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ABSTRACT

Toxin–antitoxin (TA) loci are widespread in bacte-
ria including important pathogenic species. Recent
studies suggest that TA systems play a key role in
persister formation. However, the persistence pheno-
type shows only weak dependence on the number of
TA systems, i.e. they are functionally redundant. We
use a mathematical model to investigate the interac-
tion of multiple TA systems in the switching between
growth and persistence. We explore two scenarios:
(i) TA systems are bistable and each TA system expe-
riences its own noise and (ii) the noise in the level of
common stress signal (e.g. (p)ppGpp) coordinates all
TA systems simultaneously. We find that in the first
scenario the exit from the persister state strongly
depends on the number of TA systems. However in
the second case, we could reproduce the weak de-
pendence. The duration of the high (p)ppGpp state
was found to be the key parameter for persistence.
The (p)ppGpp-driven synchronized transition of all
TA systems results in the redundancy.

INTRODUCTION

In 1944, Joseph Bigger reported that a small fraction of
Staphylococcus population was insensitive to a transient
penicillin treatment and referred those cells as persisters (1).
The descendants of persisters were as sensitive to penicillin
as normal cells. It was then proposed that the persisters are
a subpopulation of cells that happened to be in a phase in
which they are insusceptible to the action of penicillin at the
time of exposure. It was later revealed that persistence is a
universal phenomenon among many bacteria and archaea
species and for many antibiotics (2).

The molecular mechanisms of persistence is currently un-
der active research, but various research indicates the in-
volvement of type II toxin–antitoxin (TA) loci in persister
formation ((3,4) for review). A type II TA locus encodes
a long-lived toxin protein that inhibits cell growth and an
unstable antitoxin protein that neutralizes the toxin’s ac-

tivity by forming a tight complex with the toxin (5,6). In
Escherichia coli, mutations in a TA locus hipBA gene were
found to severely increase the level of persister formation
(7–9). In single cell experiments, persisters are found to be
in a dormant state that provides antibiotics tolerance, but
can stochastically switch back to growth state (4,9). It was
hypothesized that the persisters are a dormant subpopula-
tion that is more tolerant to stress, and TA systems enable
switching between growth and dormancy.

TA loci are surprisingly abundant in free-living prokary-
otes (10), and are very often redundant. Previous research
has identified at least 11 type II TA loci in E. coli (3)
and 88 putative TA loci in Mycobacterium tuberculosis
(11). Among them, toxins of 10 type II TA loci in E. coli
were found to be mRNases (3). Interestingly, deletion of a
mRNase-encoding TA locus had only minor effect on the
frequency of persister cells (3,12,13). This is rather puzzling,
since one TA system can easily cause visible dormancy if its
antitoxin gene is inactivated (14).

The antitoxin-toxin battle of a single TA system was well-
studied by mathematical models. A TA system is often mod-
eled as a bistable system, where the antitoxin-dominant sta-
ble state represents cell growth, while the toxin-dominant
stable state represents dormancy, serving as a possible ex-
planation for persistence. Molecular noises, especially the
intrinsic noises within the TA system, can facilitate cells to
switch between growth and dormancy (15–18).

However, great difficulties arise when one extends a sin-
gle bistable TA system with intrinsic noise to coupled TA
systems and attempts to explain the observed redundancy.
Fasani et al. proposed a model by assuming that translation
inhibition by toxins requires activation of all TA modules
present in the cell (18), but the assumption of such cooper-
ativity lacks experimental support. Alternatively, if one em-
ploys the intuitive assumption that action of a given toxin
is independent of other TA systems, then the persister for-
mation rate and/or waking up time is expected to be very
sensitive to the number of TA systems (19). The reason is
that if one kind of toxin sufficiently accumulates, it will help
other TA systems to be toxin-dominant by preventing trans-
lation and by slowing down the cell growth. As the existing
antitoxin proteins are degraded, long-lived toxin proteins
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become free and exert their growth inhibitory effect. The
cross-activation of TA systems was indeed observed experi-
mentally (20). If all of TA systems are in the toxin-dominant
state, any TA system fluctuating to the high antitoxin state
will be pulled back to the high toxin state due to other free
toxins (Supplementary Figure S1). A successful exit of dor-
mancy requires a synchronous switching of all TA systems,
and the chance of this process decreases exponentially with
the number of TA systems (21). In other words, persistence
with this mechanism is expected to be very sensitive to the
number of TA systems (see also the result section for the
model analysis).

Interestingly, guanosine tetra- and pentaphosphate
[(p)ppGpp], the alarmone molecule for stringent response
(22–24), was identified as a regulator for TA systems (4).
All ten mRNase-encoding TA systems in E. coli were found
to be up-regulated in response to amino-acid starvation,
a signal for (p)ppGpp production (25). Overproduction
of (p)ppGpp also increased the frequency of persister
cells (4), likely due to the promotion of antitoxin degra-
dation (26). This suggests an alternative scenario for
the growth-dormancy transition. The fluctuation of the
master regulator (p)ppGpp will act as a common source
of noise for all the TA systems to switch between being
antitoxin-dominant and toxin-dominant. If (p)ppGpp
fluctuation is the main governing factor of the transition
between growth and dormancy, then all TA systems will
switch between the toxin and antitoxin dominant states
synchronously according to the (p)ppGpp fluctuation, and
the growth-dormancy transition is expected to show a very
weak dependence on the number of TA systems.

Indeed, experimental findings support the strong fluctu-
ation of (p)ppGpp (4). This can be created by transcrip-
tion bursts (refer to (27)) of (p)ppGpp-related enzymes,
such as the synthetase RelA and the synthetase/hydrolase
SpoT. Positive feedbacks, which can amplify the fluctu-
ation, are also involved in (p)ppGpp regulation. For ex-
ample, Amato et al. proposed that (p)ppGpp and SpoT
form a bistable system, allowing (p)ppGpp to switch be-
tween two characteristic levels (28). Also, the hipBA mod-
ule, which was the first TA locus that was suggested to form
a bistable system (15), can induce amino-acid starvation
and hence (p)ppGpp synthesis by inhibiting the Glu-tRNA-
synthetase, GltX (29,30).

In this work, we explore the relationship between
(p)ppGpp fluctuation and redundancy of TA systems by us-
ing mathematical models. We first present a model of one
TA system that can show bistability between growth and
dormancy. We update our previous model (16) based on
our experimental data. We then build a model for coupled
TA systems, and show that without external common fluc-
tuation, the growth-dormancy transition rates tend to be
very sensitive to the number of TA systems, contrary to
the experimental observation. We then introduce explicit
(p)ppGpp fluctuation to the model as the driver for transi-
tion, and show that it successfully reproduces the weak de-
pendence of the persistence on the number of TA systems.
In particular, we identify the duration of high (p)ppGpp
state as a key quantity, governing the properties of persister
cells including frequency of persister cells and waking up
times.

MATERIALS AND METHODS

Experimental procedure

Plasmid construction. Plasmid pSEM3187 was con-
structed in two steps. First, the XbaI–PsiI fragment of
plasmid pTYB1 (NEB) containing the lacI gene and the
pMB1 replication origin together with the rop gene was lig-
ated with the XbaI–PvuII fragment of plasmid pSEM2027
containing a strong LacI controlled synthetic promoter
(Figure 4 top, (31)). Next, a synthetic ribosome binding
sequence and the relE open reading frame were inserted
downstream, of the LacI controlled promoter, between
the PstI and BamHI sites. The sequence of the plasmid is
provided in the Supplementary Data.

Plasmids pSEM4049 was constructed by inserting a syn-
thetic fragment encoding a translational fusion of mCherry
and venus YFP between the KpnI and SalI sites of plasmid
pBAD33 (32). Plasmid pSEM4063 was made in a similar
way except that the mCherry and venus YFP open reading
frames are separated by the sequence responsible for trans-
lational coupling of the E. coli MG1655 relB and relE genes.
The sequences of the synthetic fragments are shown in the
Supplementary Data.

Fluorescence measurement. SC34/pSEM3187/pBAD33, S
C34/pSEM3187/pSEM4049 and SC34/pSEM3187/pSEM
4063 cells were grown overnight in LB medium contain-
ing zeocin (70 �g/ml) and chloramphenicol (30 �g/ml)
before they were diluted 1:1000 in M9 fructose (0.2%)
medium containing zeocin (70 �g/ml), chloramphenicol
(30 �g/ml), and supplemented with 0.1 mg/ml amino
acids (excluding Phe, Tyr and Trp to limit background
fluorescence). Cells were grown at 37◦C in a FLUOstar
Omega Microplate Reader (BMG Labtech). OD (600 nm),
mCherry and YFP fluorescence was recorded at regular in-
tervals. The fluorescence data was corrected with the fluo-
rescence of SC34/pSEM3187/pBAD33 cells (not carrying
mCherry/YFP).

Model for one TA system

We construct a mathematical model for one TA system (Fig-
ure 2A) based on our previous work (16). We assume anti-
toxin proteins rapidly form tight dimers upon translation
(A2,f) and model the interaction between antitoxin and tox-
ins with

A2, f + Tf � A2T and A2T + Tf � A2T2 (1)

where Tf represents isolated toxin molecules (free toxins).
We assume that the reactions reach equilibrium with asso-
ciation constant KT = [A2T]/[A2, f][Tf] = [A2T2]/[A2T][Tf].
For convenience, we define the total level of antitoxins as [A]
= 2[A2, f] + 2[A2T] + 2[A2T2] and the total level of toxins as
[T] = [Tf] + [A2T] + 2[A2T2].

We describe the antitoxin concentration [A] and the anti-
toxin concentration [T] with the following dynamical equa-
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The first lines of Eqs. (2) and (3) describe protein synthesis,
where �A and �T represent the maximal synthesis rates of
antitoxins and toxins, respectively. Protein synthesis can be
inhibited both transcriptionally and translationally. Tran-
scriptional inhibition is mainly mediated by cooperative
binding of two trimers A2T to the promoter (33), which we
describe by the term 1 + ([A2T]/Ko)2 where Ko is the dis-
sociation constant between A2T and promoter. We exclude
the inhibitory effect of A2 from the model due to its rela-
tively weak strength (refer to (16)), and tetramers A2T2 were
shown to de-repress transcription, a phenomenon called
‘conditional cooperativity’ (33,34). The mRNase activities
of free toxins Tf mediate translation inhibition, which we
model by the Michaelis–Menten form 1 + �[Tf]/([Tf] + D)
where � describes the maximal fold-reduction of translation
and D controls the saturation of toxins’ activity.

The second lines of Eqs. (2) and (3) describe the reduction
of protein levels due to cell growth (first term) and degrada-
tion (second term). We assume that the cell growth is also
regulated by free toxins (refer to (16)). Since cell division re-
quires coordination of multiple pathways and all such path-
ways are subject to disruption by free toxins, we assume that
toxins have a stronger inhibitory effect on cell growth than
expression of individual genes. Consequently, we choose the
maximal reduction in growth rate (�0) to be much greater
than �A and �T.

To control the complexity of the model, we do not model
the explicit levels of (p)ppGpp and only describe its effect on
TA systems by modulating parameter values in Eq. (2) and
(3). Here, we consider two major effects of a high (p)ppGpp
level: repression of cell growth rate (35) and promotion of
antitoxin degradation (3,4). The first one is captured by de-
creasing cell dilution rate (�0) and the second one is cap-
tured by increasing antitoxin degradation rate dA. We ex-
clude other regulation by (p)ppGpp from the model.

The model is implemented with parameter values listed
in Supplementary Table S1. The steady states and the null-
clines are computed by solving the equations analytically.
Since the dependence of dA and �0 on (p)ppGpp levels has
not been fully quantified, we manually determine the values
of these two parameters such that the model reaches one of
four characteristic cases. We do not argue whether the val-
ues are biologically feasible or not.

Model for coupled TA systems

We consider the coupling of multiple TA systems with iden-
tical kinetic properties. Coupling among equations comes

from the free toxin activity. We assume that all free toxins
cleave mRNAs independently, so the toxin activity is depen-
dent on the sum of all free toxin concentrations (19). The
resulting model of coupled TA systems is described by the
equations
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where the superscript i represents the ith TA system.
We allow (p)ppGpp to stochastically jump between two

levels, with a transition rate from the low level ([Pl]) to the
high level ([Ph]) to be r+ and the reverse rate to be r−. We
choose the half-life of antitoxins and cell doubling time to
be both 40 min under low (p)ppGpp level, and choose a 20-
min antitoxin half-life and no cell growth under high level
(Supplementary Table S1). We do not include negative feed-
back mediated by toxins to (p)ppGpp fluctuation (refer to
(36)) for simplicity.

We implement the model with a hybrid Gillespie algo-
rithm (37). For simplicity, we describe the amount of an-
titoxin in dimer concentrations ([A2]) during simulation,
though we present the results in monomer levels ([A]). The
amount of toxins is always described in monomer levels
([T]). We keep the total amount of toxins ([T]) and antitoxin
dimers ([A2]) as integers. For each toxin (monomer) and an-
titoxin (dimer) species, we construct two reactions, one for
synthesis and one for degradation/dilution. At each time
step, the values of [A2, f], [A2T], [A2T2] and [Tf] are calcu-
lated by solving Eq. (1) in equilibrium. We allow these val-
ues to be non-integer. We then calculate the reaction rates
and update the time and state of the model following Gille-
spie algorithm. We record simulation data around every 30
min. We define that cells enter dormancy state if toxins in-
duce a growth-reduction of >7.5-fold, corresponding to a
cell doubling time of more than 5 h in absence of (p)ppGpp,
which is necessary to survive a persister assay with 5 h ex-
posure to antibiotics. We define cells exit dormancy state if
toxin-induced growth reduction is <3-fold. We compute the
fraction of persister cells by averaging the transition rates
from growth to dormancy states in generation time (9) and
compute the waking up time from dormancy by averaging
the time spent in dormancy state. The amount of accumu-
lated free toxins is defined as the maximal amount of free
toxins during dormancy.

When we study the coupling without (p)ppGpp fluctua-
tion, we remove (p)ppGpp from the model and choose the
value of dA to be 5.1 × 10−4s−1 (1.75-fold higher than dA,low).
All other parameter values remain unchanged. We imple-
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ment the model with the hybrid Gillespie algorithm with
initial state [A] = 4000, [T] = 3000, which allows the sys-
tem to reach the dormancy stable steady state rapidly upon
simulation. We perform 10 independent simulation for each
number of TA systems and examine the timescale in which
cells return to the growth state.

RESULTS

Toxins attack their own mRNA more than antitoxin mRNA

The toxin and antitoxin modules of a TA locus typically
locate in the same operon. Among the 10 known mRNase-
encoding TA loci in E. coli, seven loci, including the well-
studied relBE locus, encode the modules in the sequence of
antitoxin and toxin (hicBA, mqsRA and higBA encode in
the reverse order) (38–41). Since the toxin module contains
no ribosome binding sites, translation of toxins can only
be initiated after a ribosome occasionally passes through
the switching-over region after finishing the translation of
the upstream antitoxins. Consequently, this sequential or-
der ensures that the toxin module is always less translated
than the antitoxin module.

The mRNase activity of toxins is hypothesized to induce
global translation inhibition by depleting mRNA at various
locations, including its own mRNA (16). Since translation
of a toxin module relies on a successful translation of its an-
titoxin counterpart, we expect that translation inhibition af-
fects toxins and antitoxins to different extents. As depicted
in Figure 1A, a complete mRNA contains information of
both antitoxin (blue) and toxin (red) and can be translated
into both proteins (top line). If the mRNA is cleaved within
the antitoxin module (second line), no protein can be syn-
thesized. Meanwhile, antitoxin proteins can still be synthe-
sized if the cutting site locates within the toxin module (third
line), as the information of antitoxin is complete. Therefore,
translation inhibition results in a higher synthesis rate ratio
between antitoxins and toxins. This effect acts as a negative
feedback to the toxin activity and can possibly affect the
growth-dormancy transition significantly.

To quantify this negative feedback, we made two re-
porter constructs (Figure 1B). These constructs express the
mCherry and Venus YFP fluorescent proteins, which are
easy to distinguish based on their excitation and emission
spectra. The construct pSEM4049 carried a translational
fusion of the two proteins, i.e. it encodes a single mCherry-
YFP polypeptide. In the construct pSEM4063, the coding
sequences of the two proteins are separated by the sequence
responsible for translational coupling of RelB and RelE.
In this case the two proteins are translated separately, but
only the ribosome that have already translated mCherry can
translate YFP.

These constructs were used to study the effect of
RelE expression on translationally coupled genes. Two re-
porter constructs were introduced into E. coli SC34 cells
(�relBEF) (42) carrying pSEM3187. In these cells, the ex-
pression of RelE and therefore cell growth rate can be con-
trolled by IPTG (Supplementary Figure S2). Cells were
grown in a temperature controlled plate reader as described
in Materials and Methods. To induce the expression of flu-
orescence proteins, 0.2% arabinose was added at time zero
(Figure 1C) or 150 min after the addition of 2 mM IPTG

inducing RelE expression (Figure 1D). Cell density and
the fluorescence level of YFP and mCherry were measured
at regular intervals. Determined from the YFP/mCherry
fluorescence ratios for the two constructs in absence of
RelE expression, the efficiency of translation coupling was
∼30% (Table 1). Introduction of a TAG stop codon into
pSEM4063, terminating mCherry translation 30 nt up-
stream from the translational start of YFP, abolished YFP
translation (<3% coupling efficiency), confirming the trans-
lational coupling. When RelE is induced by IPTG, the effi-
ciency of translational coupling decreased to 16% (Table 1).
This result suggests that translation inhibition towards the
toxin module is twice stronger than towards antitoxin. We
include this finding into our mathematical model.

(p)ppGpp level regulates steady state behaviors of TA systems

To understand how (p)ppGpp and the bias of translation
inhibition control the switching between growth and dor-
mancy, we construct a mathematical model for a typical TA
system (for example, relBE) illustrated in Figure 2A (details
in Materials and Methods). We assume that antitoxin pro-
teins rapidly form tight dimers upon translation and may re-
versibly bind free toxin molecules to form trimers A2T and
tetramers A2T2. We include ‘conditional cooperativity’ into
the model (refer to (16,33)) by only allowing trimers A2T to
repress promoter activities. Free toxin proteins may cleave
mRNA and inhibit cell growth, and we choose the effects
of free toxins on the toxin production to be twice as high
as on antitoxin production (�A:�T = 1:2) to account for
the bias of translation inhibition. Two effects of (p)ppGpp
are accounted into this model: repression of cell growth rate
(35) and promotion of antitoxin degradation through acti-
vation of proteases (3,4). We therefore represent an up-shift
in (p)ppGpp level by modulating the two relevant parame-
ters in the model. We fit the parameter values to literature
data (Supplementary Table S1) and analyze the model in the
deterministic limit.

We compute the nullclines and the steady states of the
model under four characteristic (p)ppGpp levels. As shown
in Figure 2B, the model with the lowest (p)ppGpp level ex-
hibits a monostable steady state where the antitoxin level
exceeds toxin (interpreted as growth state). The model be-
comes bistable with a higher (p)ppGpp level where growth
state ([A] > [T]) and dormancy state ([A] < [T]) co-exist
and cells may stochastically switch between these two states
facilitated by molecular noises. The growth state is more
stable, suggesting that only a minority of cells enters dor-
mancy. By further increasing (p)ppGpp level, one observes
that the model maintains bistability but the dormancy state
dominates. Finally, at the highest (p)ppGpp level, model ex-
hibits the dormancy state as the monostable steady state.

Our analysis suggests two possible mechanisms for
growth-dormancy transition. Firstly, cells may contain a
constant intermediate level of (p)ppGpp and TA systems
exhibit bistability (second and third columns of Figure 2B).
Transition between growth and dormancy is solely facili-
tated by the molecular noises within the TA systems, with-
out a possible role for (p)ppGpp. This mechanism is consis-
tent with various modeling works (15,16,18). Alternatively,
(p)ppGpp may fluctuate between the lowest (first column)
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Figure 1. Translation inhibition of Toxin-Antitoxin mRNA. (A) Schematic description of translation inhibition by toxins. A full mRNA consists of an
antitoxin region (blue) and a toxin region (red), and can be translated to both antitoxin and toxin proteins. If mRNA is cut within the antitoxin region,
no proteins can be synthesized. If mRNA is cut within the toxin region, the cleaved mRNA contains complete information of antitoxins and antitoxins
can be produced. (B-D) Effect of RelE expression on the production of translationally coupled fluorescent proteins. Cells carrying the reporter constructs
(B) were grown in a temperature controlled plate reader. Cell growth and expression of the fluorescent proteins were monitored in the presence (D) and
absence (C) of RelE. RelE expression was induced by adding 2 mM IPTG at 130 min (D). Expression of the fluorescent proteins was induced by 0.2%
arabinose added at 0 min (C) or 280 min (D).

Table 1. Expression of translationally fused and translationally coupled fluorescence proteins

Translational fusion Translational coupling

RelE induction − + − +
Growth rate (doublings/h) 0.45 0.135 0.44 0.16±0.01
Rate of YFP expression (a.u.) 1583 674 210 122 ± 10
Rate of mCherry expression (a.u.) 101 37 44 41 ± 1
YFP/mCherry expression 15.7 18.2 4.8 2.9 ± 0.2

The standard errors of mean for translational coupling are calculated based on two independent measurements.

and the highest (fourth column) levels and TA systems ex-
hibit monostability in both cases. Growth-dormancy tran-
sition is then controlled by the (p)ppGpp fluctuation and
less contributed by the molecular noises within TA systems.

To evaluate the effects of translation inhibition bias, we
construct two mathematical models with identical equa-
tions and parameter values except that free toxin pro-
teins inhibit toxin translation twice stronger than antitoxin

(�A:�T = 1:2) in the first model (blue curve in Figure 2c,
parameter values listed in Supplementary Table S1) and
free toxins equally inhibit translation of antitoxin and toxin
(�A:�T = 1:1) in the second model (red curve in Figure 2c).
We compute the steady states of the two models as a func-
tion of antitoxin half lives and plot the bifurcation diagrams
in Figure 2C. The bistable region for model without bias
ranges over 30 min of antitoxin half lives, while the pres-
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Figure 2. (p)ppGpp level modulates steady state behaviors of a TA system. (A) Schematic description of the model. A toxin–antitoxin locus encodes an
antitoxin protein (blue) and a toxin protein (red). Antitoxin proteins rapidly form tight dimers A2,f and may bind toxins to form trimers A2T and tetramers
A2T2. Isolated toxin proteins deplete mRNA and inhibit cell growth, and trimers A2T repress promoter activity. (p)ppGpp promotes the degradation of
antitoxins and inhibit cell growth. (B) The effect of (p)ppGpp level on the steady states of the model. We increase (p)ppGpp levels by reducing antitoxin half
lives and by increasing cell doubling times. The top row describes the steady states (black cross) and nullclines (blue for d[A]/dt = 0 and red for d[T]/dt = 0).
The bottom row describes the steady states in the ball-in-potential-well interpretation where a system (brown ball) stochastically switches between steady
states. The antitoxin half-life of the four columns are 40, 26.7, 22.8 and 20 min, respectively; the cell doubling times in absence of translation inhibition
are 40, 100, 160 min and no growth. (C) The effect of translation inhibition on the steady states of the model. We construct two mathematical models by
choosing the values of �A to satisfy �A/�T = 0.5 (blue) and �A/�T = 1 (red). All other parameter values remain identical to Supplementary Table S1. We
choose the cell doubling time of growth state to be 40 min and compute the steady states of the two models (plotted in free toxin levels) as a function of
antitoxin half lives.

ence of bias reduces the range to ∼10 min. This is because
the high-toxin state was de-stabilized due to the bias that
inhibits the toxins more strongly than antitoxin.

Bistable model of coupled TA systems without common noise
gives strong dependence on the number of TA systems

To examine the redundancy of TA systems, we construct
a mathematical model for coupled TA systems (details in
Materials and Methods). For simplicity, we model all TA
systems with the same equations and parameter values. We
allow all free toxin proteins to deplete mRNA with the same
rate, thus translation inhibition is dependent on the sum
of free toxin levels from all TA systems. All TA systems
are coupled through the mRNase activity of toxins, as free
toxin proteins from one TA system may deplete other TA’s

mRNA as well as induce growth repression. Finally, we al-
low (p)ppGpp to equally regulate the antitoxin degradation
rates of all TA systems as well as to modulate the cell growth
rate.

We first use this model to demonstrate that the bistable
model of coupled TA systems without common fluctuation
shows sensitivity to the number of TA systems. We assume
that (p)ppGpp level is constant and choose the parameter
values such that the coupled TA systems have two stable
steady states: a growth state where all TA systems contain
a higher antitoxin level than toxin, and a dormancy state
where all TA systems contain a lower antitoxin level. Tran-
sition between the two states can be facilitated by the molec-
ular noises within the TA systems, which is realized by sim-
ulating the model with a hybrid Gillespie algorithm (details



8186 Nucleic Acids Research, 2017, Vol. 45, No. 14

Figure 3. Growth-dormancy transition of coupled TA systems with
bistability-based mechanism. We assume that (p)ppGpp level is constant
and simulate the model with one to two TA systems, and plot the sam-
ple trajectories as a function of time. For clarity, we only plot the levels of
one TA system. The simulation starts at a dormancy state, and the time
required to reach growth state indicates the waking up times. Our simula-
tion shows that addition of one TA system increases the waking up times
by at least two orders of magnitudes. For clarity of the figure, we record
data points every 50 h from simulation.

in Materials and Methods). The switching rate from growth
state to dormancy state is proportional to the fraction of
persister cells in exponentially growth phase, while the du-
ration of dormancy is quantified as waking-up time (9).

While some parameter values result in a weak depen-
dence of persister fractions on the number of TA systems,
the average waking-up times often scale strongly. Figure
3 demonstrates one sample simulation where the model is
around the dormancy state at time zero and is simulated
until returning to the growth state. For model with one TA
system, the average waking up time is around 2 × 104 h.
Meanwhile, for model with two TA systems, we perform 10
independent simulations for ∼106 h and none of the simu-
lations shows a successful wake up. Similar results were ob-
tained previously (19). This observation is consistent with
our analysis in the Introduction, suggesting that we can
not reproduce the redundancy of TA systems with bistable
mechanism within reasonable parameter regions.

(p)ppGpp fluctuation mediates synchronized behaviors of TA
systems

We next examine whether the (p)ppGpp fluctuation mech-
anism is possible to reproduce the redundancy of TA sys-
tems. For simplicity, we assume that (p)ppGpp stochasti-
cally jumps from(to) a low level to(from) a high level with
a constant rate r+ (r−). We choose the parameter values
such that with the low (p)ppGpp level, the model exhibits
a monostable steady state where the levels of all antitoxins
are greater than the levels of their toxin counterparts. Simi-
larly, with the high (p)ppGpp level, the model is monostable
and all toxins are of higher concentrations than antitoxins
at steady state (Supplementary Figure S4). We ignore the
mild negative feedback of mRNase toxins to (p)ppGpp level
(36) in the model for simplicity.

We consider the coupling of 10 TA systems and simu-
late the model with the hybrid Gillespie algorithm. Figure 4
and S5 plot sample time courses of antitoxin, toxin and free
toxin levels. Models are in growth state with a low amount
of free toxin proteins with a low (p)ppGpp level (light green
region, Figure 4A and Supplementary Figure S5). Upon an
up-shift of (p)ppGpp level (dark green region), cells rapidly
accumulates free toxins proteins. The levels of antitoxins

A

B

Figure 4. (p)ppGpp fluctuation synchronizes the activity of 10 Toxin-
Antitoxin systems. (A) A sample trajectory of the model with 10 TA sys-
tems. The total amount of free toxins is plotted as a function of time. Light
green region represents low (p)ppGpp level and dark green region repre-
sents high (p)ppGpp level. The black line represents the threshold level
of free toxins for dormancy, which corresponds to a 5-hour cell doubling
time when (p)ppGpp level is low. (B) Duration of high-(p)ppGpp state de-
termines the entry of dormancy. The top row represents a sample trajec-
tory of antitoxin (first column) and toxin (second column) for each TA
system, and total free toxin (third column) level with the duration of the
high (p)ppGpp state being 24 hours. The bottom row represents a sample
trajectory when the duration is 1 h.

and toxins increase as well due to de-repression of promot-
ers. TA systems return to the growth state after (p)ppGpp
jumps back to the low level. Throughout the entire time
courses, all 10 TA systems share similar levels and respond
to (p)ppGpp fluctuation in the same timescale (Figure 4B).

Duration of high-(p)ppGpp state determines persister frac-
tion and waking-up times. To quantify the properties of
growth-dormancy transition, we define that a cell enters
dormancy if free toxin proteins induce a growth-reduction
of >7.5-fold and the threshold amount of free toxin pro-
teins is plotted as a black line in Figure 4A. A cell is con-
sidered exiting dormancy if the growth-reduction is <3-fold
(details in Materials and Methods). Simulation shows that
if (p)ppGpp stays at the high level for a sufficiently long du-
ration, cells accumulate a large quantity of free toxins and
remain in dormancy for hours (top, Figure 4B). Meanwhile,
cells remain in growth if the duration of high-(p)ppGpp
state is too short (bottom, Figure 4B). This observation sug-
gests that the duration of the high (p)ppGpp state is a key
quantity governing whether cells exhibit persistence.

To further explore the relationship between the duration
of the high (p)ppGpp state and persistence, we sample this
duration by over 2 orders of magnitudes and compute the
maximal amount of free toxin proteins during dormancy
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A B

Figure 5. Duration of the high (p)ppGpp state determines properties of
persisters. We simulate a model with 10 TA systems with variable durations
of the high (p)ppGpp state. (A) The amount of accumulated free toxins
and (B) waking up times from dormancy are plotted. We discover that the
duration can be partitioned into three regions: the growth region (orange)
where (p)ppGpp fluctuation is unable to induce dormancy, the exponential
region (green) where cell accumulates free toxins exponentially in time, and
the saturated region (purple) where cells reach steady state when (p)ppGpp
level is high.

(Figure 5A) and waking-up times (Figure 5B). We find that
the duration of high-(p)ppGpp state can be partitioned into
three regions: a growth region (orange) where cells are un-
able to enter dormancy, an exponential region (green) where
cells accumulate free toxin proteins exponentially in time
and a saturated region (purple) where the amount of free
toxins converges its maximal value as cells reach the steady
state with high (p)ppGpp level. The waking-up time is not
well-defined for the growth region, but exhibits good linear
relationship with the duration of the high (p)ppGpp state
for both exponential and saturated regions despite different
slopes.

Figure 5A can be explained by analyzing the model in the
high toxin deterministic limit. Cells exhibit a high amount
of free toxin proteins if the duration of the high (p)ppGpp
state falls in the exponential or saturated region. In the
high toxin limit, when (p)ppGpp level is high, the dominant
form of antitoxin proteins is tetramer A2T2 and the amount
of trimers A2T is negligible. Consequently, the promoters
of TA systems are usually de-repressed and the terms for
transcription inhibition vanish. Translation inhibition also
reaches its maximal strength under high toxin limit, so the
corresponding terms can be simplified as well (

∑
i [T

(i )
f ] �

D). As a result, synthesis rates of antitoxins and toxins
are approximately constant (�A/�A and �T/�T) and both
proteins degrade/dilute with first order kinetics (dA[A] and
dT[T]). The solution to this simplified model is that the toxin
and antitoxin proteins reach their steady state values with
high (p)ppGpp level exponentially in time. The amount of
free toxins, characterized by the difference between toxin
levels and antitoxin levels, scales exponentially in time as
well. With the same argument, cells lose free toxins expo-
nentially in time when (p)ppGpp switches back to the low
level.

An operational definition of waking-up times is the du-
ration of a cell in dormancy, and this quantity consists of
two periods: a high (p)ppGpp period (within dark green
regions) where cells enter dormancy but keep accumulat-
ing free toxins and a low (p)ppGpp period (within light
green regions) where cells lose free toxin proteins but still

A B

Figure 6. Persister fraction and waking up time are weakly correlated with
the number of TA systems. We perform simulation for models with varying
number of TA systems (1–10). (A) Dormancy entry rates and (B) average
waking up times are plotted as a function of the number of TA systems.
We estimate each data point with at least 50 simulated persister samples.
The error bars represent the standard error of the means.

remain in dormancy. In the high toxin limit, the length of
high (p)ppGpp period approximately equals to the dura-
tion of high-(p)ppGpp state. If the duration falls in the ex-
ponential region, the levels of free toxins change exponen-
tially in time for both periods. Since the amount of tox-
ins to accumulate during high (p)ppGpp period equals to
the amount to lose during the low period, the lengths of
the two periods should be proportional to each other. The
waking-up time of the cell is then proportional to the dura-
tion of high (p)ppGpp state. Meanwhile, if the duration of
high (p)ppGpp state falls in the saturated region, the ma-
jority of dormancy is spent around the steady state with
the high (p)ppGpp level. The time spent for other activi-
ties, such as accumulation/losing free toxin proteins, is neg-
ligible. Therefore, the waking-up time can be approximated
by the length of high (p)ppGpp period, which equals to the
duration of the high (p)ppGpp state. Since the mechanisms
causing linear relations are different for the two regions,
their slopes are distinct.

Persister fraction and waking up times are weakly correlated
with the number of Toxin-Antitoxin systems. Finally, we
calculate the dependency between the number of TA sys-
tems and the properties of persister cells in our model. We
consider the coupling of 1–10 TA systems and simulate the
mathematical model with Gillespie algorithm. We calculate
the average dormancy entry rate and waking-up times and
plot the values as a function of the number of TA systems
(Figure 6). The dormancy entry rate, which can be inter-
preted as the fractions of persister cells (9), differs by 2-fold
between wt (10TA) and �9 (1TA) (Figure 6a). Meanwhile,
the average waking-up times of all models are ∼18 h, which
is consistent with previous measurements (Figure 6B) (9).

DISCUSSION

In this work, we investigated a possible explanation of the
redundancy of TA systems in bacterial persistence.

We first updated our previous model of one TA system
by taking into account the experimental results that mR-
Nase toxin inhibits the toxin module more than the anti-
toxin module. Our experiments using fluorescent reporter
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genes gave a 2-fold stronger inhibition of toxins. However,
it should be noted that the mRNase toxin cleavage activ-
ity is known to have some sequence specificity (43,44). This
suggests that the TA sequences can evolve to have more or
less inhibition by mRNase toxins. Our model showed that
the more biased to the toxin cleavage is, the narrower the
bistability parameter range (Figure 2), making dormancy
to growth transition easier to be driven by (p)ppGpp fluc-
tuation.

We showed that, persister formation in cells with mul-
tiple coupled bistable TA systems without common noise
is very sensitive to the number of TA systems, while the
(p)ppGpp-driven switching mechanism of TA systems re-
produces the experimentally observed redundancy of TA
systems. We identify the duration of (p)ppGpp state as a
key quantity governing persister properties including per-
sister fractions, waking up times and amount of accumu-
lated free toxins. This would suggest that a short pulse of
(p)ppGpp, such as a sudden amino-acid starvation, would
not drastically increase the persister fraction (Figure 5A,
orange region). Also, the present model predicts that TA
systems turn on and off in synchrony. It was indeed shown
that upon isoleucin starvation all 10 TA systems were ac-
tivated (25). The model further predicts that the waking-
up time correlates positively with the duration of the high
(p)ppGpp state (Figure 5B), which can be tested experimen-
tally if (p)ppGpp levels and waking-up times are measured
simultaneously at single cell level.

In this paper, we assumed an extreme case that the steady
state in the high (p)ppGpp state is the high toxin state
for all TA systems. The realistic growth-dormancy transi-
tion mechanism can be a combination of bistability and
(p)ppGpp fluctuation. For example, (p)ppGpp may fluc-
tuate between a low level giving only growth steady state
(first column in Figure 2B) and a high level giving bistabil-
ity (second or third columns). The entry of dormancy then
requires both a high (p)ppGpp level and intrinsic noises in
TA expression. Meanwhile, the exit process remains only
dependent on (p)ppGpp fluctuation, indicating that the re-
dundancy regarding to waking up times (Figure 6B) will be
maintained. In this case, even if the cells are kept in the high
(p)ppGpp state for long time, the fraction of persisters will
not reach 100%. In addition, we assumed that all the TAs
are identical, which is also a simplification of reality, though
the lack of strong phenotype in cells having single TA loci
deleted suggests that none of them are dominant.

For simplicity, our model for coupled TA systems as-
sumes that all 10 TA systems in E. coli share the same prop-
erties with relBE. Meanwhile, recent experimental evidences
have shown that TA systems have distinct features and reg-
ulations. For example, the model uses identical antitoxin
and toxin production rates and sets the ratio of these two
rates to be 6:1 (Supplementary Table S1). In reality, this ra-
tio was measured to vary from 2:1 to 7:1 (38), suggesting
that TA systems possibly have different activation thresh-
olds and induce distinct levels of translation inhibition. In
addition, TA systems may have different configurations of
complexes (Ref. (45) suggests that MazE/MazF shows a 2:1
ratio in solution and a 1:1 ratio when binding to DNA) and
not all systems have been shown to exhibit conditional co-
operativity (46). A final example is that hicBA encodes the

toxin in the first gene and the antitoxin in the second gene.
However, the hicBA module is transcribed from two sepa-
rate promoters that are controlled by different factors, sug-
gesting that activation of this TA module requires a specific
signal (47). Furthermore, the conclusion from Figure 1 that
free toxins inhibit toxin expression more than antitoxin ex-
pression relies on the gene order and it does not hold for the
TA systems coded in the reversed order.

It should also be noted that the effect of the known feed-
backs from TA systems to (p)ppGpp were not taken into
account in the present model. The hipBA TA system (7–9) is
likely to act as a positive feedback via (p)ppGpp (4,48). This
may help high-(p)ppGpp state to maintain long enough
time to induce the persistence. On the other hand, mR-
Nase toxins constitute a negative feedback via (p)ppGpp
because cleavage of mRNAs reduce the (p)ppGpp produc-
tion (36). This may shorten the waking-up time from dor-
mancy. However, further experimental analyses are needed
to understand the roles of these feedback loops in the entry
and exit processes.

Finally, though we used (p)ppGpp as an example, our
model only required the existence of a common fluctuation
signal to drive the simultaneous activation/inactivation of
TA systems. Other persister-induction mechanisms which
generate a similar common signal also fit into our mod-
eling framework. For example, Radzikowski et al. showed
that metabolic fluxes form a bistable system, where cells
maintain homeostasis in one stable steady state and ex-
hibit antibiotic persistence in the other stable steady state.
TA systems were proposed to be a downstream component
of metabolic bistability (49). The switching between two
metabolic states can be regarded as the common fluctuation
signal and our model can be adjusted to test this mechanism
as well.
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