
MyDas, an Extensible Java DAS Server
Gustavo A. Salazar1., Leyla J. Garcı́a2*., Philip Jones2., Rafael C. Jimenez2, Antony F. Quinn2,

Andrew M. Jenkinson2, Nicola Mulder1, Maria Martin2, Sarah Hunter2, Henning Hermjakob2

1 Computational Biology Group, Department of Clinical Laboratory Sciences, University of Cape Town, Cape Town, South Africa, 2 European Bioinformatics Institute,

Hinxton, United Kingdom

Abstract

A large number of diverse, complex, and distributed data resources are currently available in the Bioinformatics domain. The
pace of discovery and the diversity of information means that centralised reference databases like UniProt and Ensembl
cannot integrate all potentially relevant information sources. From a user perspective however, centralised access to all
relevant information concerning a specific query is essential. The Distributed Annotation System (DAS) defines a
communication protocol to exchange annotations on genomic and protein sequences; this standardisation enables clients
to retrieve data from a myriad of sources, thus offering centralised access to end-users. We introduce MyDas, a web server
that facilitates the publishing of biological annotations according to the DAS specification. It deals with the common
functionality requirements of making data available, while also providing an extension mechanism in order to implement
the specifics of data store interaction. MyDas allows the user to define where the required information is located along with
its structure, and is then responsible for the communication protocol details.

Citation: Salazar GA, Garcı́a LJ, Jones P, Jimenez RC, Quinn AF, et al. (2012) MyDas, an Extensible Java DAS Server. PLoS ONE 7(9): e44180. doi:10.1371/
journal.pone.0044180

Editor: Niall James Haslam, University College Dublin, Ireland

Received March 30, 2012; Accepted July 30, 2012; Published September 13, 2012

Copyright: � 2012 Salazar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the European Commission grant Enfin (LSHG-CT-2005-518254). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ljgarcia@ebi.ac.uk

. These authors contributed equally to this work.

Introduction

The integration of information is essential in any research

project as a variety of data is generated in experiments, and must

be analysed and validated in the context of the latest available

knowledge-base. In Bioinformatics, this has proven to be a

challenge, and for this reason multiple software solutions have

been proposed, e.g. service oriented architectures, link integration,

data warehousing, view integration, etc [1].

The Distributed Annotation System (DAS) is a widely used

integration system in the bioinformatics field, and provides a

method for taking data from more than one web-based resource,

and displaying it in a single view. DAS allows data to be integrated

from multiple, heterogeneous databases in a standardised and

portable format [2]. In this way, laboratories and research groups

adopting the protocol can easily share, visualise and compare their

data. The DAS architecture is service-oriented and is comprised of

three components: the Registry, Sources and Clients. The DAS

Registry (http://www.dasregistry.org) acts as a directory providing

information about registered sources. DAS Sources provide an

interface to access and retrieve biological data, and DAS Clients,

such as Dasty3 [3], Dalliance [4] and myKaryoView [5], provide a

unified view of biological information, collecting data from

multiple sources.

A regular flow of information in DAS is shown in Figure 1. The

DAS client requests information about a protein that can be

specified by its accession number or identifier. The client then

communicates with the DAS registry in order to retrieve a list of

available sources providing information about that biological

product. Once the client has retrieved this list, it proceeds to query

the DAS reference source, i.e. a DAS source providing the

sequence or structure of each molecule that it describes e.g.

UniProt in the case of proteins. The DAS Reference source

supplies not only the sequence but also meta-data such as the

version. In this way clients can ascertain which retrieved

annotations correspond to the original request. At this point, the

client retrieves features, i.e. annotations, from the available DAS

sources. These annotations may be applicable to specific

subsections of the sequence (e.g. the location of active sites or

observed peptides) or may be applicable to the entire sequence

(e.g. related publications or taxonomy). Finally, the client organises

and displays the annotations.

DAS servers may implement a number of different functions

(called capabilities in DAS) depending on the information

provided. The main DAS capabilities are:

N Source: A list of available data sources on the server.

N Entry Points: A list of molecule accession numbers described by

a DAS source.

N Sequence: Corresponding to a given segment.

N Types: A list of annotation types available.

N Features: A list of annotations available for a segment.

N Stylesheet: Server recommendations on formatting the retrieved

annotations.

N Structure: Protein structure, including metadata and coordi-

nates.

PLOS ONE | www.plosone.org 1 September 2012 | Volume 7 | Issue 9 | e44180

At the beginning of 2011 the DAS Registry reached the

milestone of 1000 data sources registered. Each of these data

sources have to follow the DAS protocol, which involves the

implementation of a wide variety of common functionality such as:

parsing, capture of arguments, exception handling, XML creation,

dealing with the HTTP protocol, and more. Each data source

must also implement the interface with the actual data store.

Ideally, implementing a new data source need not require the

work of re-implementing this common functionality.

In this paper we introduce MyDas, a server that facilitates the

publishing of biological data through the DAS protocol. This

allows research groups to share their data in the context of existing

information without requiring them to understand the full DAS

Protocol. All they need to do is develop an adapter to specify how

to access the raw data. This adapter is then used by MyDas to

create the necessary HTTP interfaces to support all the DAS

capabilities, such as querying by segment or recovering the types of

annotations.

In the following sections we describe MyDas, how to use it, its

architecture, existing alternatives, and present some examples of

current DAS services built upon MyDas.

Analysis

In a simplified way, MyDas is to DAS what the Apache Web

Server is to the Web. When issued with a request, the output from

Apache is typically an HTML file, whereas in MyDas the output is

an XML document based on the DAS specification. In Apache,

when a non standard response is required, it makes use of

middleware technologies (such as PHP, JSP or ASP) to create a

custom HTML document. In the case of MyDas, the functionality

of the middleware can be defined through an adapter created by

the owner of the information. This allows for superior customisa-

tion without the need for a detailed understanding of the protocol.

Publishing Data With MyDas
When using MyDas to publish biological data, the following

series of steps are suggested as a guide: define the type of source

you want to publish; implement an adaptor to process this data;

then configure and run MyDas in a web server. This allows the

data to be accessed by a DAS client. Below is a more detailed

explanation:
Define the type of the source. In the DAS protocol there

are a number of types of source available, such as reference,

annotation or alignment sources. MyDas allows the user to choose

between several interfaces that represent those types, making sure

the user is asked to implement the correct methods according to

each type of DAS source.

For example a laboratory that works with well known proteins

and is focused on discovering information about them does not

need to publish sequences that are already available in the UniProt

DAS source. Its requirement is to use the same identifiers in

association with their existing coordinates and add further

information, and therefore an annotation interface should be

implemented. In contrast, a group working with de-novo

sequencing techniques is interested in publishing the assembled

sequences, and therefore publishing data as a reference source is

more appropriate.
Create an adapter. A MyDas adapter is a Java class that

represents the DAS source and provides an interface between the

information source and the rest of the MyDas components. Some

programming skills are required to create an adapter, as the nature

and structure of the data varies from source to source. Depending

on which interface has been selected in the previous step, different

methods need to be implemented. MyDas then uses these to

respond to DAS commands.

These methods allow MyDas access to the origin of the

information (databases, text files, servers, etc.) and to map that

information onto the DAS model. For example, if the information

Figure 1. Flow of information in DAS. Interaction between a DAS client and the different DAS servers (i.e. Registry, Reference and Data Source).
doi:10.1371/journal.pone.0044180.g001

MyDas

PLOS ONE | www.plosone.org 2 September 2012 | Volume 7 | Issue 9 | e44180

is stored in a database, the adapters indicate which tables

correspond to the segments, and which field to its id, name, etc.

Configure and deploy. An instance of MyDas can run

multiple data sources. There is a configuration file where the user

indicates the location of the adapter and meta information about

the source, such as the name, organism and version. General

aspects of the server are also configurable in the same file (e.g.

allow compression, include XSL stylesheets, etc.).

In order to publish the information, MyDas must be installed in

an internet-visible machine, otherwise the data will only be locally

accessible.

Design and Implementation
MyDas is a Java Servlet Application accepting HTTP requests,

typically with one request for each command in the DAS specification.

Responses are valid XML documents. MyDas is a Java 1.6 application,

and it runs on a Java servlet container such as Tomcat (http://

tomcat.apache.org/) or Jetty (http://jetty.codehaus.org/jetty/).

Figure 2 illustrates the architecture of MyDas, separating the

core (i.e. what is included in any installation) from external control

(i.e. components that should be defined for each particular server

as adapters to each particular kind of data). This division was

created with the goal of providing DAS service developers with a

platform of common methods to deploy their data as a DAS

service. Every source has specific details such as its storage system

(e.g. a relational database or flat file), and the strategy used to

query the data (e.g. in-memory or using pre-indexing).

The configuration manager makes the user options available to

both the MyDas core and the data source implementation. The

configuration file is used to define the DAS sources, including data

such as the URI, title, the relative path to the data source adapter

and it also provides a method of defining general options such as

the styles files (XSLT) to display the DAS data in a web browser.

MyDas includes a Java object model that represents the

different elements that are retrieved by a DAS source. This must

then be used by the data source developer when creating an

adapter. In this way, MyDas is able to deploy heterogeneous data

into DAS.

In order to facilitate the implementation of data sources, a

template project is available, with examples of both reference and

annotation servers.

Results

Showroom
MyDas is an extensible DAS server that has been designed with

ease of development in mind. Where possible, MyDas uses the

same terminology as in the DAS specification, with the

consequence that DAS service providers will experience a shallow

learning curve when implementing a MyDas DAS service for the

first time. MyDas is being adopted by different data providers,

including UniProt, InterPro and PRIDE.

UniProt (Universal Protein Resource) [6] is a comprehensive

catalogue of protein sequences and functional information. It

consists of different databases, each optimized for different uses.

The UniProt Knowledgebase (UniProtKB) is an expertly curated

database providing a central access point for integrated protein

sequence information. The UniProt Archive (UniParc) is a non-

redundant sequence repository of all publicly available protein

sequences. UniProt DAS (http://www.ebi.ac.uk/das-srv/uniprot/

das/uniprot, http://www.ebi.ac.uk/das-srv/uniprot/das/uniparc)

acts as a reference and annotation server, providing access to up-

to-date information and allowing queries by UniProtKB and

UniParc accessions numbers. There are currently more than 50

Data Sources that use UniProt DAS as a reference.

The InterPro database of predictive protein signatures is used for

the classification and automatic annotation of proteins and genomes

[7]. InterPro provides several DAS data sources: DS_327 serves

(http://www.ebi.ac.uk/das-srv/interpro/das/InterPro) matches

that have been calculated to the predictive models supplied by the

InterPro member databases for all UniProtKB protein sequences.

DS_1028 (http://www.ebi.ac.uk/das-srv/interpro/das/InterPro-

matches-overview) serves these matches resolved to the InterPro

entries that integrate the member database signatures (providing a

compact summary view of the domains, families and sites predicted

for each UniProtKB sequence), and finally DS_1029 (http://

www.ebi.ac.uk/das-srv/interpro/das/InterPro-UniParc-matches)

serves matches to member database signatures that have been

calculated for UniParc protein sequences.

PRIDE DAS 1.6 (http://www.ebi.ac.uk/pride-das/das/) pro-

vides protein and peptide identifications together with supporting

mass spectrometry evidence [8]. The information from PRIDE

has already been shared using BioMart [9], therefore the strategy

used to make it public to the DAS community was to develop an

adaptor using MyDas to take the information from this source.

Figure 2. MyDas Architecture. The requesters can interact with MyDas through the servlet, which communicates the commands to the Controller.
The Controller knows which Data Sources have been implemented by querying the Configuration Manager. Data Sources should implement at least
one of the provided Interfaces. MyDas internally implements the DAS model.
doi:10.1371/journal.pone.0044180.g002

MyDas

PLOS ONE | www.plosone.org 3 September 2012 | Volume 7 | Issue 9 | e44180

A Use Case Scenario
To aid in the understanding of the above steps, we have created

a set of tutorials for MyDas that are accessible via web (http://

code.google.com/p/mydas/wiki/Tutorials). The tutorials explain

how to obtain different data examples and define the queries. Most

importantly, they explain how to map the results of those queries

onto the DAS model.

The power of MyDas is revealed when used on large data sets

with elaborate schemas. The use of a database system is a common

way to store/access data in bioinformatics environments. Take, for

example, a laboratory that works with a Laboratory Information

Management System (LIMS) to organize their information - all

their data is already stored in a database. Many institutions may

have a similar setup, however schema, policies and software vary

from place to place. Although exporting files (and using them to

publish data) is an option, it implies that changes in the database

won’t be reflected in the generated files. In contrast, MyDas can be

set up to take the information directly from the database

management system and therefore will always be up to date.

The main example used in the tutorials and demonstrated here,

considers the freely available mysql database provided by

Ensembl. There are over a hundred databases hosted on the

Ensembl servers, and in this case we used the core set of tables for

Homo sapiens (version 56_37a), and restricted our search scope to

some high level features (e.g. Chromosome, genes, transcript).

We used MyDas to publish this subset of the Ensembl database

and make it queryable through DAS commands. A data source

like this can be used by several tools to visualize its data. Figure 3 is

a snapshot of the Ensembl browser, including the track named

‘Ensembl Test’, whose information is obtained from the tutorial

data source, demonstrating how the data published with MyDas

can be displayed in well known genome browsers.

Other DAS Servers
There are other alternatives for publishing through DAS. For

instance, easyDAS [10] is a preinstalled server, where a new data

source can be configured by submitting a GFF file (or similar).

Although this alternative is ideal for rapid publishing, it lacks

granular control over the data once it is deployed. It is also limited

to plain files, and therefore more advanced storage systems such as

databases or indexed files are out of its scope.

Providers of biological information can use DAS servers like

Dazzle (www.biojava.org/wiki/Dazzle), ProServer [11] or MyDas,

amongst others, to set up their sources. However, MyDas and

ProServer are the only servers that fully support the current DAS

specification (1.6). They differ from each other mainly in the

language in which they are implemented (ProServer is written in

Perl), but not in feature set, making system compatibility the major

factor in deciding between the two.

Table 1 summarizes some of the high level characteristics of the

most well known DAS servers.

We prepared a stress test using the Apache HTTP Server

Benchmarking Tool (http://httpd.apache.org/docs/2.0/programs/

ab.html) to compare the loading performance of DAS servers. The

servers were installed on the same machine, and the requests were

triggered there too, with the purpose of avoiding any bias due to

network conditions and computer specifications. easyDas was not

taken into account for this test because it is installed on a different

server, therefore there is no way to exclude network latency from the

test.

Given that the three servers provide a Data Source implemen-

tation to publish data from a GFF file, they were configured to use

the same GFF file to ensure equal conditions. While the

implementation details of each adaptor may vary, the three

examples were created with the goal of exemplifying the use of

each server, giving more priority to understandability of the code

than performance. Nonetheless, we consider this a fair test,

because most users will use these examples as templates of how to

implement a Data Source in each corresponding DAS server.

The test was designed to repeat the same query 1000 times with

10 concurrent connections. Three queries were executed, one to

return a document of approximately 1500 bytes (small), a second

Figure 3. A MyDas Source as displayed on the Ensembl client. The data source created during the MyDas tutorials as it is visualised on the
Ensembl web browser.
doi:10.1371/journal.pone.0044180.g003

MyDas

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e44180

one with 200000 bytes (medium), and one returning the whole file,

which in DAS format is approximately 7200000 bytes (large).

The 3 servers were able to complete all the requests. However,

the large test for ProServer was run on a different machine with

similar specifications because of a local issue with the first

computer. Table 2 shows the main results of the executed test.

The figures in the table show that in all 3 scenarios MyDas

performed better than the other servers. It is important to note

that both MyDas and Dazzle were running on the same Tomcat

server, therefore the conditions for both were the same. ProServer

on the other hand, is a standalone server that implements socket

communications in the application itself, which is an advantage in

terms of making it easy to use.

The fact that the ProServer figures do not show much

variation during the different tests leads us to believe that the

adaptor implemented there analyses the whole file each time.

This is not ideal for the purposes of a clear comparison, only

the large test was really comparable with the other two servers

since, in this case, all three instances must go through the

whole dataset.

In that test, MyDas still performed better than ProServer and

Dazzle. However the implications of this test are limited because

the performances shown here are directly proportional to the

level of optimization that each adaptor has, and none of the

implementations have been particularly tuned with this purpose.

The complete results of the tests are available in Appendix S1.

Discussion

MyDas currently forms the basis for high volume DAS servers

like UniProt and InterPro. It combines performance and stability

with ease of installation, operation, and extension. The simplest

way to run the server is to provide annotations in the form of a

simple GFF file. At another level, the MyDas interface is efficient

at implementing additional custom data sources, such as relational

databases.

While the recently published easyDAS server provides a

platform for DAS-based sharing of small sets of nucleic acid or

protein annotations, and ProServer addresses Perl-based envi-

ronments, MyDas offers a developer-friendly solution for

laboratories and institutions that wish to share medium to large

scale datasets in a Java-based environment. It completes the

landscape of modern, open source DAS servers available to

organisations sharing biomolecular data via the distributed DAS

protocol.

Availability

N Project name: MyDas

N Project home page: http://code.google.com/p/mydas/

N Source code repository: http://mydas.googlecode.com/svn/

trunk/

N Operating system(s): Platform independent

N Programming language: Java

N Other requirements: Java 1.5 or higher, Tomcat 5.0 or other

servlet server.

N License: Apache 2.0

Table 1. Features of the main DAS servers.

Feature MyDas ProServer Dazzle easyDAS

Language Java Perl Java Web App(Perl)

Latest Release 2011 2011 2010 2011

DAS Version 1.6 1.6 1.53E* 1.6

Physical Storage Defined by User Defined by User Defined by User Internal database

Entity Responsible EBI Sanger Institute Sanger Institute EBI

Main task to create a data source Develop a Java class. Develop a Perl adaptor Develop a Java class Submit a tabulated file.

*There is a branch of this project where capabilities of DAS 1.6 are been implemented, however there was not a stable version of it at the time of publishing.
doi:10.1371/journal.pone.0044180.t001

Table 2. Benchmarking between the main DAS servers.

Figure MyDas ProServer Dazzle

Requests per Second - Mean (small) 739.88 1.54 424.56

Time per request - Mean (small) 13.516 ms 6492.978 ms 23.554 ms

Transfer Rate (small) 1534.68 Kbytes/sec 2.81 Kbytes/sec 859.91 Kbytes/sec

Requests per Second - Mean (medium) 51.52 1.40 34.10

Time per request - Mean (medium) 194.114 ms 7123.396 293.216 ms

Transfer Rate (medium) 10944.96 Kbytes/sec 288.19 Kbytes/sec 6997.52 Kbytes/sec

Requests per Second - Mean (large) 1.79 0.32 1.10

Time per request - Mean (large) 5589.148 ms 30942.590 ms 9110.292 ms

Transfer Rate (large) 13088.38 Kbytes/sec 2283.04 Kbytes/sec 7770.29 Kbytes/sec

doi:10.1371/journal.pone.0044180.t002

MyDas

PLOS ONE | www.plosone.org 5 September 2012 | Volume 7 | Issue 9 | e44180

Supporting Information

Appendix S1 Detailed Report of the Benchmarking Test.
(PDF)

Author Contributions

Conceived and designed the experiments: GS. Performed the experiments:

GS AJ. Wrote the paper: GA LG PJ RJ. Critical revision of the manuscript

for important intellectual input: RJ AQ AJ NM MM SH HH. Technical

and material support: AJ NM MM SH HH. Supervision: NM MM SH

HH. Study concept: GS LG PJ AQ RJ HH. Architectural design: PJ GS.

Software development: GS LG PJ AQ. Evaluation of the compatibility with

DAS protocol: AJ.

References

1. Goble C, Stevens R (2008) State of the nation in data integration for
bioinformatics. Journal of Biomedical Informatics 41: 687–693.

2. Jenkinson A, Albrecht M, Birney E, Blankenburg H, Down T, et al. (2008)
Integrating biological data - the distributed annotation system. BMC Bioinfor-

matics 9: S3.

3. Villaveces J, Jimenez RC, Garcia L, Salazar GA, Gel B, et al. (2011) Dasty3, a
web framework for das. In press.

4. Down TA, Piipari M, Hubbard TJP (2011) Dalliance: interactive genome
viewing on the web. Bioinformatics.

5. Jimenez RC, Salazar GA, Gel B, Dopazo J, Mulder N, et al. (2011)

mykaryoview: A light-weight client for visualization of genomic data. PLoS
ONE 6: e26345.

6. Consortium TU (2011) Ongoing and future developments at the universal
protein resource. Nucleic Acids Research 39: D214–D219.

7. Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, et al. (2009)

Interpro: the integrative protein signature database. Nucleic Acids Research 37:

D211–D215.

8. Vizcaino JA, Cote R, Reisinger F, Foster J, Mueller M, et al. (2009) A guide to

the proteomics identifications database proteomics data repository. PROTEO-

MICS 9: 4276–4283.

9. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, et al. (2011) Ensembl

biomarts: a hub for data retrieval across taxonomic space. Database 2011.

10. Gel Moreno B, Jenkinson A, Jimenez R, Messeguer Peypoch X, Hermjakob H

(2011) easydas: Automatic creation of das servers. BMC Bioinformatics 12: 23.

11. Finn RD, Stalker JW, Jackson DK, Kulesha E, Clements J, et al. (2007)

ProServer: a simple, extensible Perl DAS server. Bioinformatics 23: 1568–1570.

MyDas

PLOS ONE | www.plosone.org 6 September 2012 | Volume 7 | Issue 9 | e44180

