. Lu, J. Wang, Nonequilibrium physics in biology. Rev. Mod. Phys. 91, 

045004 (2019).
	 36.	 P. P. Potts, P. Samuelsson, Detailed fluctuation relation for arbitrary measurement 

and feedback schemes. Phys. Rev. Lett. 121, 210603 (2018).
	 37.	 U. Seifert, Stochastic thermodynamics, fluctuation theorems, and molecular machines. 

Rep. Prog. Phys. 75, 126001 (2012).
	 38.	 G. E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work 

relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999).
	 39.	 C. Jarzynski, Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 

77–102 (2000).
	 40.	 T. Sagawa, M. Ueda, Fluctuation theorem with information exchange: Role of correlations 

in stochastic thermodynamics. Phys. Rev. Lett. 109, 180602 (2012).
	 41.	 T. Sagawa, M. Ueda, Role of mutual information in entropy production under information 

exchanges. New J. Phys. 15, 125012 (2013).
	 42.	 T. Schreiber, Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000).

http://advances.sciencemag.org/cgi/content/full/7/23/eabf1807/DC1
http://advances.sciencemag.org/cgi/content/full/7/23/eabf1807/DC1


Zeng and Wang, Sci. Adv. 2021; 7 : eabf1807     4 June 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 9

	 43.	 S. Ito, Backward transfer entropy: Informational measure for detecting hidden Markov models 
and its interpretations in thermodynamics, gambling and causality. Sci. Rep. 6, 36831 (2016).

	 44.	 R. E. Spinney, J. T. Lizier, M. Prokopenko, Transfer entropy in physical systems 
and the arrow of time. Phys. Rev. E 94, 022135 (2016).

	 45.	 C. H. Bennett, The thermodynamics of computation – a review. Int. J. Theor. Phys. 21, 
905–940 (1982).

	 46.	 T. Sagawa, M. Ueda, Minimal energy cost for thermodynamic information processing: 
measurement and information erasure. Phys. Rev. Lett. 102, 250602 (2009).

	 47.	 K. Sekimoto, Stochastic Energetics (Springer, 2010).

Acknowledgments 
Funding: Q.Z. thanks the support of National Natural Science Foundation of China 
(NSFC-91430217). Author contributions: Q.Z. carried out the mathematical derivations, 

performed the analysis, and wrote the manuscript. J.W. initiated and supervised the 
research, performed the analysis, and wrote the manuscript. Competing interests: The 
authors declare that they have no competing interests. Data and materials availability: All 
data needed to evaluate the conclusions in the paper are present in the paper and/or the 
Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 9 October 2020
Accepted 20 April 2021
Published 4 June 2021
10.1126/sciadv.abf1807

Citation: Q. Zeng, J. Wang, New fluctuation theorems on Maxwell’s demon. Sci. Adv. 7, 
eabf1807 (2021).


