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Objective: To investigate white matter microstructural alterations in Parkinson’s disease

(PD) patients with depression using the whole-brain diffusion tensor imaging (DTI) method

and to explore the DTI–based machine learning model in identifying depressed PD (dPD).

Methods: The DTI data were collected from 37 patients with dPD and 35 patients with

non-depressed PD (ndPD), and 25 healthy control (HC) subjects were collected as the

reference. An atlas-based analysis method was used to compare fractional anisotropy

(FA) and mean diffusivity (MD) among the three groups. A support vector machine (SVM)

was trained to examine the probability of discriminating between dPD and ndPD.

Results: As compared with ndPD, dPD group exhibited significantly decreased FA in the

bilateral corticospinal tract, right cingulum (cingulate gyrus), left cingulum hippocampus,

bilateral inferior longitudinal fasciculus, and bilateral superior longitudinal fasciculus,

and increased MD in the right cingulum (cingulate gyrus) and left superior longitudinal

fasciculus-temporal part. For discriminating between dPD and ndPD, the SVM model

with DTI features exhibited an accuracy of 0.70 in the training set [area under the receiver

operating characteristic curve (ROC) was 0.78] and an accuracy of 0.73 in the test set

(area under the ROC was 0.71).

Conclusion: Depression in PD is associated with white matter microstructural

alterations. The SVMmachine learningmodel based on DTI parameters could be valuable

for the individualized diagnosis of dPD.

Keywords: machine learning, support vector machine, diffusion tensor imaging, Parkinson’s disease, depression

INTRODUCTION

Parkinson’s disease (PD) is the second most common neurodegenerative disease (1). Parkinson’s
disease is a heterogeneous disease and can cause several motor and non-motor symptoms. In
general, PD can be characterized by the four non-motor symptoms of depression, sleep, olfaction,
and cognition disorders, and the four motor symptoms of tremor, rigidity, bradykinesia, and
postural instability (2). Depression is the most common non-motor disorder and affects 40–50%
of patients with PD (3). Depression in patients with PD is closely related to poor quality of
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life (4), such as altered mood, cardiovascular sympathetic
dysfunction, sleep disturbance, and even active suicidal ideation
(5–7). Early diagnosis of depression in patients with PD can help
improve their quality of life; however, the pathophysiological
mechanism of depression in PD is poorly understood.

Diffusion tensor imaging (DTI) can quantitatively evaluate
microstructural alterations of white matter (WM) tracts in
vivo (8). Fractional anisotropy (FA) and mean diffusivity
(MD) are the two widely employed DTI parameters that
are sensitive to detecting microstructural alterations in WM
tracts (9). The evidence from DTI studies has shown that
there are altered WM tracts, such as in limbic systems, in
patients with depressed PD (dPD) (10). Manual tracing of
the region of interest (ROI) is the most widely used DTI
approach to explore the pathogenesis of dPD (10–12). Diffusion
tensor imaging based on the manual ROI method has shown
decreased FA values in the anterior cingulate bundle in
patients with dPD compared to patients with non-depressed
PD (ndPD) (10). The decreased FA values were also found
in the bilateral mediodorsal thalamic regions in patients with
dPD (11). However, most prior DTI studies based on manual
tracing of ROI measurements are not able to comprehensively
evaluate the entire WM regions in patients with PD. The
atlas-based whole-brain WM analysis (ABA) is an automated
and convenient DTI analysis approach that can effectively
detect the integrity of the whole-brain WM (13). Therefore,
it can quantitatively assess the microstructure of WM tracts
and ameliorates possible measurement errors associated with
the manual ROI method (14). Recently, the ABA method has
become a widely used method in DTI studies of nervous system
diseases (15–17).

At present, the most effective diagnostic criterion of dPD
is based on neuropsychological examinations but often shows
some clinical challenges and limitations (18). Currently, clinical
physician recognition in dPD is not enough. More than
60% of self-reported patients with dPD were not recognized
by neurologists on the Unified Parkinson’s Disease Rating Scale
(UPDRS) (19). However, one study showed that the incidence
rate of depression is substantially elevated in the early stage
of PD (20). In clinical practice, the current diagnostic gold
standard for depression is the standardized clinical interview
according to diagnostic criteria (such as DSM-V), while in
non-research settings, this diagnostic tool is impractical for
detecting depression in PD (18). Consequently, many scoring
scales (either informant-rated, self-report, or clinician-based)
are usually used to screen mental symptoms; however, it is
unclear which of these screening tools for the detection of
depression is most accurate (21). Therefore, it is crucial to
develop a more accurate approach to identifying dPD. For
years, machine learning has been widely used to build classifiers
for medical diagnosis. The support vector machine (SVM) is
a well-known algorithm with good generalization performance
and robust classification ability for machine learning models
(22). Based on the DTI technique, the SVM classifier has
successfully been applied to automate discrimination in the
different categories (such as patients and normal controls) in
many studies, and the SVM analysis was demonstrated with

high performance (23, 24). To our best knowledge, there
are no studies that have used the SVM method based on
DTI data to discriminate the patients with dPD from those
with ndPD.

The purpose of this study was to conduct whole-brain
DTI data analyses using the ABA approach to explore WM
microstructural changes in patients with dPD. In addition,
SVM was trained with FA and MD values of different WM
tracts to determine the probability of discriminating dPD
from ndPD.

MATERIALS AND METHODS

Study Design
We recruited 37 patients with dPD and 35 patients with ndPD
from our institution from July 2014 to December 2019, and 25
healthy control (HC) subjects matched for age and gender were
also enrolled. All patients with PD were diagnosed according
to clinical diagnostic criteria from the UK Parkinson’s Disease
Brain Bank by two experienced physicians (25). Depression was
diagnosed according to the Diagnostic and Statistical Manual
of Mental Disorders 4th edition (DSM-IV) criteria (26) by a
clinically experienced psychiatrist. None of the patients were
receiving antidepressant medications, and all patients were
without typical motor symptoms. Motor severity of PD was
assessed by the Unified Parkinson’s Disease Rating Scale part
III (UPDRS-III) (27) and the modified Hoehn and Yahr (H-Y)
scale (28), respectively. The degree of depression was assessed
by the 24-item Hamilton Depression Rating Scale (HAM-D)
score and anxiety was assessed by the Hamilton Anxiety Rating
Scale (HAMA) (29). The general cognitive dysfunction was
assessed by the Mini-Mental State Examination (MMSE) and
the Montreal Cognitive Assessment (MoCA) (30). All the PD
subjects were right-handed.

Exclusion criteria were as follows: (1) major psychiatric
disorders (e.g., schizophrenia, bipolar disorder); (2) history
of a brain tumor, cerebrovascular disorders, or brain trauma;
(3) obvious encephalatrophy; (4) history of antidepressant
medication use; (5) MMSE score < 24 or H-Y scale
score > 4; and (6) obvious motion artifacts in imaging
studies. This study was approved by our Institutional Ethics
Committee, and written informed consent was obtained from
all participants.

Magnetic Resonance Imaging Acquisition
Magnetic resonance imaging data of all patients were performed
using a 3.0 T MR scanner (Signa Excite HD; GE Healthcare,
Milwaukee, WI, USA) with an eight-channel head coil. Any
anti-Parkinsonianmedications were discontinued 12 h before the
imaging studies to decrease the effects of the drug(s) on brain
neural activity. All subjects were instructed to not move during
the MR scan, and foam padding and earplugs were used to limit
head movement and decrease the impact of acoustic noise.

The DTI data were obtained using an echo planar imaging
(EPI) sequence with the following scan parameters: Repetition
time/echo time (TR/TE) = 15,275/76.7ms, FOV (field of view)
= 320 × 320mm, matrix = 128 × 128, slice thickness =
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2.5mm with no gaps, 25 different diffusion directions with b =

1,000 s/mm2, the total number of the images = 1,560, and scan
time = 7min and 8 s. The Array Spatial Sensitivity Encoding
Technique (ASSET) was used to decrease the acquisition time
and image distortion.

High resolution, 3D T1-weighted data was obtained using
a Fast Spoiled Gradient Recalled Echo Inversion Recovery
(FSPGRIR) sequence with the following parameters: TR =

8.4ms, TE= 3.3ms, flip angle (FLA)= 13◦, matrix= 256× 256,
voxel size= 0.94× 0.94× 1mm, slice thickness= 1mm, and the
total number of the sagittal slices= 146.

Diffusion Tensor Imaging Data Processing
All DTI data were processed using a pipeline toolbox (PANDA;
Pipeline for Analyzing brain Diffusion images, http://www.nitrc.
org/projects/panda) based on the MATLAB R2016a program
(The MathWorks, Natick, NA, USA). PANDA is a pipeline
toolbox for fully automated to perform analyses and calculations
of brain diffusion images. The main processing steps include
the following: (a) The DICOM data are converted to NIFTI
data format; (b) The brain mask is estimated and non-brain
tissues are removed; (c) Eddy-current effect and head movement
are corrected; (d) The DTI metrics, including FA and MD, are
calculated; (e) All of the individual FA images of the native
space are registered non-linearly into a FA standard template in
the Montreal Neurological Institute (MNI) space using the fnirt
command of FSL; (f) The data are output for atlas-based analysis.
We defined the ROIs on the Johns Hopkins University (JHU)
WM tractography atlas (31). The DTI data were processed by
PANDA based on the JHU WM atlas is an established method
and performed in many studies (14–17). This WM atlas in
the standard space may provide better statistical accuracy and
sensitivity (31). The JHU WM tractography atlas parcellates the
entire WM into 20 ROIs automatically (16).

Support Vector Machine Classification
Model for dPD and NdPD
An SVM was used to discriminate between patients with dPD
and patients with ndPD. The prediction model was constructed
based on dPD and ndPD and data from the HC group was not
used in the model. The SVM model was established based on
combinations of different DTI indexes. We ran the non-linear
SVM using the Python Sklearn library algorithm (32). All of the
data from all patients were randomly divided into a training set
(80%) and a test set (20%). The FA and MD values from the 20
ROIs in different WM tracts were chosen as classifier features
of the SVM (23). We used a training set for feature selection.
Subsequently, based on the DTI data, a grid search algorithm
within a 10-fold cross-validation procedure was implemented
to automatically identify the suitable tuning parameters for the
SVM model. The validation procedure implemented in the SVM
was repeated 100 times. The grid search technique helps perform
an exhaustive search to obtain specified parameter values (c and
g) for an estimator (33). The performance of the SVM model
was assessed by determining the accuracy, sensitivity, specificity,
positive predictive value, negative predictive value, and area
under the receiver-operating-characteristic curve (AUC) for
distinguishing dPD from ndPD. Each feature has different
effects on the classification results. In addition, the importance
of features was further weighted according to the trained
SVMmodel.

Statistical Analysis
Statistical analysis was performed using SPSS version 20 software
(Chicago, IL, USA). For statistical analysis of any group
differences in age, education, and neuropsychological scores, a
one-way ANOVA test was applied. Differences in gender between
the groups were examined with the χ

2 test, and the independent

TABLE 1 | Demographic and clinical characteristics of all subjects.

Variables dPD (n = 37) ndPD (n = 35) HC (n = 25) p p

(dPD vs. ndPD)

Gender (M/F) 19/18 21/14 9/16 0.185 0.632

Age (year) 60.73 ± 11.22 62.40 ± 11.10 57.08 ± 7.93 0.256 0.789

Education (year) 9.54 ± 4.54 10.00 ± 4.54 8.52 ± 3.57 0.425 0.654

Disease duration (year) 5.01 ± 3.01 3.57 ± 3.65 / / 0.073

H-Y scale 2.18 ± 0.39 2.17 ± 0.61 / / 0.972

UPDRS-III 37.46 ± 13.22 32.63 ± 13.10 / / 0.124

HAM-D 22.95 ± 7.75 5.94 ± 3.24 2.52 ± 2.74 <0.001* <0.001*

HAMA 20.00 ± 8.30 6.09 ± 3.27 2.92 ± 2.90 <0.001* <0.001*

MMSE 26.65 ± 2.21 27.66 ± 2.04 26.96 ± 2.39 0.148 0.055

MoCA 20.92 ± 4.21 22.60 ± 3.65 22.04 ± 3.43 0.171 0.065

Data are presented as mean ± SD. For continuous variables, one-way ANOVA was carried out. For categorical variables, χ
2 tests were carried out. The χ

2 test was used to analyze

the gender among the three groups. One-way ANOVA was used for age, education and neuropsychological scores, and a pairwise post hoc test was subsequently used to identify

significant main group differences. The independent sample t-test was used to analyze differences of UPDRS-III, H-Y, PD duration time between dPD and ndPD.

*p < 0.05 indicates statistical significance.

dPD, PD with depression; ndPD, PD without depression; H-Y scale, Hoehn-Yahr scale; UPDRS- III, Unified Parkinson’s Disease Rating Scale scores-III; HAM-D, Hamilton Depression

Scale; HAMA, Hamilton Anxiety Scale; MMSE, Mini-Mental State Examination; MoCA, Montreal Cognitive Assessment.
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sample t-test was used to analyze differences in UPDRS-III, H-
Y, and PD duration time between dPD and ndPD. The values
of p < 0.05 were considered to indicate statistical significance.
For statistical analysis of DTI features between patients with
dPD and ndPD, using UPDRS-III, MMSE, and MoCA scores
as covariates. An analysis of covariance (ANCOVA) was used
to identify brain areas that had significant differences across the
three groups. The post hoc analyses were performed to further
explore the between-group differences using LSD’s post hoc tests
after ANCOVA analysis with years of education, gender, and age
as covariates. A false discovery rate (FDR) was used to correct for
multiple comparisons. The DTI features with FDR-corrected p <

0.05 after analysis was selected to build the SVMmodel.

RESULTS

Demographic and Clinical Characteristics
The patient’s detailed demographic and clinical characteristics are
presented in Table 1. The HAM-D score and HAMA score of the
dPD groupwas higher than the ndPD andHC groups (p< 0.001),
which is consistent with previous studies revealing that dPD
often coexisted with anxiety disorder. There were no significant
differences in gender, age, years of education, or MMSE, and
MoCA among the three groups. There were no differences in
disease duration, H-Y scale, and UPDRS-III between the two
groups (in all, p > 0.05).

Diffusion Metric Changes in Different WM
Regions
We compared the changes in FA and MD among three groups
using ABA analysis. The post hoc comparisons showed significant
differences in DTI features between dPD and ndPD with p <

0.05 (after FDR corrected) as shown in Figure 1 and Table 2.
Compared with the patients with ndPD, the patients with dPD
exhibited decreased FA in the bilateral corticospinal tract, right
cingulum (cingulate gyrus), left cingulum hippocampus, bilateral
inferior longitudinal fasciculus, bilateral superior longitudinal
fasciculus, and increased MD in the right cingulum (cingulate
gyrus) and left superior longitudinal fasciculus-temporal part.

Support Vector Machine Classification of
dPD and NdPD
The prediction summary of the SVM is shown in Table 3 and
Figure 2. Using the diffusion metrics (FA, MD) of all of the ROIs
as features of the SVM classification model achieved moderate
performance in distinguishing dPD from ndPD. Briefly, the SVM
model classification of accuracy was 0.70, sensitivity was 0.67,
specificity was 0.73, positive predictive value was 0.69, negative
predictive value was 0.71, and AUC–ROCwas 0.78 in the training
set; and accuracy was 0.73, sensitivity was 0.88, specificity was
0.57, positive predictive value was 0.70, negative predictive
value was 0.80, and AUC–ROC was 0.71 in the test set. The
classification importance of each feature was further examined,
and the results of the importance of the various ROIs are
presented in Figure 3. The most important features were the FA
value along the left inferior longitudinal fasciculus (ROI= 13).

FIGURE 1 | WM regions with significant differences among dPD, ndPD, and

HC. Significant WM regions are marked by various colors in the axial planes.

(A) The FA values of white matter tracts with significant difference among

groups. (B) The MD values of white matter tracts. These WM regions include

CST.L, CST.R, CgC.R, CgH.L, ILF.L, ILF.R, SLF.L, SLF.R, CgC.R, tSLF.R. CST,

corticospinal tract; CgC, cingulum (cingulate gyrus); CgH, cingulum

hippocampus; ILF, inferior longitudinal fasciculus; SLF, superior longitudinal

fasciculus; tSLF, superior longitudinal fasciculus-temporal part; FA, fractional

anisotropy; MD, mean diffusivity; R, right; L, left.

DISCUSSION

In this study, the ABA method was used to examine alterations
of WM microstructural integrity in patients with dPD. First,
we found WM tract impairment of the limbic system and non-
limbic system in the dPD group. Second, we established an
SVM machine learning model to classify dPD employing the
diffusion metrics (FA, MD) that exhibited the performance of
features that had an acceptable accuracy. The findings in this
study support the contention that WM damage is a common
pathology in dPD, and this may assist in understanding the
pathophysiological mechanism of depression in PD. The SVM
classification model based on DTI features might promote the
individualized diagnosis of dPD.

In the present study, patients with dPD showing
microstructural alteration of WM tracts were mainly located
in the limbic system. The cingulum is a core structure in the
Papez circuit of the cholinergic system that connects limbic
and prefrontal cortex regions and plays an important role in
emotional regulation and reward behavior (34). The disruption
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TABLE 2 | Brian WM regions with significant difference among dPD, ndPD, and HC.

Regions DTI parameters dPD (n = 37) ndPD (n = 35) HC (n = 25) p p

(dPD vs. ndPD)

CST.L. FA 0.589 ± 0.022 0.573 ± 0.017 0.585 ± 0.020 0.007* 0.002

CST.R FA 0.590 ± 0.019 0.575 ± 0.020 0.584 ± 0.024 0.013* 0.004

CgC.R FA 0.460 ± 0.035 0.440 ± 0.035 0.477 ± 0.036 0.002* 0.038

CgH.L FA 0.457 ± 0.028 0.435 ± 0.027 0.451 ± 0.045 0.021* 0.003

ILF.L FA 0.446 ± 0.020 0.432 ± 0.019 0.449 ± 0.023 0.007* 0.001

ILF.R FA 0.454 ± 0.022 0.441 ± 0.024 0.461 ± 0.027 0.011* 0.024

SLF.L FA 0.376 ± 0.023 0.386 ± 0.017 0.391 ± 0.019 0.013* 0.026

SLF.R FA 0.401 ± 0.020 0.387 ± 0.022 0.405 ± 0.025 0.007* 0.016

CgC.R MD 0.714 ± 0.006 0.736 ± 0.005 0.713 ± 0.007 0.011* 0.041

tSLF.R MD 0.776 ± 0.008 0.806 ± 0.008 0.773 ± 0.009 0.011* 0.040

All values are presented as mean ± SD. MD values × 10−3 mm2/s. Using analysis of covariance (ANCOVA) for the comparison of FA and MD values among the three groups. The

pairwise post hoc comparisons were then performed using t-tests (*p < 0.05 after FDR corrected).

dPD, PD with depression; ndPD, PD without depression; HC, health control; CST, corticospinal tract; CgC, cingulum (cingulate gyrus); CgH, cingulum hippocampus; ILF, inferior

longitudinal fasciculus; SLF, superior longitudinal fasciculus; tSLF, superior longitudinal fasciculus-temporal part; FA, fractional anisotropy; MD, mean diffusivity; R, right; L, left.

TABLE 3 | Prediction outcome summary.

Model ACC SEN SPE PPV NPV AUC–ROC

Train (n = 57) 0.70 0.67 0.73 0.69 0.71 0.78

Test (n = 15) 0.73 0.88 0.57 0.70 0.80 0.71

ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; AUC–ROC, area under the receiver-operating-characteristic (ROC) curve.

FIGURE 2 | ROC of the SVM model in the training and testing samples.

of the cingulum may lead to depression. Our results showed
decreased FA in the right cingulum (cingulate gyrus) and left
cingulum hippocampus and increased MD in the right cingulum
(cingulate gyrus) in the dPD group compared to the ndPD
group. A significant reduction in FA value in the cingulum
bundle has been demonstrated in depressed patients compared
with non-depressed control subjects (35). One morphological
study detected that decreased volume in the hippocampus

was correlated with depression in patients with PD (36).
Reductions in FA value in the cingulum bundle in depressed PD
patients compared with non-depressed patients with PD have
been observed (37–39). Increased MD value in the cingulum
hippocampus has also been found in depressed patients with PD
(37, 39). Thus, the above findings suggested that the alteration of
the white matter integrity in the limbic systems may contribute
to the development of depression in PD.
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FIGURE 3 | The importance index of the FA (red color) and MD (blue color) values of all white matter ROIs. The longer column represents higher importance. The most

important features are the FA in the ILF.L (ROI = 13). ROI, region of interest; ILF, inferior longitudinal fasciculus; FA, fractional anisotropy; MD, mean diffusivity; R, right;

L, left.

In this study, we also found microstructural alterations
in non-limbic fibers of the brain in patients with dPD,
such as decreased FA values in the bilateral corticospinal
tract, bilateral inferior longitudinal fasciculus, bilateral superior
longitudinal fasciculus, and left superior longitudinal fasciculus-
temporal part in patients with dPD. The superior longitudinal
fasciculus contains connections between the temporal, occipital,
parietal, and frontal lobes and the limbic system, and is an
important mediator of mood-related function (40). The inferior
longitudinal fasciculus is an association fiber that connects
regions of the temporal and occipital lobes and is mainly
related to visual processing, object recognition, and emotional
regulation (41). One study revealed reduced FA value in superior
longitudinal fasciculus and inferior longitudinal fasciculus in
depressed PD compared to non-depressed PD (39). An additional
study showed decreased FA value in the superior longitudinal
fasciculus in depressed patients compared to healthy controls
(42). Furthermore, one recent finding support that significantly

reduced FA in the corticospinal tract occurs in the severely dPD
group when compared with the ndPD group (43). These results
suggested the alterations of non-limbic fibers might be involved
in the pathogenesis in patients with dPD.

Based on DTI parameters obtained by the ABA method,
the SVM classifier exhibited moderate accuracy in classifying
dPD and ndPD. SVM machine learning model is a useful
machine learning classification algorithm and has been shown
to successfully discriminate Alzheimer’s disease from normal
cognition groups using diffusion metrics as features (23). The
present diagnosis of dPD mainly depends on clinical evaluation
based on neuropsychological examinations, and its methods may
tend to lack diagnostic accuracy (18). Hitherto, none of the
studies have combined the DTI and SVM machine learning
model in identifying dPD. Thus, the current study used the DTI
metrics as the SVM classifier’s features and achieved acceptable
performance for discriminating dPD from ndPD. One study
performed a radiomic analysis approach that extracted features
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from the resting-state functional MRI for the diagnosis of dPD
(44). The prediction accuracy of SVM trained by resting-state
functional MRI features was achieved by 0.65 for distinguishing
dPD from ndPD. Furthermore, we observed that the FA value of
the left inferior longitudinal fasciculus was the most important
classification feature in the SVMmodel.

We recognize some limitations to this study. First, the
numbers of patients were relatively small, however, despite
the small sample size, we were able to identify the WM
microstructural integrity was impaired in patients with dPD.
Second, brain abnormalities in some regions could influence
the quality of template matching when using the ABA method.
Thus, the patients with obvious encephalatrophy identified on
conventional MRI scanning sequences were excluded. Finally,
our study investigated microstructural changes only in the WM
and the depression in PD involved WM and the gray matter,
thus it is possible to later combine both WM and gray matter to
analyze the disease.

CONCLUSION

In conclusion, the present study detected WM microstructural
abnormalities in patients with dPD using atlas-based DTI
analysis. Depression in PD was associated with white matter
microstructural alterations in the limbic and non-limbic systems.
Furthermore, the SVM machine learning model based on DTI
data had an acceptable accuracy to identify dPD.
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