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Abstract MicroRNA (miRNA) is an endogenous non-protein coding small RNA
molecule that negatively regulates gene expression by the degradation of
messenger RNA (mRNA) or the suppression of mRNA translation. miRNA
plays important roles in physiologic processes such as cellular development,
differentiation, proliferation, apoptosis, and stem cell self-renewal. Studies
show that deregulation of miRNA expression is closely associated with
tumorigenicity, invasion, and metastasis. The functionality of aberrant
miRNAs in cancer could act either as oncogenes or tumor suppressors during
tumor initiation and progression. Similar to protein-coding gene regulation,
dysregulation of miRNAs may be related to changes in miRNA gene copy
numbers, epigenetic modulation, polymorphisms, or biogenesis modifica-
tions. Elucidation of the miRNA expression profiles (miRNomes) of
many types of cancers is starting to decode the regulatory network of
miRNA-mRNA interactions from a systems biology perspective. Experi-
mental evidence demonstrates that modulation of specific miRNA alterations
in cancer cells using miRNA replacement or anti-miRNA technologies can
restore miRNA activities and repair gene regulatory networks affecting
apoptotic signaling pathways or drug sensitivity, and improve the outcome of
treatment. Numerous animal studies for miRNA-based therapy offer the
hope of targeting miRNAs as an alternative cancer treatment. Developing the
small molecules to interfere with miRNAs could be of great pharmaceutical
interest in the future.

1. Introduction

The discovery of microRNAs (miRNAs or
miRs) heralded a new and an exciting era in
biology and began a new chapter in human gene
regulation. The miRNAs, a class of endogenous,
small, non-coding RNAs (~22 nucleotides [nt] in
length), fine tune gene expression at the post-
transcriptional level, mainly through binding to
the 30 untranslated region (UTR) of messenger

RNAs (mRNAs). They are involved in stem-cell
self-renewal, cellular development, differentia-
tion, proliferation, and apoptosis.[1]

Small miRNAs have big impacts in the cancer
development. Among the many miRNAs, a sub-
set has been identified as regulators of neoplastic
transformation, tumor progression, invasion, and
metastasis as well as of tumor-initiating cells
(cancer stem cells). The widespread deregulation
of miRNA expression profiles (miRNomes) in
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diverse types of cancers compared with normal
tissues has been unveiled.[2] The oncogenic
miRNAs (oncomirs), tumor suppressive miRNAs,
and miRNAs associated to cancer metastasis
comprise of an important part of cancer genome,
and confer pivotal diagnostic and prognostic sig-
nificance.[3] Moreover, cancer-associated miRNAs
are proving worthwhile for developing effective
cancer biomarkers for individualized medicine,
and as potential therapeutic targets. Akin to
small interfering RNA technology applications,
numerous miRNAs have been assessed in re-
search laboratories for treating various diseases,
including cancers, some of which have exhibited
promising results in cultured cells (reviewed by
Wang and Wu[4]). Approaches to effective deliv-
ery of miRNAs are still under investigation, and
many challenges still remain.

2. MicroRNA (miRNA) Regulation

miRNAs are endogenous, small, non-coding
RNAmolecules that are often encoded within the
intronic region of protein-coding genes, but can
also be found as independent transcription units
or in polycystronic clusters.[5] The miRNA genes
are transcribed in the nucleus predominantly by
RNA polymerase II into primary miRNAs (pri-
miRNAs), which are hundreds to thousands of
nucleotides in length and contain a 50 7-methyl-
guanosine cap and a 30 polyA tail. The micropro-
cessor complex formed by the RNAse III enzyme
Drosha and DGCR8 (also known as Pasha)
cleaves the pri-miRNAs into ~70 nt fragments of
precursor miRNAs (pre-miRNAs) with a two
nucleotide 30 hydroxyl overhang in the nucleus.
With the help of RAN-guanosine triphosphate
(GTP) and exportin-5 in the nuclear membrane,
pre-miRNAs are transported to the cytoplasm
where a secondary cleavage is performed by an-
other RNase III enzyme, Dicer, and the ~21 nt
duplex of mature miRNAs is formed. One strand
of a mature miRNA is integrated into the RNA-
induced silencing complex (RISC), containing
Argonaute proteins to target the mRNAs. In the
vast majority of cases, the mature miRNAs bind
to the 30 UTRs of mRNAs. Occasionally, the
50 UTR[6] or even the amino acid coding sequence[7]

can also be the binding sites. Gene silencing
through degradation of mRNA or translational
repression is a general consequence of miRNA
binding, although in rare cases, a miRNA could
increase gene expression.[8]

The molecular mechanisms of miRNA reg-
ulation are not clear to date. Recent studies of
pathologic processes such as cancer development
are aiding our understanding of miRNA func-
tion. Similar to the regulation of protein-coding
genes, each step of miRNA regulation could be
affected during the progression from genetic
makeup to functional molecules. Emerging evi-
dence shows that deregulation of miRNA mole-
cules in cancer cells seems to involve the interplay
of multiple mechanisms, as outlined in sections
2.1–2.4.

2.1 Genomic miRNA Copy Number Changes

Changes in miRNA copy number in the gen-
ome correlate with miRNA expression level. The
gain of miRNA function through the gene am-
plification is documented by several miRNAs
such as miR-21[9] and the miR-17-92 gene clus-
ter.[10] The miR-17-92 gene cluster was mapped
into a chromosome region that is frequently am-
plified in a subset of human B-cell lymphoma[11]

and overexpressed in a variety of other human
cancers. Loss of miRNA function is often due to
the deletion of miRNA genes in chromosomal
sites. For example, miRNA15a and miR-16 are
deleted in the majority of chronic lymphocytic
leukemias and in a subset of mantle cell lym-
phoma and prostate cancers.[12] A high frequency
of genomic miRNA copy number changes was
found in solid tumors as well. For example,
changes in gene copy number for 41 miRNAs
have been observed in breast cancer, ovarian
cancer, and melanoma.[9] Interestingly, Dicer 1,
Argonaute 2, and other miRNA-associated genes
were also found to change in copy number in
cancer cells.[9] This may partly contribute to the
changes in miRNA expression observed.

2.2 Epigenetic Regulation of miRNAs

Epigenetic changes contribute to aberrant
miRNA expression in several malignancies.
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Changes in DNA methylation of miRNA gene
promoters or chromatin histone deacetylases
(HDAC) of several miRNAs in various cancer
cell lines or cancer samples have been re-
ported.[13,14] Moreover, treatment with DNA
methylation inhibitors (5-aza-20-deoxycytidine)
or HDAC inhibitors were shown to significantly
change the miRNA expression profile.[15]

2.3 Transcriptional Regulation of miRNAs

Accumulating evidence demonstrates that a
subset of miRNA genes is regulated by known
transcription factors. It is clear that MYC reg-
ulates the expression of the miR-17-92 cluster
through directly binding to E-boxes of the pro-
moter of the miR-17-92 gene.[16] Tumor protein
p53 (TP53) binds directly to the miR-34 gene
promoter to activate its transcription.[17] How-
ever, the factors initiating transcription of other
miRNAs remain largely unknown.

2.4 Polymorphisms and Mutations in miRNAs

The mutation of mature RNAs changes the
miRNA-mRNA interaction and specificity, and
can abrogate miRNA regulatory effects. In parti-
cular, drug-related miRNA polymorphisms have
drawn much attention and are discussed below
(section 3.2). We expect that a larger-scale cancer
genome sequencing will provide more informa-
tion on miRNA mutations in different types of
cancers.

3. miRNA Modulation

Given the importance of miRNAs in regulat-
ing cellular differentiation and proliferation, it
is not surprising that their dysregulation is linked
to cancer. In cancer, miRNAs function as reg-
ulatory molecules, acting as oncogenes or tumor
suppressors.[18] Either miRNA replacements or
miRNA inhibitors could be introduced into the
cells to restore the physiologic function of
miRNAs.[4] Progress has been made to target
every step of miRNA regulation, from endogenous
induction of miRNA gene expression with small
molecules, to enzymatic modification (i.e. Drosha
or Dicer, Argonautes) involved in miRNA bio-

genesis.[19] Some new and creative approaches
include miRNA mimics,[20] multiple-target anti-
miRNAs,[21] and chemical inhibitors (e.g. miR-21
inhibitor diazobenzene),[22] to increase the speci-
ficity and decrease the off-target effects and
other potential adverse effects. Modulation of
miRNA by various strategies could lead to dif-
ferent biologic effects for certain disease treat-
ments. The major applications in cancer are
described in sections 3.1–3.4.

3.1Modulation ofmiRNAsMediates Apoptosis

miRNA is strongly related to the apoptosis
signaling, andmultiple miRNAs have been found
to enhance or inhibit the apoptotic pathway
following their changes during cancer develop-
ment. miR-21 is overexpressed in various tumors,
and is functionally considered as an oncomir;
multiple targets of miR-21 have been identified
and mapped to different signaling pathways
including the anti-apoptotic signaling path-
ways (reviewed by Selcuklu et al.[23]). Many
studies have focused on inhibiting miR-21, and
have demonstrated that such inhibition leads to
the induction of programmed cell death, suggest-
ing a promisingmiRNA treatment for cancer.[24-26]

On the other hand, reduced expression of miR-
15, miR-16, and let-7 has been observed in dif-
ferent types of cancers, and as one consequence,
anti-apoptotic genes are activated in these can-
cer cells.[27,28] Restoration of these miRNAs
triggers activation of apoptotic signaling path-
ways.[29,30] Other examples have been reported;
for example, miR-491 induces apoptosis by tar-
geting BCL-X(L) in colorectal cancer cells,[31]

and transfection of anti-miR-24 oligonucleotides
induces apoptosis in several cell lines.[7] Collect-
ively, apoptotic and anti-apoptotic genes are
the core hub of the gene network regulated by
miRNAs. This well studied signaling pathway is
one of the mechanisms of action for modulating
miRNAs.

3.2 Modulation of miRNAs Sensitizes
Chemo- or Radiotherapy

Multidrug resistance of cancer cell subpopu-
lations to conventional chemo- or radiotherapy is
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the main cause of recurrence or relapse. Seeking
agents or molecules to enhance cancer cell sensi-
tivity to therapy is the long-term goal to improve
the therapeutic efficacy.[32] By definition of a
sensitivity enhancer, the given miRNAs them-
selves (at certain expression levels) may not have
any or have only minor effects on cancer cell
proliferation, apoptosis, or cell cycle; however, in
combination with another treatment, additive or
synergistic effects can be observed. This effect of
miRNAs provides a novel platform for targeting
resistant cancer cells. For example, knockdown
of miR-221 and/or miR-222 sensitized MDA-
MB-468 cells to tamoxifen-induced cell growth
arrest and apoptosis.[33] miR15b and miR-16
maintain the sensitivity of gastric cancer cells to
chemotherapy through inhibition of BCL1.[33]

miR-326 is inversely related tomultidrug resistance-
associated protein (MRP1/ABCC1) expression
in the VP-16-resistant, multidrug-resistant cell
line MCF-7/VP.[34] It is possible that targeting
miR-326 could be utilized for preventing and
reversing multidrug resistance in tumor cells.
miR-34 restoration in pancreatic cancer stem
cells increases the sensitivity to docetaxel, cispla-
tin, and gemcitabine treatment, and irradiation
exposure. The effect of miRNAs inducing apop-
tosis or increasing the sensitivity to treatment is
likely to be determined by the expression level
of miRNAs. When a given miRNA expression
level goes over the critical threshold, the cell
death process will take place. At this point, we
are unable to quantify miRNA dose-dependent
effects with the biological phenomenon, but a
mathematical model could be proposed to test
this idea. Taken together, increasing the cancer
cell sensitivity by miRNAs provides an additional
layer of miRNA modulation to treat cancer cells,
at least in vitro.

3.3 Modulation of miRNAs Induces Cancer
Cell Differentiation

Emerging evidence suggests that miRNA
can regulate cell-fate decisions. A subgroup of
miRNAs is markedly reduced in the stem-cell
state and increased during differentiation. As the
cancer stem-cell theory is beginning to be accept-

ed, induction of cancer stem-cell differentiation is
being recognized as a future direction for devel-
oping new anticancer agents.[35] miRNA expres-
sion data revealed that miRNAs are differentially
expressed in breast cancer stem cells and in dif-
ferentiated breast cancer cells.[36] By this com-
parison, let-7 was found to be a gatekeeper for
cancer cell differentiation. Breast cancer stem
cells derived from either cultured mammosphere
cells or clinical cancer specimens expressed lower
levels of let-7 and higher levels of RAS and
HMGA2 proteins, which are negatively regulated
by let-7. In contrast, when these cells were
undergoing differentiation, the let-7 expression
increased. Moreover, let-7 expression inhibits
tumorigenesis and metastasis in nonobese diabe-
tic (NOD)/severe combined immunodeficiency
(SCID) mouse models.[37] More recently, miR-
200c was linked to breast cancer stem cell differ-
entiation through inhibition of the stem cell
self-renewal factor BMI1 gene.[38] Taulli et al.[39]

reported that the muscle-specific miR-206 blocks
human rhabdomyosarcoma growth and promotes
myogenic differentiation in xenotransplanted
mice; furthermore, it appears that the met gene is
the primary target of miR-206. Taken together,
increasing evidence supports that the re-expression
of specific miRNAs could induce cancer cell
differentiation, which could be used for cancer
therapy.

3.4 Individualized Therapy

Cancer cells are heterogeneous, even within
individual tumors, and subcloncal cell popula-
tions give rise to different treatment responses,
suggesting the need for personalized medicine.
miRNA appears to be a reliable biomarker
for diagnosis, prognosis, and treatment evalua-
tion in different types of cancers.[40-42] miRNA
expression profiles could be used to define the
cell types,[2,3] thereby allowing detection of the
miRNA biomarker or expression signatures
from patients in order to develop individualized
therapeutic plans, possibly even targeting spe-
cific miRNAs for a given patient. Furthermore,
the understanding of how an individual’s gene-
tic inheritance of miRNA polymorphisms affects
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the body’s response to certain drugs will be key
to creating drugs with greater efficacy and
safety. miRNA polymorphisms can occur in the
miRNA itself or in its binding site in the mRNA
30 UTR, resulting in loss of miRNA function.
Some drug-target related miRNA polymorph-
isms have been reported. For example, the ex-
istence of a miR-24 binding site single-nucleotide
polymorphism (SNP) 829C/T in the dihydro-
folate reductase 30 UTR contributes to dihydro-
folate reductase overexpression and methotrexate
resistance.[43] Thus, the monitoring or detec-
tion of miRNA polymorphisms could lead to the
development of successful miRNA therapeutics
and improved evaluation of the pharmacologic
response.

4. The Complexity of miRNA Regulatory
Network

The discovery of miRNAs has revolutionized
the regulation of gene expression. These tiny
RNA molecules likely act as molecular switches
in the extensive regulatory web that involves
thousands of transcripts. Most importantly,
accumulating evidence suggests that numerous
miRNAs are aberrantly expressed in human
cancers. The roles of miRNAs as molecular
switches in the integrated circuit of cancer cell
regulation are emerging. The initial theoretical
analysis indicated that as many as 30% of genes
in the human genome may be the targets of
miRNA.[44] More recently, this number has been
estimated as >60%[45] or even 90% of the human
genes that are the target of miRNAs.[46] Miranda
et al.[46] found that most of the target genes
encode proteins functioning as transcription fac-
tors, receptors, hydrolase and nucleotide binding
proteins, and are involved in biologic processes
such as apoptosis, the cell cycle, developmental
processes, and signal transduction. Furthermore,
miRNAs work as a cluster to co-target specific
pathways. The miR-72-93 cluster includes eight
members, which are co-localized on chromosome
13 within a 10 kb span, and act in a combina-
tional fashion to exert a biologic effect.[47] In
humans, 13 different let-7 family members[48] are
associated with cellular development and differ-

entiation. The redundant and compensatory role
of the let-7 family exhibits the complexity of
miRNA regulation. Thus, it is time to rethink
miRNA function from a systems biology point of
view, taking the miRNA network into account to
design new therapeutic medicines.[49] Current
miRNA-based therapy in vitro and in vivo only
targets single miRNAs, which may not be suffi-
cient to reach the maximum potential effects.
Several methods have begun to address this
bottleneck limitation. Innovative ideas such as
‘miRNA sponges’[50] and ‘multiple-target anti-
miRNAs’[21] provide a starting point. The tools
are available to manipulate a group of miRNAs if
we know the exact miRNA cluster co-targeting
similar pathways, which will open up an exciting
avenue of miRNA-based treatment for several
diseases, including cancer.

5. miRNA Modulation Towards
Clinical Trials

miRNAs are central components of the gene
regulatory network, and aberrant expression of
miRNAs contribute to a wide variety of diseases,
including cancer. Numerous experiments in cul-
tured cells and xenograft animal models demon-
strate that modulating miRNAs could serve a
therapeutic purpose.[51-53] Delivery techniques
developed for small interfering RNA ther-
apeutics have been adapted to miRNA-based
experimental therapy. The recent systemic deliv-
ery of miRNAs in animal models via various
routes is listed in table I. No acute or sub-acute
toxicity was observed in mice and non-human
primates treated with locked nucleotide acid
(LNA) anti-miRs.[58,59] Due to the advancement
of the delivery technology and the relative safety
of miRNAs-based treatment in the preclinical
trial,[4] a clinical trial of LNA-antimiR�-122
(SPC3649) in human subjects was started in
2008.[60] This first miRNA-based therapy in
clinical trials for hepatitis C virus will pave the
way for treating other diseases, including cancer.
As with other gene therapies, cautious optimism
is recommended, because few gene-modifying
drugs have been successfully launched in the
market.
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6. Conclusion and Outlook

Non-coding RNAs in the genome, particularly
miRNAs, which were previously considered
‘junk’ DNA, have now been deciphered as im-
portant gene expression regulators. miRNAs
play important roles in cellular development, the
cell cycle, stem cell self-renewal, proliferation, and
apoptosis, and are involved in certain diseases
such as cardiac disorders, diabetes mellitus, and
cancer. A predicted ~1000 miRNAs in the human
genome could regulate more than 60% of the
~25 000 protein coding genes.[45] Elucidation of
the broad miRNA-mRNA interaction has revo-
lutionized our understanding of genetic regulatory
networks and the development of diseases such as
cancer. The aberrant expression of miRNAs in
almost all types of cancers has been intensively
scrutinized relative to normal tissues. Defining
the driving force of abnormal changes of miRNAs
in tumorigenicity, and modulation of these key
miRNAs in the complex gene regulatory network
could trigger apoptotic pathways, enhance the
sensitivity of cancer cells to chemo- or radio-
therapy, and induce cancer cell differentiation,
possibly even providing individualized therapy
for cancer patients. Systemic delivery of targeted
miRNAs in vivo has provided the pharmacologic
tool to develop miRNA drugs, clinical trials of
which are eagerly awaited.
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