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Abstract: Four dioxidovanadium(V) complexes with Schiff-base ligands based on
2-hydroxybenzhydrazide with four different substituted salicylaldehydes (5-chlorosalicylaldehyde,
3,5-dichlorosalicylaldehyde, 5-nitrosalicylaldehyde, 3-bromo-5-chlorosalicylaldehyde) were synthe-
sized and described, by using V2O5 and triethylamine. The single crystal X-ray structure measure-
ments as well as elemental analyses and IR spectra confirmed the formulas of the ionic complexes
with a protonated triethylamine acting as counterion, HTEA[VO2(L)] (HL = Schiff-base ligand). The
kinetic stability of the complexes at pH = 2 and 7 was discussed with respect to the neutral vana-
dium(V) complexes previously studied as potential insulin-mimetic agents. A correlation between
the substituents in an aromatic ring of the Schiff-base ligands with crystal packing, and also with the
stability of the compounds, was presented.
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1. Introduction

Vanadium compounds are widely investigated because of their biological role includ-
ing insulin-mimetic, anticancer, anti-inflammatory, or antibacterial activity [1–7]. Similarly,
Schiff-base ligands have potential application in pharmacotherapy in view of their antidia-
betic, antimicrobial, and anticancer activity [8–10]. The role of vanadium in insulin-mimetic
compounds for type I and type II diabetes treatment was recognized in 1899 and in-
tense studies were started in the 1990s. In this field the bis(maltolato)oxidovanadium(IV)
(BMOV), and its bis(ethylmaltolato)oxido-vanadium(IV) (BEOV) analogue have been the
most intensively studied compounds, which were used in clinical tests [11–13]. Our pre-
vious studies focused on the biological activity of the vanadium Schiff-base complexes,
where Schiff bases were composed of aldehydes and relatives of amines—hydrazides, to
form hydrazone type ligands. These complexes can be potentially used as insulin-mimetic
compounds. The vanadium complexes with Schiff bases obtained up until now have mani-
fested problems—most often for their cytotoxicity, very low solubility in water, instability
at pH = 2 and in transport to cells, and, last but not least, difficulties in determining the
crystal structure. Therefore, it is worth searching for new organic vanadium compounds
in order to optimize their pharmaceutical activity. So far, we have tested plenty of vana-
dium(III, IV and V) complexes with Schiff bases, controlling both the starting compound
for the synthesis of complexes, such as [VO(acac)2], VOSO4, [V(acac)3], and V2O5, as well
as changing the substituents in the aromatic ring of aldehyde and hydrazide—Schiff-base
components [14–20]. The obtained compounds were highly soluble in organic solvents,
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but insoluble in water. Thus, we used a DMSO–H2O solvent mixture to test the stability
of the complexes. In our last publication, we described the synthesis of a vanadium(V)
complex with triethylamine (TEA) as countercation—HTEA[VO2(L)] (where L = Schiff
base formed by the reaction of 5-bromosalicylaldehyde with 2-hydroxybenzhydrazide) [21].
In the formed ionic complexes, we were able to obtain single crystals and determine the
molecular structure where a hydrogen interaction appears between the cation and the
complex anion. The ionic structure of such compounds should increase the solubility of
the complexes in water. Moreover, the ionic vanadium(V) complexes with Schiff-base
ligands show antibacterial and anticancer activities [22,23]. In this work, we present a
series of vanadium(V) complexes with hydrazone Schiff-base ligand-type, and protonated
triethylamine as cation, along with the structural and physicochemical characterization. In
particular, the influence of substituents in the Schiff-base components on the structure and
stability of complexes at pH = 2 and 7 was investigated.

2. Experimental
2.1. Materials and Methods

V2O5, triethylamine (TEA), 2-hydroxybenzhydrazide, 5-chlorosalicylaldehyde,
3,5-dichlorosalicylaldehyde, 5-nitrosalicylaldehyde, 3-bromo-5-chlorosalicylaldehyde were
of analytical grade (Aldrich) and were used as received. Ethanol (98%) of pharmaceutical
grade was from Polmos (Poland), all other solvents were of analytical grade and were used
as supplied. Microanalysis of carbon, hydrogen and nitrogen was performed using Elemen-
tar Vario MICRO Cube elemental analyzer. Electronic absorption spectra were recorded
with a Shimadzu UV-3600 UV-vis-NIR spectrophotometer equipped with a CPS-240 tem-
perature controller. IR spectra were recorded on a Nicolet iS5 FT-IR spectrophotometer.

2.2. Syntheses of HTEA[VO2(Ln)] (1–4)

All the compounds were obtained as result of the following synthetic procedure:
1 mmol of 2-hydroxybenzhydrazide and 1 mmol of the respective salicylaldehyde, namely
5-chloro-salicylaldehyde, 3,5-dichloro-salicylaldehyde, 5-nitro-salicylaldehyde, 3-bromo-5-
chloro-salicylaldehyde (as indicated in Table 1), were refluxed in 50 mL of methanol for
15 min. To the resulting yellow solution, 0.5 mmol of V2O5 was added and the mixture
was refluxed for additional 5 min. The color of the solution changed to dark red. Then,
2 mL of triethylamine (TEA) was added and the mixture was refluxed for additional
5 min and left for crystallization. After several days, crystals suitable for X-ray diffraction
measurement were taken directly from the solution. The residual of the precipitate formed
was filtered off, washed with methanol, and dried in air. The yield of individual syntheses
was almost quantitative (close to 85–95%). The formulas and elemental analysis results of
the diamagnetic complexes are given in Table 1.

2.3. Crystallographic Data Collection and Structure Refinement

Diffraction intensity data for compounds 1–4 were collected on a Rigaku XtaLAB
Synergy-S diffractometer with mirror-monochromated Cu-Kα radiation (λ = 1.54184 Å).
Cell refinement and data reduction were performed using CrysAlisPro firmware [24]. The
positions of all non-hydrogen atoms were determined by direct methods using SHELXL-
2019/2 [25,26]. All non-hydrogen atoms were refined anisotropically using weighted full-
matrix least-squares on F2, and refinements were carried out using SHELXL-2019/2 [25,26].
All hydrogen atoms were positioned at idealized positions, except those of the OH group
and NH of protonated trimethylamine, which were freely refined.

The crystal data and structure refinement parameters for complexes 1–4 are collected
in Table 2.
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Table 1. The formulas of compounds 1–4 with elemental analysis results and components of Schiff-
base ligands used in synthesis.

Complex
Formula

Elemental Analysis
[%] exp calc Hydrazide Aldehyde Ligand Ln Formula

1 HTEA[VO2(L1)]
C, 50.96; 50.59
H, 5.21; 5.52
N, 8.71; 8.85

2-hydroxy-benzhydrazide

5-chloro-salicylaldehyde
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 1 2 3 4 
Empirical formula  C20H25ClN3O5V C20H24Cl2N3O5V C20H25N4O7V C20H24BrClN3O5V 

Formula weight  473.82 508.26 484.38 552.72 
Crystal system  Monoclinic Triclinic Monoclinic Triclinic 

Space group  P 21/n P 1ത P 21/n P 1ത 
a [Å] 7.46809(3) 7.2268(2) 7.4272(1) 7.3085(1) 
b [Å] 13.00924(4) 11.4466(2) 13.1272(1) 11.4480(1) 
c [Å] 21.59664(7) 13.9949(2) 21.9821(1) 14.2515(2) 
α [°] 90 106.228(1) 90 108.525(1) 
β [°] 99.2988(3) 101.140(2) 97.826(1) 102.008(1) 
γ [°] 90 91.472(2) 90 90.791(1) 

Volume [Ǻ3] 2070.632(13) 1086.71(4) 2123.26(3) 1101.75(2) 

2 HTEA[VO2(L2)]
C, 47.31; 47.17
H, 4.90; 4.95
N, 8.24; 8.25

3,5-dichloro-salicylaldehyde
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1 2 3 4

Empirical formula C20H25ClN3O5V C20H24Cl2N3O5V C20H25N4O7V C20H24BrClN3O5V

Formula weight 473.82 508.26 484.38 552.72

Crystal system Monoclinic Triclinic Monoclinic Triclinic

Space group P 21/n P 1 P 21/n P 1

a [Å] 7.46809(3) 7.2268(2) 7.4272(1) 7.3085(1)

b [Å] 13.00924(4) 11.4466(2) 13.1272(1) 11.4480(1)

c [Å] 21.59664(7) 13.9949(2) 21.9821(1) 14.2515(2)

α [◦] 90 106.228(1) 90 108.525(1)

β [◦] 99.2988(3) 101.140(2) 97.826(1) 102.008(1)

γ [◦] 90 91.472(2) 90 90.791(1)

Volume [Å3] 2070.632(13) 1086.71(4) 2123.26(3) 1101.75(2)

Z 4 2 4 2

Density [mg/m3] 1.520 1.553 1.515 1.666

µ [mm−1] 5.524 6.411 4.358 7.332

F(000) 984 524 1008 560

θ range [o] 3.98–75.68 3.36–75.30 3.93–75.08 3.36–75.41

Index ranges
−9 ≤ h ≤ 8 −7 ≤ h ≤ 8 −9 ≤ h ≤ 7 −8 ≤ h ≤ 8
−15 ≤ k ≤ 16 −14 ≤ k ≤ 14 −16 ≤ k ≤ 16 −14 ≤ k ≤ 14
−26 ≤ l ≤ 27 −17 ≤ l ≤ 17 −26 ≤ l ≤ 26 −17 ≤ l ≤ 17

Reflections collected 73160 37876 73570 38590

Indep. reflections 4167 4273 4202 4326

Rint 0.0456 0.0704 0.0717 0.0552
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Table 2. Cont.

1 2 3 4

Parameters 282 287 300 291

GOF on F2 1.041 1.175 1.124 1.092

R1 [I > 2σ(I)] 0.0273 0.0403 0.0376 0.0310

wR2 [I > 2σ(I)] 0.0761 0.1135 0.1044 0.0854

R1 (all data) 0.0273 0.0422 0.0383 0.0314

wR2 (all data) 0.0761 0.1174 0.1050 0.0858

residuals [e·Å−3] 0.355, −0.513 0.535, −0.912 0.334, −0.639 0.565, −0.900

CCDC 2161295, 2161337, 2161365 and 2161385 contain the supplementary crystal-
lographic data for 1–4, respectively. These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
accessed on 26 September 2022.

The XRD powder diffractograms of 2–4 (crystallinity tests) were recorded at 294 K on a
Philips X’Pert-Pro diffractometer equipped with a Ni-filtered Cu-Kα radiation
(λ = 1.54059 Å) over 2θ range from 5 to 50◦ with a counting time of 1 s and a step size of
0.04◦. The X-ray source was operated at 30 mA and 40 kV.

3. Results and Discussion
3.1. Crystal Structure Description

The X-ray structural analyses show that complexes 1–4 have a close comparable
structure and, in particular, complexes 1 and 3 present isomorphous structures and similarly
2 and 4, as can be evidenced from the unit cell parameters (Table 2). An ORTEP view of the
crystallographic independent unit for all complexes is shown in Figure 1, and a selection
of bond lengths and angles is reported in Table 3. The XRD powder diffractograms of 2–4
are presented in Figures S1–S3 and show that the polycrystalline sample is similar to the
monocrystalline one.
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Table 3. Selected bond lengths (Å) and angles (◦) for complexes 1–4.

1 2 3 4

V-O(1) 1.9874(10) 1.9889(14) 1.9752(12) 1.9899(15)

V-O(2) 1.9052(10) 1.9205(15) 1.9151(13) 1.9264(15)

V-N(1) 2.1623(11) 2.1432(17) 2.1740(13) 2.1391(17)

V-O(4) 1.6477(10) 1.6448(16) 1.6419(14) 1.6463(15)

V-O(5) 1.6256(10) 1.6145(15) 1.6192(13) 1.6147(15)

O(1)-V-O(2) 150.02(4) 155.98(6) 149.31(6) 156.09(6)

O(1)-V-N(1) 73.35(4) 74.04(6) 73.28(5) 74.04(6)

O(1)-V-O(4) 100.16(5) 95.99(7) 100.42(6) 94.91(7)

O(1)-V-O(5) 93.15(4) 95.65(7) 94.18(6) 95.83(7)

O(2)-V-N(1) 81.73(4) 81.94(6) 81.38(5) 82.11(6)

O(2)-V-O(4) 103.88(5) 98.55(7) 104.09(6) 98.44(7)

O(2)-V-O(5) 95.96(5) 97.44(7) 95.31(6) 98.34(7)

O(4)-V-N(1) 109.94(5) 126.25(7) 109.13(6) 127.86(7)

O(5)-V-N(1) 140.96(5) 124.02(7) 141.97(6) 122.33(7)

O(4)-V-O(5) 108.42(5) 109.30(8) 108.41(7) 109.25(8)

C-O(1)-V 119.08(8) 118.19(13) 119.53(10) 118.21(13)

C-O(2)-V 135.12(9) 138.64(14) 135.45(12) 138.70(14)

C-N(1)-V 129.70(9) 130.69(14) 129.42(11) 130.71(14)

N(2)-N(1)-V 115.55(8) 115.14(12) 115.23(10) 115.40(12)

In each anionic [VO2(L)]− complex, the vanadium atom is pentacoordinated by two
oxido groups and by the anionic tridentate chelating ONO Schiff-base ligand through the
phenoxo oxygen O1, the imino nitrogen N1 and the carboxylate oxygen O2. The V-O1 bond
distances that fall in the narrow range 1.9874(10)–1.9899(15) Å are systematically shorter by
ca. 0.07 Å with respect to V-O2 ones (range 1.9052(10)–1.9264(15) Å). The V-N1 bond lengths
vary from 2.1391(17) to 2.1740(13) Å. The V=O4 bond distances (of oxo atom involved
in hydrogen bond with HTEA, see below) have a mean value of 1.645 Å, systematically
slightly longer than the V = O5 bonds that average to 1.618 Å. However, the different
substituents on the phenol ring do not seem to affect the electronic properties of the donor
atoms and thus the coordination sphere of vanadium.

The vanadium in the isomorphous structures of 1 and 3 exhibits a slightly distorted
square–pyramidal coordination sphere, as ascertained by the τ parameter [27] of 0.151
and 0.122, respectively. On the other hand, the metal in 2 and 4 presents a coordination
environment in between a square–pyramidal and trigonal bipyramidal (τ = 0.495 and 0.470,
respectively, being τ = 0 for an ideal square pyramid and 1 for an ideal trigonal bipyramid).
These findings are confirmed also by the program SHAPE 2.1 [28], which indicates a square
pyramid geometry for 1 and 3, while there is a trigonal bipyramid geometry for 2 and 4
(Table S2).

These bonding parameters are in agreement with those detected in other dioxovana-
dium complexes [23,29,30]. In all [VO2(L)]− anions, a strong intramolecular H-bond is
realized between the O3-H and nitrogen N2 with O . . . N distance of ca. 2.58 Å (Table 4).
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Table 4. Selected hydrogen bonds for complexes 1–4 [Å/◦].

D-H. . . A d(D-H) d(H. . . A) d(D. . . A) <(DHA)

1

N(3)-H(3n). . . O(4) 0.88(2) 1.85(2) 2.7293(15) 176.2(19)

O(3)-H(3o). . . N(2) 0.83(3) 1.83(3) 2.5857(15) 150(2)

2

N(3)-H(3n). . . O(4) 1.00 1.71 2.706(2) 178.6

O(3)-H(3o). . . N(2) 0.87(4) 1.78(4) 2.572(2) 150(3)

3

N(3)-H(3n). . . O(4) 0.81(2) 1.98(3) 2.787(2) 172(2)

O(3)-H(3o). . . N(2) 0.83(3) 1.88(3) 2.6059(18) 146(3)

4

N(3)-H(3n). . . O(4) 0.91(3) 1.77(3) 2.686(2) 176(3)

O(3)-H(3o). . . N(2) 0.78(4) 1.86(4) 2.567(2) 150(4)

In all compounds, the protonated triethylamine is hydrogen bound to oxygen O4 of the
vanadium complex, with N3 . . . O4 distance in between 2.686(2)–2.787(2) Å (Figure 1, Table 4).

The crystal packing of compound 1 is shown in Figure 2, where complexes are inter-
acting by π-stacking interactions between phenol rings (centroid-to-centroid distance of
4.185(1) Å. A similar crystal packing is observed for 3, with slightly longer π-stacking inter-
actions 4.411(1) Å. The crystal packing of compounds 2 and 4 exhibits pairs of complexes
centrosymmetrically related to form reciprocal π-stacking interactions with centroid dis-
tances of 3.606(1) and 3.656(1) Å, respectively (Figure 3). Finally, numerous unconventional
hydrogen bonds of type C-H . . . O, C-H . . . Cl and C-H . . . Br, as indicated in Table 4 and
Table S1 (Supplementary Materials), as well as C-H . . . π interactions (Table 5) reinforce the
crystal packing of all the complexes.
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Figure 3. Crystal packing of complex 2 with indication of π-stacked centrosymmetric complex
pairs with indication of the orientation with respect to cell axes (orange dotted lines = π-stacking
interactions, blue dotted lines = H-bonds). The same crystal packing is exhibited by complex 4.

Table 5. The X-H···Cg(π) interaction in 1 and 3 [Å/◦].

X-H . . . Cg(π) d(H . . . Cg) d(X-H . . . Cg) d(X . . . Cg) Cg1

1

C19-H19b . . . Cg1 2.76 142 3.5853(16) C2-C3-C7-C13-C17-C5
at -x, 1-y, -z

3

C26-H26b . . . Cg1 2.89 136 3.665(2) C17-C18-C19-C20-C21-C22
at 1-x, 2-y, 1-z

3.2. Spectroscopic Characteristics

The IR spectra of 1–4 were measured in the 400–4000 cm−1 range and presented in
Figure 4. As the complexes differ only in the substituent in the fragment derived from the
aldehyde, the spectra are very similar. The position of ν(V=O) stretching frequency is 939,
942, 936, 944 cm−1 (for 1–4, respectively). For 1 and 3 as well as for 2 and 4 the position is
very similar, as these pairs of compounds show an isomorphous structure. These bands
were also observed in other dioxido vanadium compounds [31–33]. The bands related
to the stretching frequencies of -C=N are observed in the range of 1610–1630 cm−1. The
stretching vibration of the -OH group in the Schiff-base ligand is observed at ca. 2980 cm−1,
and that of the -NH vibration in the cation at 2450–2600 cm−1.
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The UV-Vis spectra of all the complexes were recorded in EtOH, MeOH, MeCN, DMSO
and water (see Figure 5).
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Figure 5. UV-Vis spectra of complexes 1–4 in various solvents (black—EtOH, red—MeOH, blue—
MeCN, green—DMSO and orange—H2O).

The solubility of 1–4 in different organic solvents was very good, while in water the
complexes exhibited partial solubility that increased with increasing temperature. The
complexes 1, 2 and 4 show intense bands in the range of 400–410 nm, which can be
assigned to ligand-to-metal charge transfer (LMCT). Compound 3 shows this band at
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higher energy (ca. 380–390 nm) and presents also a well-formed band at ca. 308 nm, being
the only compound that does not have a halogen atom as a substituent. The stability of the
complexes was proved in DMSO (Figure 6), in water (pH ca. 7) as well as in 0.01 M HCl
(pH ca. 2, imitating the environment in the stomach). All measurements were performed
at 37 ◦C. As the compounds are stable in DMSO, this is an important feature, since this
solvent can be used as a solvent to transport molecules across cell membranes like the skin.
Since these compounds were soluble in water, we had the opportunity to determine for
the first time their stability in water. By using a DMSO/H2O mixture, the complexes were
shown to be stable at pH = 7, but were unstable at pH = 2 [16–20]. In Figures 7 and 8 a
similar behavior can be observed: at pH = 7 the band at 400 nm does not change with
time (Figure 7). Acidification of the solution causes the formation of a suspension (raised
background in the entire range as shown in Figure 8). The disappearance of the bands at ca.
400 nm, combined with an increase in the intensity of the bands at ca. 300 nm, suggests the
decomposition of Schiff bases into components.
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4. Conclusions

Four complexes of vanadium(V) with Schiff-base ligands were isolated and structurally
characterized. The addition of triethylamine caused deprotonation of the Schiff-base ligand
and isolation of ionic complexes with Et3NH+ as cation. The structural data indicate that
complexes 1 and 3 have an isomorphous structure, and similarly 2 and 4. These complexes
differ only in the number and type of substituents on the ring constituting the part of
the aldehyde component of the Schiff-base ligand. The introduction of an additional
substituent on the salicylaldehyde ring induces a decrease in the symmetry of the unit cell
for complexes 2 and 4, which crystallize in the triclinic system, in contrast to compounds 1
and 3 crystallizing in the monoclinic system. The present ionic complexes display a better
solubility in water with respect to similar neutral complexes of vanadium(V) previously
reported, and this represents an important aspect from the point of view of their potential
biological applications. Complex 2 showed the best solubility, due to the additional chlorine
substituent. The stability of complexes in DMSO and water is very good; however, they are
unstable at pH = 2. Research on improving compound stability in the acidic environment
by changing the cation is in progress.
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