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Background: Differential diagnosis of demyelinating diseases of the central nervous
system is a challenging task that is prone to errors and inconsistent reading, requiring
expertise and additional examination approaches. Advancements in deep-learning-based
image interpretations allow for prompt and automated analyses of conventional magnetic
resonance imaging (MRI), which can be utilized in classifying multi-sequence MRI, and
thus may help in subsequent treatment referral.

Methods: Imaging and clinical data from 290 patients diagnosed with demyelinating
diseases from August 2013 to October 2021 were included for analysis, including 67
patients with multiple sclerosis (MS), 162 patients with aquaporin 4 antibody-positive
(AQP4+) neuromyelitis optica spectrum disorder (NMOSD), and 61 patients with myelin
oligodendrocyte glycoprotein antibody-associated disease (MOGAD). Considering the
heterogeneous nature of lesion size and distribution in demyelinating diseases, multi-
modal MRI of brain and/or spinal cord were utilized to build the deep-learning model. This
novel transformer-based deep-learning model architecture was designed to be versatile in
handling with multiple image sequences (coronal T2-weighted and sagittal T2-fluid
attenuation inversion recovery) and scanning locations (brain and spinal cord) for
differentiating among MS, NMOSD, and MOGAD. Model performances were evaluated
using the area under the receiver operating curve (AUC) and the confusion matrices
measurements. The classification accuracy between the fusion model and the
neuroradiological raters was also compared.

Results: The fusion model that was trained with combined brain and spinal cord MRI
achieved an overall improved performance, with the AUC of 0.933 (95%CI: 0.848, 0.991),
0.942 (95%CI: 0.879, 0.987) and 0.803 (95%CI: 0.629, 0.949) for MS, AQP4+ NMOSD,
and MOGAD, respectively. This exceeded the performance using the brain or spinal cord
MRI alone for the identification of the AQP4+ NMOSD (AUC of 0.940, brain only and
0.689, spinal cord only) and MOGAD (0.782, brain only and 0.714, spinal cord only). In the
org June 2022 | Volume 13 | Article 8979591

https://www.frontiersin.org/articles/10.3389/fimmu.2022.897959/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.897959/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.897959/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.897959/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:junliu123@csu.edu.cn
mailto:luwei0338@csu.edu.cn
https://doi.org/10.3389/fimmu.2022.897959
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.897959
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.897959&domain=pdf&date_stamp=2022-06-14


Huang et al. Deep Learning in Demyelinating Diseases

Frontiers in Immunology | www.frontiersin.
multi-category classification, the fusion model had an accuracy of 81.4%, which was
significantly higher compared to rater 1 (64.4%, p=0.04<0.05) and comparable to rater 2
(74.6%, p=0.388).

Conclusion: The proposed novel transformer-based model showed desirable
performance in the differentiation of MS, AQP4+ NMOSD, and MOGAD on brain and
spinal cord MRI, which is comparable to that of neuroradiologists. Our model is thus
applicable for interpretating conventional MRI in the differential diagnosis of demyelinating
diseases with overlapping lesions.
Keywords: deep learning, demyelinating disease, differential diagnosis, MRI, multiple sclerosis, myelin
oligodendrocyte glycoprotein antibody-associated disease, neuromyelitis optica spectrum disorder, transformer
1 INTRODUCTION

Inflammatory demyelinating diseases of the central nervous
system (CNS) are important causes of nontraumatic
neurological disabilities (1, 2). Multiple sclerosis (MS),
neuromyelitis optica spectrum disorder (NMOSD), and myelin
oligodendrocyte glycoprotein antibody-associated disease
(MOGAD) are major disease entities in this field (3, 4).
Increasing evidence indicates that NMOSD is an independent
disorder associated with the expression of anti-aquaporin-4
(AQP4) antibodies rather than a variant of MS (5, 6). With the
discovery of antibodies targeting myelin oligodendrocyte
glycoprotein (MOG) in AQP4 antibody-negative NMOSD,
MOGAD is now recognized as a unique immunological entity
that is distinct from both MS and NMOSD (4, 7).

Indeed, MS, NMOSD and MOGAD exhibit divergent
pathogeneses, treatment options for relapse prevention, and
prognoses (8), and their diagnosis is mainly based on
combined results involving clinical findings, radiological
manifestations, and cerebrospinal fluid and serological tests. In
conventional magnetic resonance imaging (MRI), bilateral
periventricular white matter and cortical lesions are often
considered typical features of MS (9), whereas longitudinally
extensive transverse myelitis and posterior long-segment optic
nerve lesions are more specific to NMOSD (10). MOGAD is
considered to exhibit intermediate MRI features between those of
MS and NMOSD (11). However, the MRI manifestations in
some cases are indistinguishable among these conditions. Owing
to the presence of overlapping clinical and radiological findings
among these disorders, differential diagnosis can be challenging.

Autoantibody tests normally confer high sensitivity, but are
invasive and time-consuming to obtain results, and conversion to
an antibody-negative status may occur during the disease course
(12). An improper choice of treatment may lead to disease
deterioration. For example, disease-modifying therapies such as
interferon beta and dimethyl fumarate are recommended as the
standard treatment for MS but may exacerbate NMOSD and
increase relapse rates (13, 14). Immunosuppressive agents such as
azathioprine and mycophenolate mofetil are the first-line
therapies for NMOSD and MOGAD. Moreover, several
emerging therapies have shown different efficacies in controlling
disease recurrence in patients with AQP4+ NMOSD and
org 2
MOGAD (15). Thus, to reduce the delay from disease onset to
appropriate treatment, thereby improving clinical benefits, there is
an urgent need to develop an effective non-invasive approach for a
rapid and precise differential diagnosis.

Many researchers have explored imaging differences among
the three diseases using multi-model MRI sequences, indicating
that the classification of MR image features can be helpful in the
diagnosis of these diseases. Duan et al. (16) compared brain
structural alterations on MRI, and demonstrated cortical and
subcortical atrophy without severe white matter rarefaction in
MOGAD in comparison with MS and AQP4+ NMOSD, whereas
diffusion MRI measurements showed lower fractional anisotropy
and higher mean diffusivity in MS. Moreover, Banks et al. (17)
retrospectively compared the involvement of the brainstem or
cerebellar region in CNS inflammatory demyelination diseases,
and revealed that diffuse middle cerebellar peduncle MRI lesions
favored a diagnosis of MOGAD over MS and AQP4+ NMOSD.
They further showed that diffuse medulla, pons, or midbrain
MRI lesions occasionally occurred in MOGAD and AQP4-IgG-
NMOSD but never in MS. Although these findings have revealed
image-dependent differentiation, few studies have been
conducted using conventional MRI and its possible integration
with the deep learning technique into the clinical workflow.

Recent advances in artificial intelligence have prompted the
development of deep learning-based algorithms designed for the
automatic classification of demyelinating diseases based on
conventional MRI (11, 18–20). For example, Kim et al. (18)
constructed a three-dimensional convolutional neural network
(CNN) deep-learning-based model using brain MRI and clinical
information to differentiate NMOSD from MS, achieving a
moderate accuracy of 71.1%, sensitivity of 87.8%, and
specificity of 61.6%. Rocca et al. (20) also applied a deep-
learning algorithm based on CNN using brain MRI to
discriminate between MS and its mimics, including NMOSD,
revealing the highest accuracy (98.8%) and specificity (98.4%),
and the lowest false positive rate (4.4%) for MS.

Notably, these aforementioned studies mostly used brain MRI
with or without incorporation of clinical information for image-
based classification using a traditional CNN. There has been
minimal exploration of integrated MRI sequences and multi-site
consideration of neuroimaging protocols. To address this gap, we
here proposed a novel deep-learning algorithm, according to Co-
June 2022 | Volume 13 | Article 897959

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Huang et al. Deep Learning in Demyelinating Diseases
scale conv-attentional image Transformers (CoaT)-based
network (21), which was trained on multi-sequence (coronal
T2-weighted and sagittal T2-FLAIR) and multi-location (brain,
cervicothoracic and thoracolumbar spinal cord) MRI. The
combined image sequences represent a better reflection of a
realistic clinical setting and may contribute to increased
classification accuracy.
2 MATERIALS AND METHODS

2.1 Ethics
This study was approved by the Ethics Committee of the Second
Xiangya Hospital of Central South University, and the
requirement for written informed consent was waived due to
the retrospective nature of the study.

2.2 Participants
MR images and clinical data of patients with a CNS inflammatory
demyelinating disease treated at the neurological department of
our hospital between August 2013 and October 2021 were
retrospectively reviewed for inclusion. The inclusion criteria
were as follows: (a) confirmed diagnosis of MS, AQP4+
NMOSD, or MOGAD according to the 2017 McDonald
diagnostic criteria (9), 2015 NMOSD criteria (10), and 2018
MOGAD diagnostic criteria (22), respectively; (b) at least one
clinical demyelinating episode of the CNS (myelitis, optic neuritis,
or encephalopathy); (c) AQP4 antibody and MOG antibody were
tested using a cell-based assay method; and (d) all participants
underwent MRI scanning of the brain and/or spinal cord. The
exclusion criteria were: (a) both AQP4 and MOG antibody
positivity; (b) incomplete clinical assessment; (c) a history of
other neurological diseases, including stroke, epilepsy, traumatic
brain injury, or psychiatric problems and (d) excessive artifacts in
MR images.

Notably, images acquired during acute presentation of first
attack or relapses were selected for inclusion in the analysis,
whereas patients in their remission phase were not included.
Clinical information on sex, age, Expanded Disability Status
Scale (EDSS) score, onset times, and disease duration
(calculated from the first symptom onset to the scan date)
were also recorded.

2.3 MRI Acquisition
All brain and/or spinal cord imaging was sequences were
performed on 1.5T (Magnetom Avanto, Siemens Healthcare,
Erlangen, Germany; uMR 588, Shanghai United Imaging
Healthcare, Shanghai, China; GE Sigma Twin speed, GE
Healthcare, Milwaukee, WI, USA) or 3.0T (Magnetom Skyra,
Siemens Healthcare, Erlangen, Germany; Philips Achieva 3.0T
X-Series, Phillips Healthcare, the Netherlands; uMR 790, Shanghai
United ImagingHealthcare, Shanghai, China)MRI scanners in the
Second Xiangya Hospital of Central South University. The MRI
data included brain imaging with axial T2-weighted and coronal
T2-FLAIR sequences, and spinal cord imaging with sagittal T2-
weighted sequences. It is worth mentioning that when patients
suspected with demyelinating diseases, a standard scanning
Frontiers in Immunology | www.frontiersin.org 3
protocol of routine brain and spinal MRI were always
performed in our hospital regardless of the presence of
neurological deficits. However, a small proportion of patients
who met the aforementioned inclusion criteria were found with
only brain or spinal cord MRI and also included in this analysis.
This may be attributed to the fact that these patients only
performed MRI scans of a single location according to the
presence of relevant neurological deficits. There have been some
variations in the acquisition parameter over the years. Detailed
parameters of the brain and spinal cord MRI sequences were
shown in Table S1 in the Supplemental Material.

2.4 Reference Standard and
Image Interpretations
Two neuroradiologists (CXH and FT, with 4 and 6 years of
working experience, respectively) and a neurologist (WL) with
28 years of working experience were involved in visual
assessment of the brain lesions and differential classification of
MS, AQP4+ NMSDO, and MOGAD patients. Images were
reviewed using RadiAnt Dicom Viewer software (Version
2021.2, Medixant, Poland).

The assessment was based on T1WI, T2WI and T2-FLAIR
MRI sequences of the brain, spinal cord, and optic nerve, along
with clinical data (e.g., age, sex, disease duration, EDSS score, and
laboratory testing results). In the diagnosis of clinically
confirmed demyelinating disease, each specialist reviewed all
relevant data in detail and made diagnostic decisions in
accordance with the 2017 McDonald diagnostic criteria (9),
2015 NMOSD criteria (10), and 2018 MOGAD diagnostic
criteria (22), respectively; in the case of any discrepancy, the
data were jointly reviewed until an agreement was reached. The
diagnosis based on these medical records was considered as the
reference standard of this research.

2.5 Deep-Learning Model
Given most patients suspected with autoimmune demyelinating
diseases had undergone MRI scans of both brain and spinal cord,
the goal of the study is to develop a model that can handle the
combination of brain and spinal cord MRI data for diagnosis,
which is closer to the current clinical scenario. In the current
analysis, we have developed the data pool consist of multimodal
MRI data, which included brain T2WI, brain T2-FLAIR,
cervicothoracic T2WI, and thoracolumbar T2WI; each patient
had one or more types of these sequences. Moreover, MRI
imaging manifestations of the lesions showed broad
heterogeneity in terms of size, distribution and locations. To
address this challenge, we used the state-of-art transformer
network as the basic structure to build our multimodal model
combined with weak-label multiple instance learning (MIL)
strategy. This novel deep-learning model were designed to be
versatile in handling with images of multiple sequences and
scanning locations for differentiating among MS, NMOSD, and
MOGAD from conventional MRI data.

2.5.1 Data Preprocessing
The dataset was randomly split into a development set and a
testing set at a ratio of 4:1. We first applied intensity
June 2022 | Volume 13 | Article 897959
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normalization by z-score transformation within the non-zero
region of the MR images. The normalized intensities of all voxels
were set to have a mean of 0 and standard deviation (SD) of 1 for
each MRI sequence. We then adjusted the intensity of these
voxels and other outliers by clipping them to the range [1st

percentile of the image to 99th percentile of the image]. We then
performed background removal, where all voxels from the
background regions outside of the non-zero region were set to
–9 to ensure a uniform background intensity.

2.5.2 Multiple Instance Learning Strategy
To address the challenge of weakly labeled data (i.e., patient-
level prediction without lesion/region-level annotation), we
introduced a former-established MIL strategy (23). MIL is a
typical weakly supervised learning paradigm that was proposed
to tackle the problem of abnormalities in various locations to
complement the diagnosis of tuberculosis or chronic
obstructive pulmonary disease (24, 25). Specifically, MIL used
slice as the model input, which leads to increased size of data in
the training stage. Together with the slice-level data
augmentation, such as cropping, rotation, flip, lightness and
other data enhancements, we were able to mitigate the issue of
imbalanced samples between brain and spinal cord MRI scans.
Therefore, the bag-level MixUp on the data had the same
amount of training samples in each category (26, 27).
Detailed illustration of MIL-CoaT Transformer Framework
was shown in Figure S1 in the Supplemental Material.

2.5.3 CoaT-Based Transformer Network
Transformer-based algorithms are state-of-the-art deep-learning
algorithms for image recognition, including MRI (28, 29). In this
study, the Siamese CoaT-based transformer network (21) was
adopted as the basic network for feature extraction. By using
shared parameters, the CoaT network can extract features from all
instances in the same “bag,” and the attention pooling block is
used to fuse extracted class tokens of all instances. Finally, the fully
connected layer and softmax activation function were applied to
obtain the bag-level prediction probability of the three categories.
The detailed network architecture and descriptions can be found
Figures S2 and S3 in the Supplemental Material.

2.5.4 Implementation
To train the proposed MIL-CoaT model, we used Adam
optimization with a batch size of 16 and learning rate of 5�
10−4 � global   batch   size

512 . In the training phase, the Siamese CoaT-
based network was initialized using the pre-trained parameters of
ImageNet (30), and cross-entropy loss was used. To address the
problem of sample imbalance, the number of samples in each
category was guaranteed to be consistent in each training iteration
cycle. Therefore, the samples of the categories with smaller sample
size were transformed and reused through data augmentation
technique which can be treated as the new samples in iterative
cycles. To test the deep learning model, we selected the middle
slice from each sub-part as an instance in the MIL setting to
construct the input sample. During the training and testing
process, our deep-learning model was implemented using the
popular open-source PyTorch framework and was run on four
Frontiers in Immunology | www.frontiersin.org 4
Nvidia GTX 1080Ti GPUs. The code of the model in this study
have been uploaded to GitHub and are available at https://github.
com/TXVision/Demyelinating_Diseases_Classification_MRI.

2.6 Reader Experiment
To assess the performance of our proposed deep learning model
in the classification of demyelinating diseases, we recruited two
neuroradiologist SNC and HYL (with 7 and 13 years of working
experience, respectively) in the reader experiment. Briefly, the
raters who were blinded to the patients’ clinical status
independently reviewed all cases in the test dataset and were
asked to classify subtypes of the demyelinating diseases with an
assigned confidence score (0%-100%) for each class. The sum of
the scores should equal to 100% (e.g., MS: 70%; NMOSD: 20%,
MOGAD: 10%).

2.7 Statistical Analysis
Statistical analyses were performed using SPSS software (version
26.0; SPSS Inc., Chicago, IL, USA). Descriptive statistics are
presented as frequencies and percentages for categorical variables
and as means and SD for continuous variables. Differences in
categorical variables between groups were analyzed using the
Pearson chi-square test or Fisher’s exact test, as appropriate.
Differences in continuous variables were analyzed using the
Mann-Whitney U test. The diagnostic performance of the
proposed model was assessed using the receiver operating
curve (AUC) with the 95% confidence interval (CI). The
optimal cut-off value was chosen using the Youden index
(sensitivity + specificity -1), as previously in Huang et al. (31).
Thus, sensitivity, specificity; accuracy, positive predictive value
(PPV), negative predictive value (NPV), and F1 score were
calculated accordingly.

For performance evaluation in multi-category classification of
the raters, the category with the highest probability value among
the rater’s output was regarded as the differential diagnosis of the
disease. Thereafter, confusion matrices were drawn and overall
accuracy were compared between the fusion model and the raters
using the McNemar test, with p-value < 0.05 indicating the
statistically significant difference. Confusion matrix deriving
Matthew’s correlation coefficient (MCC) and Cohen’s kappa
coefficient (Kappa) were also recorded and compared.
3 RESULTS

3.1 Demographic and Clinical
Characteristics
A total of 290 patients with CNS inflammatory demyelinating
diseases, including 67 with MS, 162 with AQP4+ NMOSD, and
61 with MOGAD, were included for analysis. Figure 1 shows a
flowchart of the selection process of the included patients. All
patients were randomly assigned to the development set
(composed of training and validation sets), including 231
patients (53 with MS, 129 with AQP4+ NMOSD, and 49 with
MOGAD) and the testing set, including 59 patients (14 with MS,
33 with AQP4+ NMOSD, and 12 with MOGAD) at a ratio of 4:1.
June 2022 | Volume 13 | Article 897959
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The demographic and clinical characteristics of all patients are
summarized inTable1. Therewereno significantdifferences in age,
sex, disease duration, onset times, EDSS score, and the presence of
visual disturbance for the MS, AQP4+ NMOSD, and MOGAD
groups, respectively, between the development and testing datasets.

All patients underwentMRI scanning of the brain and/or spinal
cord, and a total of 953 sequences were analyzed. Among the 290
patients included in the study, a total of 211 patients (72.8%) who
have undergone both brain and spinal cordMRI scans. Among 250
(86.2%) patients with brain MRI and 251 (86.6%) patients with
spinal cord MRI, there were 188/250 (75.2%) patients and 214/251
(85.3%) patients containing abnormal lesions, respectively. MR
imagesof14 (4.8%)patients fromtheAQP4+NMOSDorMOGAD
group showed no visible lesions in both the brain and spinal cord.

3.2 Diagnostic Performance of the
MIL-Transformer Network Using
Single- or Multi- Site MRI
We chose the Youden index as the optimal cut-off value to retrieve
the variety of measurements including accuracy, sensitivity,
specificity, PPV, NPV, and F1 score, which was shown in Table 2.

For AQP4+ NMOSD, the ROC curves (Figure 2) showed
that deep-learning models trained with individual brain and
spinal cord MRI had AUCs of 0.940 (95%CI: 0.870, 0.986) and
0.689 (95%CI: 0.520, 0.833) respectively. In comparison, the
deep-learning fusion model provided better diagnostic
performance with AUC of 0.942 (95%CI: 0.879, 0.987) for
AQP4+ NMOSD.
Frontiers in Immunology | www.frontiersin.org 5
When identifying MOGAD, the AUCs of the models trained
with individual brain and spinal cord MRI were 0.782 (95% CI:
0.606, 0.938) and 0.714 (95% CI: 0.494, 0.919), respectively. In
comparison, the deep-learning fusion model exhibited superior
diagnostic performance with AUC of 0.803 (95%CI: 0.629, 0.949)
for MOGAD.

The deep-learning model based on the spinal cord MRI had
AUC of 0.724 (95%CI: 0.539, 0.897) for MS, which was small
than that of the model trained with the brain MRI with AUC of
0.936 (95%CI: 0.855, 0.990) and the combined sequences (the
fusion model) with AUC of 0.933 (95%CI: 0.848, 0.991). The
AUC of the fusion model was marginally smaller than that of the
model trained with brain MRI for MS.

3.3 Multi-Category Classification
Comparison of the Deep-Learning Model
Against Neuroradiologists
Multi-category classification using the proposed MIL-
transformer network also exhibited better performance in the
fusion model. Among the models trained with MRI on individual
and combined locations, the fusion model exhibited better
performance with an accuracy of 81.4% (Kappa 0.666, MCC
0.682). On the contrary, the model using individual brain or
spinal cord MRI as input had an accuracy of 75.9% (Kappa 0.605,
MCC 0.623) and 62.7% (Kappa 0.202, MCC 0.215), respectively.

We also compared the classification performance obtained
with the proposed models versus that of human raters. In the
same test dataset of 59 patients, the overall accuracy of the deep-
FIGURE 1 | Flow chart of the selection process of included participants. AQP4+ NMOSD, aquaporin 4 positive neuromyelitis optica spectrum disorders; MOGAD,
myelin oligodendrocyte glycoprotein antibody associated disease; MR, magnetic resonance; MS, multiple sclerosis.
June 2022 | Volume 13 | Article 897959
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learning model was higher than that of rater 1 and comparable to
rater 2 (81.4% vs. 64.4% for rater 1, p = 0.04 < 0.05 and 81.4% vs.
74.6% for rater 2, p = 0.388 > 0.05). Meanwhile, as shown in
Figure 3, the confusion matrix of the fusion model exhibited a
higher Kappa of 0.666, MCC of 0.682 than that of human raters,
who had a Kappa of 0.426, MCC of 0.431 for rater1 and Kappa of
0.576, MCC of 0.578 for rater 2.

3.4 Visual Explanation of the
Deep-Learning Model
The lack of transparency in deep learning can be overcome by
applying gradient-weighted class activation (Grad-CAM) to
visualize feature extraction using an activation heatmap (32).
Frontiers in Immunology | www.frontiersin.org 6
As shown in Figure 4, lesions in the brain and spinal cord
manifested as relatively dark color in the Grad-CAM results.
Insights generated fromGrad-CAMwere compared with manual
annotations, and the results indicated that the model focuses on
these lesions when distinguishing demyelinating diseases. This
can help us to gain an understanding of the regions within the
MR images that are responsible for network predictions.
4 DISCUSSION

In this study, we proposed transformer-based deep-learning
model to differentiate among MS, AQP4+ NMOSD and
TABLE 1 | Demographic and clinical characteristics in patients with MS, AQP4+ NMOSD, and MOGAD.

Development Set (n = 231) Testing Set (n = 59)

MS AQP4+
NMOSD

MOGAD MS AQP4+
NMOSD

MOGAD p value*

Clinical characteristics
No. of patients, n 53 129 49 14 33 12 –

Age, mean ± SD, years 33.11 ± 12.83 44.21 ± 14.10 23.31 ± 18.09 34.50 ± 14.03 42.12 ± 15.30 27.33 ± 15.74 > 0.05
Adults (≥18 years), n (%) 50 (94.34%) 126 (97.67%) 22 (44.90%) 14 (100%) 31 (93.94%) 7 (58.33%) –

Sex (male/female) 28/25 10/119 20/29 8/6 3/30 6/6 > 0.05
Disease duration, mean ± SD, months 31.74 ± 50.41 26.76 ± 51.80 14.15 ± 37.74 46.96 ± 48.99 38.50 ± 79.02 10.33 ± 24.11 > 0.05
Onset times, mean ± SD 1.96 ± 0.88 1.90 ± 1.34 1.47 ± 0.92 2.14 ± 0.66 1.73 ± 1.21 1.17 ± 0.39 > 0.05
First attack, n (%) 18 (33.96%) 66 (51.16%) 36 (73.47%) 2 (14.29%) 20 (60.61%) 10 (83.33%) –

Second attack, n (%) 22 (41.51%) 35 (27.13%) 6 (12.24%) 8 (57.14%) 7 (21.21%) 2 (16.67%) –

≥3 attacks, n (%) 13 (24.53%) 28 (21.71%) 7 (14.29%) 4 (28.57%) 6 (18.18%) 0 (0) –

EDSS score at the time of MRI, mean ± SD 3.53 ± 1.87 5.70 ± 2.22 2.45 ± 1.28 4.14 ± 1.62 4.86 ± 1.99 2.54 ± 1.66 > 0.05
Visual disturbance, n (%) 21 (39.62%) 48 (37.21%) 27 (55.10%) 4 (28.57%) 9 (27.27%) 5 (41.67%) > 0.05
MRI scanning information
No. of MRI sequences 178 411 166 45 112 41 –

Brain + spinal cord, n (%) 39 (73.58%) 91 (70.54%) 36 (73.47%) 10 (71.43%) 26 (78.79%) 9 (75.00%) –

Brain only, n (%) 13 (24.53%) 6 (4.65%) 12 (24.49%) 4 (28.57%) 1 (3.03%) 3 (25.00%) –

Cervicothoracic and/or thoracolumbar spinal cord only,
n (%)

1 (1.89%) 32 (24.81%) 1 (2.04%) 0 (0) 6 (18.18%) 0 (0) –

MR scanner field strength
3.0 T scanners 12 50 28 2 13 3 –

1.5 T scanners 41 79 21 12 20 9 –
June 2022 | Volume 13 | Artic
*Significant difference (p < 0.05) of each clinical variable in the MS, AQP4+ NMOSD, and MOGAD groups, respectively, between the development and testing datasets.
AQP4+ NMOSD, aquaporin 4 positive neuromyelitis optica spectrum disorders; EDSS, expanded disability status scale; MOGAD, myelin oligodendrocyte glycoprotein antibody
associated disease; MRI, magnetic resonance imaging; MS, multiple sclerosis; SD, standard deviation.
TABLE 2 | Diagnostic performance of our proposed MIL-CoaT transformer model based on different inputs in classification of MS, AQP4+ NMOSD and MOGAD.

One-vs.-rest classification ROC_AUC (95% CI) Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1

Brain MRI as model inputs
MS vs. others 0.936 (0.855, 0.990) 88.9 78.6 92.5 78.6 92.5 0.786
AQP4+ NMOSD vs. others 0.940 (0.870, 0.986) 87.0 78.6 96.2 95.7 80.6 0.863
MOGAD vs. others 0.782 (0.606, 0.938) 85.2 58.3 92.9 70.0 88.6 0.636
Spinal cord MRI as model inputs
MS vs. others 0.724 (0.539, 0.897) 74.5 70.0 75.6 41.2 91.2 0.519
AQP4+ NMOSD vs. others 0.689 (0.520, 0.833) 70.6 71.9 68.4 79.3 59.1 0.780
MOGAD vs. others 0.714 (0.494, 0.919) 82.4 55.6 88.1 50.0 90.2 0.526
Combined brain and spinal cord MRI as model inputs
MS vs. others 0.933 (0.848, 0.991) 84.7 92.9 82.2 61.9 97.4 0.743
AQP4+ NMOSD vs. others 0.942 (0.879, 0.987) 88.1 87.9 88.5 90.6 85.2 0.892
MOGAD vs. others 0.803 (0.629, 0.949) 72.9 83.3 70.2 41.7 94.3 0.556
le 8
AQP4+ NMOSD, aquaporin 4 positive neuromyelitis optica spectrum disorders; AUC, area under curve; CI, confidence interval; MOGAD, myelin oligodendrocyte glycoprotein antibody
associated disease; MS, multiple sclerosis; ROC, receiver operating characteristic curve.
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MOGAD based on conventional brain and spinal cord MRI. This
novel transformer-based model architecture was designed to be
versatile in handling with images of multiple sequences and
scanning locations whichever were available at clinical practice,
for differentiating among MS, NMOSD, and MOGAD at a high
accuracy. The fusion model using images of combined locations
exhibited significantly higher accuracy than the models trained
with a single location MRI as well as two experienced
radiologists, which referred to possible alternative tool in
assist ing clinical decisions for a fast and accurate
treatment referral.

To our knowledge, this is the first study to use an ensemble-
location approach in the task of multi-category classification to
improve the differential diagnosis of CNS inflammatory
Frontiers in Immunology | www.frontiersin.org 7
demyelinating diseases. Given patients suspected with
demyelinating disease may undergo brain and/or spinal cord
MRI scans, the model was developed to handle with the data in
the single- or multi- location manner on conventional MR
images. When MR images at one location were taken, our
results showed that taking brain images as model inputs had a
relative higher accuracy in classifying these three conditions than
using spinal cord images only (pooled accuracy: 75.9% vs.
62.7%). Moreover, when multi-location MR images were
available, the fusion model demonstrated an improved
accuracy of 81.4%, which was comparable compared to the
performance of two neuroradiologists (accuracy: 64.4% for
rater 1 and 74.6% for rater 2). Meanwhile, the fusion model
exhibited higher Kappa and MCC than that of human raters.
A B

D

E F

C

FIGURE 2 | ROC curves of the models based on brain, spinal cord, and combined MRI sequences in the cohorts of patients with MS (A, B), AQP4+ NMOSD
(C, D) and MOGAD (E, F). AQP4+ NMOSD, aquaporin 4 positive neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte glycoprotein antibody
associated disease; MRI, magnetic resonance imaging; MS, multiple sclerosis; ROC, receiver operating characteristic.
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Previous studies have used only brain or spinal cord images
(11, 20), along with accompanying clinical variables (18, 33) for
Frontiers in Immunology | www.frontiersin.org 8
prediction. Among these studies, Rocca et al. (20) used CNN
and achieved an accuracy of 98.8% for the differential diagnosis
of MS from NMOSD. However, it shall be noted that this high
diagnostic performance of these models may be attributed to
obvious differences in lesion volume and distribution, which
may lead to over-estimated classification accuracy of the
models. This potential bias was addressed in our study by
enrolling images from patients whose MRI were taken at multi-
location and the features extracted broad heterogeneity in
lesion distribution were regarded as shared manifestations
among target demyelinated disease.

Deep-learning algorithms are an active area of research in
medical image processing. These algorithms can extract
information from conventional MR images, including features
that cannot be recognized by the human eye, and help to make a
more accurate diagnosis (34), prognosis evaluation (35) and
therapeutic guidance (36). Our proposed multimodal MIL-
CoaT deep-learning network can perform multicategory
classification using hybrid MRI sequences. This model was
developed based on an MIL strategy and incorporated the
CoaT transformer as the basic network structure. Specifically,
the MIL strategy used slice as the model input, which leads to
increased size of data in the training stage. Together with the
slice-level data augmentation, we were able to mitigate the issue
of imbalanced samples between brain and spinal cord MRI scans.
Furthermore, during the training stage, each epoch has the same
amount of training sample at each group. The samples of the
categories with smaller sample size were transformed and reused
through data augmentation technique which can be treated as
the new samples in iterative cycles. Moreover, the CoaT-based
A B

D E

C

FIGURE 3 | The confusion matrix of the fusion model in the test dataset of 59 patients (A), the model based on the brain MRI (B), the model based on the spinal
cord MRI (C), and human rater 1 and 2 (D, E). AQP4+ NMOSD, aquaporin 4 positive neuromyelitis optica spectrum disorders; MOGAD, myelin oligodendrocyte
glycoprotein antibody associated disease; MS, multiple sclerosis.
FIGURE 4 | Visualization of features extracted by the deep-learning model
from the input images. From the left, the first column represents the original
MRI slices with manual annotations of lesions in the brain, cervical spinal
cord, and thoracic spinal cord. In the second column, a smaller patch is
cropped around the lesions. The third column represents the activation
heatmaps. The color depth of the heatmaps represents the possibility of
predicted lesions by the model. The fourth column overlaps the activation
mapping with the original MRI for better visual reference.
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transformer structure has the characteristics of dynamic
attention and global context fusion, which are not available
with a traditional CNN. Thus, by combining the extracted
features and subsequent instance-wise feature fusion using
attention pooling, we obtained a model with improved
generalization ability.

We reviewed misclassified cases to determine their imaging
characteristics and speculate possible reasons. We found that the
cases misclassified as AQP4+ NMOSD can exhibit certain
characteristics such as the presence of brain lesions adjacent to
the fourth ventricle, and multiple short segment lesions that
fused into long segment lesions in the spinal cord, which may
resemble the appearance of AQP4+ NMOSD. Moreover, the
presence of severe brain atrophy, and involvement of cortical or
juxtacortical regions may be a possible cause of being
misdiagnosed as MS.

This study indeed had some limitations. First, optic nerve
lesions may exist in CNS demyelinating diseases, whereas the
limited imaging data of optic nerve MRI were not suitable for
inclusion in big data analysis. Second, the lack of thin-section
MRI data due to time-cost issues may have resulted in lower
image resolution and less precise information. However, it shall
be mentioned that in most hospitals in China, the conventional
MRI protocol with thick slices was utilized for the diagnosis of
patients suspected with demyelinated diseases. This is attributed
to larger number of patients and longer waiting times compared
to western countries. Under this condition, we focused on
research-quality MR images and developed the deep learning
model that could be used to classify major types of demyelinated
disease with high accuracy. Third, the loss of accuracy with the
fusion model including spinal cord MRI in MS cases may have
been attributed to the limited sample size and the fact that some
MS patients did not have lesions in the spinal cord. This would
be an important feature for co-learning to ensure reliability in
applying the model to clinical practice.
5 CONCLUSION

Overall, our results provide evidence that deep-learning
networks may be used for differential diagnosis based on brain
and spinal cord MRI for patients with MS, AQP4+ NMOSD, and
MOGAD. To our knowledge, this is the first study to apply the
newly proposed MIL-CoaT transformer-based deep-learning
algorithm to conventional MRI of multiple locations and
sequences in attempt to solve the clinical challenge of
diagnosing CNS demyelinating diseases. This evidence is also
Frontiers in Immunology | www.frontiersin.org 9
expected to motivate future research for delving into the clinical
and radiological basis of deep-learning networks, as well as to
validate the findings with a prospective study design.
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