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Abstract
Rice production is shifting from transplanting seedlings to direct sowing of seeds. Following heavy rains, directly sown
seeds may need to germinate under anaerobic environments, but most rice (Oryza sativa) genotypes cannot survive these
conditions. To identify the genetic architecture of complex traits, we quantified percentage anaerobic germination (AG) in
2,700 (wet-season) and 1,500 (dry-season) sequenced rice genotypes and performed genome-wide association
studies (GWAS) using 693,502 single nucleotide polymorphisms. This was followed by post-GWAS analysis with a general-
ized SNP-to-gene set analysis, meta-analysis, and network analysis. We determined that percentage AG is intermediate-to-
high among indica subpopulations, and AG is a polygenic trait associated with transcription factors linked to ethylene
responses or genes involved in metabolic processes that are known to be associated with AG. Our post-GWAS analysis
identified several genes involved in a wide variety of metabolic processes. We subsequently performed functional analysis
focused on the small RNA and methylation pathways. We selected CLASSY 1 (CLSY1), a gene involved in the RNA-directed
DNA methylation (RdDm) pathway, for further analyses under AG and found several lines of evidence that CLSY1 influen-
ces AG. We propose that the RdDm pathway plays a role in rice responses to water status during germination and seedling
establishment developmental stages.

Introduction
Rice (Oryza sativa) is a staple food for 50% of the global
population and ensuring its climate resilience and yield sta-
bility is key to ensuring food security. Present-day rice culti-
vation is affected by a variety of climate-related and social

challenges, such as water shortages and unavailability of la-
bor in major rice-growing countries, which make transplant-
ing in paddies difficult and cost-intensive (Kumar and
Ladha, 2011). Thus, direct seeding of rice into dry soil is be-
ing developed as an alternate method of crop establishment.
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However, ensuring adequate germination of seeds under
varying environmental conditions and management practi-
ces is key to success in this system. Rice seeds may need to
germinate under anaerobic conditions due to flooding fol-
lowing rainstorms immediately after seeding (Ray et al.,
2016). Successful anaerobic germination (AG) is an essential
trait in rice cultivars developed for areas where flooding is
common. Research is ongoing to find the quantitative trait
locus (QTL) associated with AG tolerance, but little is
known about natural variation for AG in rice. This knowl-
edge gap calls for comprehensive genome-wide association
studies (GWAS) and analysis of plant metabolic pathways
to discover the genetic and biochemical architecture that
controls AG (Miro and Ismail, 2013).

During flooding conditions, plants suffer from a shortage
of energy, oxygen, and light, which leads to lower photosyn-
thetic rates and yields (Voesenek and Bailey-Serres, 2013,
2015). Depending on the plant genotype, flood-tolerant
plants are able to change their metabolism, root morphol-
ogy, and anatomy during hypoxia (low-oxygen conditions;
Voesenek and Bailey-Serres, 2013, 2015). There are two
flooding tolerance strategies known in domesticated
rice(Voesenek and Bailey-Serres, 2013, 2015): low-oxygen
escape syndrome (LOES) and low-oxygen quiescence syn-
drome (LOQS). LOES phenotypes have high energy con-
sumption and are characterized by upward bending of the
leaves, shoot elongation, pressurized flow of gas through po-
rous tissues (Voesenek and Bailey-Serres, 2013, 2015), forma-
tion of aerenchyma (air spaces in plant tissue), root
anatomical barriers that prevent oxygen loss, adventitious
roots (Sauter, 2013), and gas films on leaves (Voesenek and
Bailey-Serres, 2013, 2015). LOQS phenotypes tend to lower
their metabolic rates, reducing cell division and overall
growth in order to conserve energy for use when environ-
mental conditions become favorable (Voesenek and Bailey-
Serres, 2013, 2015).

LOES and LOQS phenotypes are strongly regulated by
ethylene-responsive factor VII (ERF-VII) transcription activa-
tors (Voesenek and Bailey-Serres, 2013). During submer-
gence, the LOES rice phenotype shows internode shoot
elongation that leads to escape from underwater conditions
as a result of ERF-VII SNORKEL (SK1 and SK2; Hattori et al.,
2009) alleles. In contrast, LOQS rice phenotypes display
energy conservation by downregulating gene expression in-
volving cell wall loosening and starch and sucrose catabo-
lism, which lead to quiescence as a result of the ERF-VII
SUB1A-1 (Xu et al., 2006) allele (Voesenek and Bailey-Serres,
2013). These ERFs are controlled by low levels of oxygen and
nitric oxide (NO) as well as ethylene signaling pathways that
are key during low-oxygen conditions in LOES and LOQS
(Voesenek and Bailey-Serres, 2015). Throughout the plant
life cycle, there are several stages in which a plant can en-
counter flooding conditions. However, known genes that
contribute to LOES and LOQS in juvenile plants have little
influence when flooding occurs during seed germination
(Ray et al., 2016).

Under AG, the plant must produce ATP at lower sucrose
concentrations because flooded environments decrease the
gas exchange that is required to produce sugars through
photosynthesis (Ray et al., 2016). Starch reserves in the seed
become key for AG because starch can be cleaved in several
steps to produce pyruvate (Pompeiano et al., 2013;
Kretzschmar et al., 2015), which is needed for ATP produc-
tion. Also, in AG conditions, the plant switches from the
tricarboxylic acid (Metcalf and Lampman, 1989) cycle to
fermentative metabolism to produce ATP (Magneschi and
Perata, 2009; Miro and Ismail, 2013; Ray et al., 2016). The
seed senses elevated sucrose and low trehalose-6-phosphate
(T6P), which leads to the production of alpha-amylase and
breakdown of starch (Kretzschmar et al., 2015; Loreti et al.,
2016). In rice, higher amylolytic activities have been posi-
tively correlated with coleoptile elongation 7 and 20 d
after AG (Pompeiano et al., 2013; Pompeiano and
Guglielminetti, 2016), and hypoxia leads to the breakdown
of starch reserves through the starvation-inducible alpha-
amylase enzyme, RAmy3D. The induction of RAmy3D is
correlated with plant sensing of sugar content, which in
AG-tolerant rice has been correlated with functional
trehalose-6-P-phosphate phosphatase (OsTPP7) activity.
OsTPP7 contributes to a major QTL for AG tolerance in the
Myanmar landrace Khao Hlan On (Kretzschmar et al., 2015).
This enzyme converts T6P into trehalose and plays a crucial
role in the modulation of local T6P/sucrose ratios. Further
research on the AG trait may lead to the discovery of more
genes and pathways that control AG in other rice genetic
backgrounds.

Association analysis of whole-organism traits can incor-
porate evidence regarding selectively important functional
variation (Daub et al., 2013, 2015). This can be combined
with information on metabolic pathways and gene expres-
sion networks (Wang et al., 2010; Chan et al., 2011;
Califano et al., 2012; Ramanan et al., 2012; Dembeck et al.,
2015) to detect new pathways associated with a trait of
interest. Such explicit pathway approaches in GWAS may
detect enrichment of genes in a network even if individual
associations do not attain genome-wide significance
thresholds. For example, network-based analysis of olfac-
tory behavior in Drosophila melanogaster showed enrich-
ment for cell signaling and neural development genes
associations that were not significant using whole-genome
sequences without information on pathway context
(Swarup et al., 2013). Similar approaches have been ap-
plied to metabolic pathways in maize (Zea mays; Li et al.,
2013; Lipka et al., 2013; Owens et al., 2014), transcriptomic
networks in Arabidopsis (Chan et al., 2011), and diseases
in humans (Baranzini, 2013; Raj et al., 2013). Alternatively,
genomic annotation information can dramatically reduce
the number of candidate loci during fine-mapping
(Pickrell, 2014; Rodgers-Melnick et al., 2015). Using
approaches such as these, systems genetics can greatly
improve the ability to find and understand the genes
responsible for complex trait variation in plants.
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Biological variability among rice genotypes in terms of suc-
cessful AG, seedling establishment, and responses to variable
water status involve complex genetic traits. Rice capacity to
germinate under anaerobic conditions could involve several
enzyme activities, including OsTPP7. Nevertheless, further
screening for traits related to AG could lead to the discovery
of more genes and pathways controlling AG (Miro and
Ismail, 2013). In this study, we screened sequenced cultivars
from 3,000 rice genome germplasm (Mansueto et al., 2016;
Wang et al., 2018) from the International Rice Research
Institute (IRRI) and determined that AG is a polygenic trait.
We propose a novel stress response mechanism in rice
that involves the RNA-directed DNA methylation (RdDm)
pathway to control for germination and seedling establish-
ment under flooding.

Results

Indica varieties have intermediate-to-high AG
percentages
Rice percentage of germination (Eq. 1) was higher in control
compared to flooded environment (Supplemental Figure S1)
in both seasons. This indicated an overall reduction in ger-
mination under flooded conditions across rice populations.
However, the extent of germination reduction at an individ-
ual level was dependent on the tolerance of the genotype.
In order to capture this dependency, we integrated control
and flooded phenotypic responses into a physiological met-
ric called relative germination (Eq. 2). This trait allowed us
to evaluate plant germination and seedling establishment
under the assumption that high relative germination is in-
dicative of a stable response to control and flooded environ-
ments, meaning that a similar level of germination
happened in flooded and control environments. Relative
germination accounted for plant response across water
regimes and allowed the identification of germplasm with
stable phenotype across environments. Heritability values for
the wet season were 0.46 and 0.33 for control- and flooded-
environment, respectively; and for the dry season were 0.9
and 0.96 for control- and flooded-environment, respectively.
Over 50% of rice lines evaluated in the wet season
(Supplemental Table S1) had relative germination equal to
zero; consequently, the relative germination distribution was
zero-inflated (Supplemental Figure S1). In the wet season,
only 32% of the lines (895 out of 2,735 genotypes) had non-
zero relative germination, whereas in the dry season, it was
91% (1,385 out of 1,509 genotypes). Despite having more
plants capable of germinating in the dry season, the distribu-
tion of relative germination showed few rice lines with val-
ues above 0.5 (Supplemental Figure S1). Genotypes with
relative germination higher than 0.5 were considered good
multi-environment germinators because they germinated at a
similar level in flooded and control environments. In the
wet season, only 14% (129) of the germinated rice lines
were good multi-environment germinators, and this
percentage was lower in the dry season (3%, 42 lines). The
good multi-environment germinators were indicas (33 lines)

and japonicas (32 lines) in the wet season and indicas
(31 lines) in the dry season (Supplemental Figure S1D
and Supplemental Table S1). Because the best multi-
environment germinators were rice lines from indica
subpopulations, we focused analysis on the 1,094 (wet
season) and 850 (dry season) indica lines.

GWAS showed that relative germination is a
polygenic trait
We integrated relative germination data by performing two
indica-focused GWAS for wet (square root transformed) and
dry seasons, using 693,502 SNPs generated from the IRRI
6.5 million SNP database (Mansueto et al., 2016). In addition
to the kinship matrix in wet and dry seasons, we use age of
seeds (Supplemental Table S2) as a covariate in our model
for the wet season (seeds from the dry season were all
the same age). GWAS results showed 475 SNPs (P 510–5;
Figure 1) or 210 SNPs (FDR-adjusted P 50.05) and 176
SNPs (P 510–5; Figure 1) or 7 SNPs (FDR-adjusted
P 50.05) with highly significant association values in the
wet and dry season, respectively. Our GWAS results showed
several associated SNPs with modest phenotypic effects in
the wet and dry season (Supplemental Table S2). However,
there were six potential QTL regions across seasons with
hundreds of genes potentially associated to the trait on
chromosomes 4, 5, 6, 7, 8, 10, and 11 (Figure 1—colored
gray and yellow). Due to the high number of associated
SNPs with small effects from multiple chromosomal regions
(Boyle et al., 2017; Liu et al., 2018), we concluded that
relative AG is a polygenic trait, with little seasonal overlap of
chromosomal regions with significantly associated SNPs.

Post-GWAS pipeline identified genes significantly
associated with relative germination
GWAS analysis identified several potential candidate genes.
To select genes and pathways for further study, we
performed a generalized gene analysis of SNPs from both
seasons using MAGMA (de Leeuw et al., 2015). These post-
GWAS results showed sharper signals of significantly associ-
ated genes in the wet season, with 36 genes in the wet
season compared to 27 genes in the dry season with
genome-wide significance level 40.0001 (Figure 1). This
analysis showed one region on chromosome 7 with an effect
across seasons. MAGMA results were then merged with a
protein–protein interaction (PPI) network (MH63, indica;
Song et al., 2018), allowing integration of biological PPIs as
links in the network. Within the two season-linked networks
(Supplemental Table S2), the top connected protein mod-
ules with the highest additive MAGMA scores (Figure 1)
were BGIOSGA017028 for the wet season (Zm = 9.41;
Figure 1) and BGIOSGA028525 (Zm = 8.61; Figure 1) for the
dry season. We looked at the chromosomal location of each
node in the two season-linked subnetworks and narrowed
this signal down to one protein: BGIOSGA026448/
Os07g0693800 (Chr7: 27,641,164–27,653,064) on chromo-
some 7. The genomic location of this protein overlaps the
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region that has several significant genes in the MAGMA-
GWAS results for both seasons (Figure 1). We concluded
that there is a high association between the relative germi-
nation trait and this region on chromosome 7.

To link the gene analyses results from MAGMA of the
wet and dry season, we performed a meta-analysis that
takes into consideration linkage disequilibrium (LD) by link-
ing the SNPs in 10-kb windows to the corresponding genes
in those regions from the indica reference genome
(ASM465v1; de Leeuw et al., 2015). The analysis showed 483
genes significantly associated with a P 50.01
(Supplemental Figure S2). These 483 genes were selected
for further gene ontology (GO) characterization using
AgriGOV2.0 (Du et al., 2010; Tian et al., 2017). Using the O.
sativa indica (Rice TIGR gene model; Kawahara et al., 2013)
annotation, we determined that of the 483 genes only 300
had GO annotations. Out of these, we found 116 GO terms
that were significantly enriched (Supplemental Figure S2).
Among these significant GO terms were: fatty acid and car-
bon metabolism, response to abiotic stimulus, negative reg-
ulation of gene expression, and methylation (Supplemental
Figure S2 and Supplemental Table S3). The enrichment
results showed that the genes highly correlated to germina-
tion under flooding are within the response to stimuli GO
term and take part in gene regulation and methylation

pathways. Among the genes in the methylation GO cate-
gory, four genes are on chromosome 7 (BGIOSGA026447/
Os07g0693700; BGIOSGA026441/Os07g0692500;
BGIOSGA024323/Os07g0475800; BGIOSGA024320/
Os07g0476200). Of these proteins, we focused on CLASSY 1
(CLSY1, BGIOSGA026441/LOC_Os07g49210/Os07g0692600,
Chromosome 7: 29,473,405-29,475,312; UniProt ID:
Q0D3D6) to test for functional association with the AG
trait using FN-mutants (Fast neutron mutants) from the
UC Davis mutant library (Li et al., 2017). We focused our
functional analyses on CLSY1 because it fulfilled the follow-
ing set of criteria: significant association to the trait in
GWAS and/or post-GWAS; was part of the gene regulatory
ontology term; and membership in the dmGWAS top
subnetwork.

In addition to mutants and SNP-by-SNP GWAS, we used
a different association genetics approach to show that the
CLSY1 genomic region predicts AG. Here, we used six
genome-wide SNP principal component axes to control for
genomic background (e.g. Price et al. (2006)). To represent
possible effects of the target region, we used the indica ge-
nome model BGIOSGA026441 (Chr7: 27,578,735–27,588,520
nt), extracting three principal components that summarize
local SNP variation in this region. Using multiple regression,
we tested the relation between these nine principal

Figure 1 Genome wide association and post-GWAS results performed on the relative germination from indica subpopulation varieties from the
3,000 genomes panel. A, Manhattan plots of GWAS results for wet and (B) dry seasons. C, Manhattan plots of MAGMA analyses performed on
the relative germination and the SNP-to-Gene genomic data (35,280 genes) for the wet season, and (D) the dry season. E, Subnetworks with the
highest score from the top 100 modules created by using dense module network search (dmGWAS) in R for wet season and (F) dry season.
In GWAS Manhattan plots, each dot is a single nucleotide polymorphism, while in MAGMA Manhattan plots each dot is a gene. The horizontal
lines in a and b are the thresholds for significant –log10(P-value/Number of markers). Bold line: –log10(0.01/Number of markers) and dashed line:
–log10(0.05/Number of markers). The horizontal lines in c and d are the thresholds for significant –log10(P-value*). Bold line: –log10(1e-7) and
dashed line: –log10(1e-5). SNPs within a chromosome are colored as follows: chromosome 1-blue, 2-yellow, 3-purple, 4-darkgreen, 5-fuscia, 6-or-
ange, 7-pink, 8-bluegreen, 9-brown, 10-lightgreen, 11-blue, and 12-yellow. In yellow box, chromosome region of interest and gene of interest within
region. *P-values were corrected for multiple testing using permutation in MAGMA.
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components and the phenotype data from wet and dry
seasons (Supplemental Table S2). Results showed that the
phenotype in the wet season was significantly predicted by
PC2 from the CLSY1 genomic region on Chromosome 7
(P5 6.806e-07; Table 1). This third approach is not fully in-
dependent of SNP-by-SNP GWAS, but finding a positive sig-
nal in both analyses reinforces our focus on this target
region.

We also examined LD in the region of interest annotated
for indica rice background near BGIOSGA026441
(Chromosome 7: 27,578,735–27,588,520 annotation:
ASM465V1; japonica background LOC_Os07g49210 annota-
tion: MSU; Figure 2). Results show patchy, variable levels of
LD in the CLSY1 locus and flanking regions. SNPs within the
methyltransferase gene (BGIOSGA026441/Os07g0692401)
show little LD with the SNPs in the CLSY1 locus
(BGIOSGA026441/Os07g0692600). Several SNPs within
CLSY1 tend to be in high LD with each other. Furthermore,
we checked whether the down- and upstream genomic
regions were in LD with the 11 SNPs of interest. LD analysis
of the ±50-kb regions showed that the CLSY1 and methyl-
transferase regions are in LD with SNPs up- and downstream
from them (Figure 2; Supplemental Figure S2). Two regions
down- and upstream from the methyltransferase and CLSY1
genes are in low LD, respectively (Figure 2). We conclude
that our gene of interest shows moderate LD with nearby
SNPs in the region and with SNPs up- and downstream.

Thus, our focus on CLSY1 is reinforced by its low LD with
the methyltransferase gene, in combination with GWAS and
post-GWAS analyses.

Candidate mutants are taller than WT plants under
flooding
Considering the genes of interest determined by using
GWAS and post-GWAS, we selected mutant lines for func-
tional genomics studies from the UC Davis collection, (Li
et al., 2017). To identify the functional association between
the genes of interest and germination under flooding envi-
ronment, we performed a preliminary screening, focusing on
mutants FN-559-S (https://kitbase.ucdavis.edu/search_result?
mutant_id=FN559-S) and FN-544-S (https://kitbase.ucdavis.
edu/search_result?mutant_id=FN544-S). Both mutants carry
a mutation in the CLSY1 region, Chromosome 7:
27,578,735–27,588,520 (indica background BGIOSGA026441,
annotation: ASM465V1; japonica background LOC_
Os07g49210 annotation: MSU). FN-559-S carries an 11-bp
deletion in chromosome 7: 29,473,577–29,473,588. FN-544-S
carries a 7,596-bp inversion in chromosome 7: 29,473,094–
29,480,690. Within this region, in japonica background
(Nipponbare annotated genome), there are three annotated
genes: Os07g0692401, Os07g0692500, and Os07g0692600
(Chromosome 7: 29,465,173–29,475,499; annotation: IRGSP-
v1.9).

Table 1 ANOVA results for the relative germination in the wet and dry seasons with the three principal component loadings for the SNP
composition from the region of interest (PC_Region) and six principal component loadings for the whole SNP genome data for indica
(PCA_Genome).

Wet season
Term df sumsq Meansq Statistic P-value P-value adj

PC_Region1 1 3.33E-02 0.0332838 0.440204 5.07E-01 1.00E + 00
PC_Region2 1 2.25E + 00 2.2468779 29.716702 6.19E-08 6.81E-07
PC_Region3 1 1.14E-01 0.1140305 1.508142 2.20E-01 1.00E + 00
PCA_Genome1 1 9.13E-02 0.0913286 1.207892 2.72E-01 1.00E + 00
PCA_Genome2 1 5.69E-03 0.0056875 0.075221 7.84E-01 1.00E + 00
PCA_Genome3 1 3.05E-01 0.3049699 4.033463 4.49E-02 4.93E-01
PCA_Genome4 1 2.84E-01 0.2843742 3.761069 5.27E-02 5.80E-01
PCA_Genome5 1 1.91E-04 0.0001913 0.00253 9.60E-01 1.00E + 00
PCA_Genome6 1 3.53E-03 0.0035253 0.046625 8.29E-01 1.00E + 00
age 1 1.05E-04 0.0001046 0.001383 9.70E-01 1.00E + 00
Residuals 1086 8.21E + 01 0.0756099

Dry season
Term df sumsq Meansq Statistic P-value P-value adj

PC_Region1 1 0.051327 0.051327 2.259 1.33E-01 1.00E + 00
PC_Region2 1 0.086395 0.086395 3.802 5.15E-02 5.15E-01
PC_Regopm3 1 0.002954 0.002954 0.13 7.19E-01 1.00E + 00
PCA_Genome1 1 0.062416 0.062416 2.747 9.78E-02 9.78E-01
PCA_Genome2 1 0.177507 0.177507 7.811 5.31E-03 5.31E-02
PCA_Genome3 1 0.439879 0.439879 19.356 1.22E-05 1.22E-04
PCA_Genome4 1 0.007953 0.007953 0.35 5.54E-01 1.00E + 00
PCA_Genome5 1 0.076761 0.076761 3.378 6.64E-02 6.64E-01
PCA_Genome6 1 0.150507 0.150507 6.623 1.02E-02 1.02E-01
Residuals 840 19.089394 0.022725

P-value adjusted by using Bonferroni correction. Bold value represents statistically significant p-value adjusted 5 0.05.
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Following GWAS, we performed two analyses to deter-
mine if the gene affected in FN-559-S or FN-544-S influences
AG. The first line of evidence was a phenotypic analysis
using FN-559-S mutant seeds from the third generation by
single seed descent). Phenotypic results of FN-559-S showed
a 50% increase in plant height under flooding compared to

wild-type (WT; LSmeans of height were 22.49 cm for hetero-
zygous FN-559-S genotype and 12.82 cm for WT–Kitaake;
Nmutant = 14, NWT = 28, P = 0.01; Figure 3). The frequency
of clsy1 (M1-559) homozygous mutants was too low to
have at least three biological replicates per treatment. Thus,
homozygous mutants were excluded from statistical

Figure 2 LD plot of (A) the 11 SNPs in the region of interest and gene models from the Oryza indica reference ASM465V1. Blue rectangles indicate BGI
gene model for BGIOSGA026441. Oryza japonica reference MSU_osa1r7. Green rectangles indicate gene model for Gnomon: XM_015789529.1/
LOC9266851 and XM_015790931.1/LOC4344376. Oryza japonica reference MSU_osa1r7. Brown rectangles indicate gene model for FGENESH:
gene7_4409 and gene7_4410. LD values were calculated for the SNPs within the region of interest. B, The 50-kb up- and downstream genomic region
around the target region. Gene models were taken from Persephone web software. Color in LD plot indicates LD r2 (Red: 1 = r2, gray: 0 = r2).
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analyses. We did not find significant differences in the day
of germination between FN-559-S and WT–Kitaake
(Supplemental Figure S3), meaning that mutant and
WT genotypes germinated at the same time. Also, clsy1
(M1-559) showed a longer root phenotype (450%) than
WT–Kitaake (Nmutant = 14, NWT = 28, P = 0.005;
Supplemental Figure S3).

The second line of evidence was a phenotypic analysis
performed using mutant clsy1 (M2-544 mutant seeds from
the third generation by single-seed descent) in flooding envi-
ronments. Phenotypic results for FN-544-S showed a 50% in-
crease in plant height compared to WT under flooding
(LSmeans of height were 21.62 cm for heterozygous FN-544-
S and 12.92 cm for WT–Kitaake; Nmutant = 25, NWT = 28,
P = 0.02; Figure 3). We were unable to test the homozygous
FN-544-S because none of the tested progeny had this geno-
type. We hypothesize that this was due to embryonic lethal-
ity in the homozygous FN-544-S. We did not find differences
in the day of germination between FN-544-S and WT–
Kitaake (Supplemental Figure S3). Also, FN-544-S had a lon-
ger root phenotype (450%) than WT–Kitaake (Nmutant =
25, NWT = 28, P = 0.007; Supplemental Figure S3). Thus,
these two independent mutants showed that FN-559-S and
FN-544-S mutants are almost double in height compared to
WT–Kitaake in a flooding environment, meaning that when
one allele of this gene is mutated it positively influences
height during flooding, facilitating seedling establishment
under a stressful environment.

FN-559-S reduces gene expression of a linked
methyltransferase in the control environment
To determine the molecular mechanisms for enhanced plant
height in flooding environments in FN-559-S, we performed

gene expression analysis of CLSY1 (XM_015789529.1/
LOC9266851) and the methyltransferase gene present in the
chromosomal region of interest. Relative CLSY1 gene expres-
sion showed no differences between heterozygous FN-559-S
mutant and WT-Kitaake under flooding or control condi-
tions (PTreatment = 0.81, Pgenotype = 0.74; Figure 4). This re-
sult was expected because the deletion in the FN-559-S
mutant allowed the synthesis of mRNA that contained a
premature stop codon that could lead to a �90% change of
the original protein sequence (Supplemental material 2).
The CLSY1 gene is part of the RdDm epigenetic pathway in
rice (Hu et al., 2013) and is an ortholog of the CLASSY1
gene in Arabidopsis (Zhou et al., 2018). A possible effect of
FN-559-S downstream of CLSY1 could involve changes in
methylation and gene expression profiles. In the control en-
vironment, relative expression of the methyltransferase gene
was significantly lower (Nmutant = 4, NWT = 6, Pgenotype =
0.002) in FN-559-S compared to Kitaake (Figure 4). Under
nonflooding conditions, gene expression of the methyltrans-
ferase was lower in the mutant compared to WT–Kitaake,
and the FN-559-S deletion mutation falls within the CLSY1
gene (Li et al., 2017). Although we did not find statistically
significant differences in expression of this methyltransfer-
ase gene under flooded conditions, we hypothesize that
truncation in the CLSY1 gene may lead to changes of
whole-genome methylation profiles under control environ-
ments. We propose that truncation of the CLSY1 gene in
rice may alter the RNA-guided DNA methylation pathway
that leads to enhanced plant height in flooded environ-
ments due to changes in methylation profiles and overall
changes in gene expression. The molecular mechanisms
behind this interaction are not elucidated here and will
need further analysis.

Figure 3 Phenotype of the mutant lines and WT under flooding conditions. A, Pictures of FN-559-S, FN-544-S, and WT plants after flooding treat-
ments. White bar = 19.05 mm. B, Least-square means of square root transformed plant height at Day 14 in the flooding environment. FN-559-S
(red) and WT (black). C, Square root of the least-square means of FN-544-S (red) and WT (black) at Day 14 in flooding environment. Mutants
FN-559-S and FN-544-S are compared to WT by one-way ANOVA. Letters above square plots indicate the honestly significant difference–Tukey’s
test results with P5 0.05. Error bars represent standard errors.
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Whole-genome methylation profiles differ between
FN-559-S and WT–Kitaake under flooding
To test if the whole-genome methylation profiles were af-
fected by the deletion of the CLSY1 gene, we performed
genome-wide bisulfate sequencing on FN-559-S and WT–
Kitaake under control and flooded environments. In all
samples and treatments, over 40% of methylation events
were CpG, whereas �20% and �3% were CHG and CHH
types (Supplemental Table S4). There were CpG methylation
profile differences between WT and heterozygous FN-559-S
in the control and flooded environments (Figure 5). The ma-
jority of CpG differentially methylated sites (q-values 50.05
and differential methylation level 525%; Wang, 2010) over-
lapped promoter and intergenic regions of loci

(Supplemental Table S5). We compared the percentage
CpG methylation of FN-559-S and WT in the flooded envi-
ronment and detected 758 differentially methylated loci
(DML) events. Because there can be multiple CpG methyl-
ation events within the same locus, the 758 events were
within 395 unique loci (Supplemental Table S6). The qual-
ity of the methylation data used was above 30 QC-score
and the average unique mapping rate was 73.57%
(Supplemental Table S6), which is within the range of re-
cently published bisulfate sequencing data (Zhou et al.,
2018; Wu et al., 2020).

We performed a metabolic pathway analysis (grame-
ne.org) on the 395 DML. This analysis linked 10 of these
loci to well-characterized metabolic pathways and found

Figure 4 Phenotyping set-up and gene expression of FN-559-S and WT under control and flooding conditions. A, Pictures of experimental set-up
used for plants under control and flooding treatments at Day 14 after planting. B, Log10 relative gene expression of CLASSY1 gene in FN-559-S
(red) and WT (black) at Day 14 in control and flooding environment. C, Log10 relative gene expression of methyl transferase gene in FN-559-S
(red) and WT (black) at Day 14 after planting in control and flooding environment. In (B) and (C), Tukey–honestly significant difference test
results with P5 0.05 are shown by letters above means. Bars represent standard errors.
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21 over-represented pathways. Among these pathways were
regulation of seed size and seed development (Supplemental
Table S7). Among the genes that belong to both of these
metabolic pathways, two genes had multiple methylation
events: Os02g0244100 (E3 ubiquitin-protein ligase DA2, q-
valueEvent-1 = 0.003, methylation differenceEvent-1 = 33.3; q-
value Event-2 = 6.13 � 10–06, methylation difference Event-2 =
61.25; Supplemental Table S6 and Supplemental Figure S4)
and Os11g0523800 (Auxin response factor 2; q-value Event-1

= 7.72 � 10–08, methylation difference Event-1 = 71.43; q-
value Event-2 = 6.43 � 10–08, methylation difference Event-2 =
75.86; Supplemental Table S6 and Supplemental Figure S4).
In this analysis, the mutant was the “control group”, the WT
was the “treatment group”, and the methylation differences
were determined as the treatment minus control difference.
Both genes showed significant differential methylation with
higher methylation percentages in WT compared to FN-559-
S flooded (high positive value). A positive differential meth-
ylation value indicates hypomethylation in the mutant.

The Auxin response factor 2 (Os11g0523800) gene showed
significantly higher transcript levels in clsy1 (M1-559) control
compared to FN-559-S flooded, showed no gene expression
differences compared to WT flooded (Supplemental
Figure S4), and had higher methylation levels in WT flooded
compared to FN-559-S flooded (Supplemental Table S6).
Although we hypothesized that a deletion in CLSY1 could
lead to reduced methylation and higher gene expression due
to de-regulation of the RdDm pathway, those hypomethy-
lated regions might not all be gene-coding areas (Zhou
et al., 2018). Perhaps, repression of seed development is
deactivated under stress environments by other epigenetic
pathways besides RdDm that do not involve CLSY1 and
methylation events (Kumar et al., 2018). Also, there may be
other regulatory pathways that are controlling the expres-
sion of genes involved in seed development (Iwasaki et al.,
2019), especially under stressful environments. Thus, gene
expression is not suppressed on these stress-related response
genes and pathways in our CLSY1 mutant.

Figure 5 CpG Methylation profiles from leaves using principal component analysis of the CpG sites from FN-559-S and WT–kitaake under (A)
control and (B) flooded environments. Color points represent genotype, FN-559-S: salmon and WT: blue. Profiles of 24nt-siRNA leaves from WT
and FN-559-S under control and flooded treatments. C, Log10(P-value) of RPKM, normalized by using DEseq dispersion coefficients and size fac-
tor normalization. FN-559-S siRNA profiles are different from WT. Figure faceted by dicercall size generated using Shortstack, error bars show
the standard error, blue color indicates flooded treatment and salmon color indicates control treatment. Diamond shapes are FN-559-S and
circles are WT. D, Profile of RDA model using 24nt-siRNA RPKM data from leaf tissue. Color of dots represents treatment variable (Control:
salmon; flooded: blue), (E) color of dots represents treatment variable (WT: salmon; FN-559-S: blue) Rotated axes are the scores of RDA1 and
RDA2 model fit.
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Small RNA-seq and RNA-seq profiles differ between
FN-559-S and WT–Kitaake in flooded and control
environments
In Arabidopsis, CLSY1 influences locus-specific control of
24-nt small-interfering RNA (siRNA) production (Zhou et al.,

2018). To test if the deletion in CLSY1 changed siRNA pro-
duction and overall gene expression in leaves under flooded
conditions, we performed small RNA-seq and RNA-seq
analysis on FN-559-S and WT–Kitaake under control and
flooded environments. The small RNA-seq data detected

Figure 6 Profiles of 24nt-siRNA and RNA levels in leaves from WT and FN-559-S under control and flooded treatments. A, Principal components
24nt-siRNA-seq of rlog transformed counts from normalized counts. B, Principal component analysis of RNA-seq of rlog transformed counts from
normalized counts. Point colors are salmon: WT–control, green: WT-flooded, blue: FN-559-S-control and purple: FN-559-S-flooded. Normalized
counts were obtained after calculating dispersion coefficients and size factors on each library using DESeq. Profiles of DML methylation, a nearly
significantly differential expressed 24nt-siRNA cluster and significantly differentially expressed genes. C, Os11g0700500, (D) Os10g0553800, (E)
Os11g0698567. In each panel: on the right are methylation profiles of DML from leaves of FN-559-S (black bars) and WT (gray bars) under flooded
environment. On the left, gene expression profiles from leaves of FN-559-S and WT under flooded and control environment. Genome annotation
is RAP-DB 2011 version. Counts from rlog transformed count data from additive model. Error bars show the standard error. Blue indicates flooded
treatment and salmon indicates control treatment. Normalized counts were obtained after calculating dispersion coefficients and size factors for
each library using DESeq. Wald-P-value was calculated using DESeq additive model of RNA count levels.
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32,787 genomic clusters, with 79% of these clusters classified
as 24-nt siRNAs (24-nt siRNAs: 25,878; 23-nt RNAs: 507; 22-
nt RNAs: 583; 21-nt RNAs: 1094; 20-nt RNAs: 255;
Supplemental Figure S5). The reads per kilobase of transcript
per million mapped (RPKM) from the 24-nt siRNA clusters
showed a significant linear relationship with the treatment
variable under a multivariate redundancy analysis (RDA)
model (Legendre and Legendre, 1998; P = 0.02; Figure 5, D
and E), which predicted �14% of RPKM data variation
(Figure 5; Supplemental Material 1). We determined from
the angle between the response variable vectors in the RDA
figures that clsy1 (M1-559) and flooded treatment showed
no significant covariation (Cos 90� = 0, Figure 5). The analy-
sis of variance (ANOVA) of the multivariate model indicates
that the 24-nt siRNA clusters covary only with treatment
(P = 0.009, 999 permutations performed for P-value adjust-
ment), meaning that there will be significant changes in the
24-nt siRNA profiles in flooded conditions. We hypothesize
that 24-nt siRNA RPKM profiles did not covary with the
mutant variable because production of 24-nt siRNAs may be
cluster-specific under flooded environments, and the overall
24-nt RNA RPKM profiles may not reflect the specificity in
our CLSY1 mutant. Also, the heterozygous deletion genotype
in CLSY1 is not dominant, and alternative epigenetic
pathways (Kumar et al., 2018; Iwasaki et al., 2019) might be
involved in the production of 24-nt RNAs.

To test if cluster-specific expression of 24-nt siRNA was af-
fected by flooded conditions, we performed gene expression
analysis on the small-RNA-seq cluster counts. Our small-
RNA-seq results showed that there were differences in
cluster-specific expression between FN-559-S and WT under
control and flooded conditions. Of the 25,878 24-nt siRNA
clusters, 27 showed significant differences in expression in
contrasting treatments (adjusted P 50.05; Supplemental
Table S8) and 13 when contrasting genotypes (adjusted
P 40.05; Supplemental Table S8). To determine if FN-559-S
changed gene expression profiles, we performed RNA-seq
analysis. RNA-seq results showed that there were significant
differences in gene expression between FN-559-S and WT
under control and flooded conditions (Figure 6). We
detected expression of 29,644 genes, among which 3,688
were differentially expressed in contrasting treatments, with
1,868 upregulated and 1,820 downregulated (adjusted
P 50.05; Supplemental Table S9). Also, 608 genes were
differentially expressed between genotypes: 241 were upre-
gulated and 367 were downregulated (adjusted P 40.05;
Supplemental Table S9).

We looked at the genomic region of interest on chromo-
some 7 (27,578,735–27,588,520) and found no DML and no
small RNA-seq clusters within that region. Also, there were
no significant differences in gene expression of CLSY1,
whereas the methyltransferase gene expression profile
showed decreased counts in FN-559-S under control and
flooded conditions (Supplemental Figure S6). Controlling for
multiple tests, we found three genes that had differential
methylation, a nearby differentially expressed 24-nt siRNA
cluster, and differential gene expression of Os11g0700500

(Transcription factor MYBAS1; q-value 50.05 and methyla-
tion difference 440%; Figure 6; Supplemental Tables S6
and S9), Os10g0553800 (Flavin-containing monooxygenase;
q-value 50.05 and methylation difference 435%; Figure 6;
Supplemental Tables S6 and S9), and Os11g0698567
(Unknown gene; q-value 50.05 and methylation difference
445%; Figure 6; Supplemental Tables S6 and S9). Their role
in the downstream metabolic and physiological responses to
flooding have not been characterized. Nevertheless, due to
their methylation profile, siRNA-link, and gene expression
differences, these genes might play an important role in rice
germination and seedling establishment during floods.

Discussion
We found that indica rice genotypes tend to have a stable
phenotypic response across water regimes. Hence, natural
variation within indica could hold the key to understanding
the genetics leading to a stable AG trait. In wet versus dry
seasons, there are marked environmental differences such as
lower solar radiation, higher precipitation averages, and
lower temperatures during the wet season (Yoshida, 1977;
Yang et al., 2008; Silva et al., 2017), which could lead to dif-
ferent plant responses to flooding. We hypothesized that
several of the indica rice landraces tend to be grown in trop-
ical and subtropical climates with wet season (d’Alpoim
Guedes et al., 2015), which could influence their status as
good multi-environment germinators. Further studies will be
necessary to test this hypothesis. GWAS and gene set analy-
ses showed six potential QTL regions on chromosomes 4, 5,
6, 7, 8, 10, and 11 (Figure 1—colored gray and yellow).
These regions contain several genes that show association
with the trait across seasons. Based on the high number of
associated SNPs with small effects from multiple chromo-
somal regions (Boyle et al., 2017; Liu et al., 2018), we con-
clude that relative AG is a polygenic trait. These results were
expected because there are several physiological responses
in domesticated rice (Voesenek and Bailey-Serres, 2013,
2015) that have been linked to seedling survival under an-
aerobic environments (He and Yang, 2013; Miro and Ismail,
2013; Toledo et al., 2015). These responses include the
above-mentioned LOES and LOQS (Voesenek and Bailey-
Serres, 2015). Thus, the genetic architecture of germination
under flooding appears polygenic in nature.

As often happens, our GWAS analysis identified several
potential candidate genes that were worthy of further study.
At that point, our post-GWAS approach leveraged techni-
ques from human genetics (de Leeuw et al., 2015) and net-
work biology (Wang et al., 2015) to identify specific rice
mutants with functional effects on AG. These include genes
involved in fatty acid metabolism, ethylene perception, sugar
metabolism, regulation of gene expression, and epigenetics.
We identified a gene regulatory pathway that influences the
AG trait through RdDm processes and determined that the
CLSY1 gene contributes to the capacity of rice to germinate
under anaerobic conditions. In Arabidopsis, CLSY1 is a key
gene in the RdDm pathway, influencing locus-specific
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control of 24-nt siRNA production, methylation, and gene
expression profiles (Zhou et al., 2018). Under AG conditions,
our heterozygous FN-559-S mutant showed significantly
greater plant height than WT. In addition, under nonflood-
ing environments the CLSY1 rice mutant showed lower gene
expression of a methyltransferase compared to WT
(Figure 4). The interaction between CLSY1 and the methyl-
transferase might be linked to a PPI disruption in heterozy-
gous CLSY1 mutants, and further research to elucidate this
interaction would be useful. Despite not finding differences
in the tested methyltransferase gene expression under
flooded conditions, we detected differences in methylation
at the whole-genome level (Figure 5), showing that that
flooding alters the methylation profiles in the CLSY1 mutant,
as well as reducing RPKM profiles of 24-nt siRNAs
(Figure 5). All these changes point to a key role of RdDm/
CLSY1 in AG responses that causes physiological changes ad-
vantageous for seed germination and seedling establishment
under anoxic environments. It is possible that CLSY1 differ-
entially methylated regions might not all be within gene
coding areas (Zhou et al., 2018), and the molecular mecha-
nisms and impact on the phenotype will need further
investigation.

In the FN-559-S mutant, we found genes that had differ-
ential methylation profiles, were close to a region with a dif-
ferentially expressed siRNA cluster, and showed differential
expression profiles. These genes were involved with auxin
processes and plant growth, meaning that our mutant could
alter multiple down-stream pathways that have important
effects on rice physiological responses to flooding.
Downstream changes caused by differential methylation and
siRNA variation can lead to gene expression differences in
the mutant under flooded compared to control environ-
ments. Several of these genes seem to be involved in the
Calvin cycle, TCA pathways, and other metabolic processes.
The role of the TCA pathway under AG conditions in seed-
lings has been studied at length; under anaerobic conditions
the plant switches from the TCA cycle to fermentative me-
tabolism to produce ATP (Magneschi and Perata, 2009;
Miro and Ismail, 2013; Ray et al., 2016). The production of
ATP under anoxic conditions comes from a multi-step pro-
cess in which sucrose is cleaved to generate pyruvate for the
oxygen-dependent TCA cycle (Ray et al., 2016). We found
several SNPs and genes that might be part of these meta-
bolic processes. However, the molecular mechanisms are not
fully understood (Takahashi et al., 2014) and are not the pri-
mary aim of this research.

Our heterozygous FN-559-S showed significant differences
in its small RNA, whole-genome methylation, and gene ex-
pression profiles compared to WT. In this mutant, the over-
all gene expression profiles suffered higher deregulation than
the small-RNA cluster-specific expression. Taking together,
our physiological and omics results and the low number of
differentially expressed clusters in small-RNA-seq data com-
pared to RNA-seq data, we propose that there is a tight reg-
ulation of changes involving the RdDm processes, indicating
that small changes in this pathway can lead to a marked

effect on gene expression and physiological responses in the
plant under both control and flooded environments.

Conclusions
We conclude that AG is a complex polygenic trait. Our
post-GWAS approach leveraged techniques from human ge-
netics (de Leeuw et al., 2015) and network biology (Wang
et al., 2015) to identify specific rice mutants with effects on
AG. Several approaches support functional effects of CLSY1
on AG. We propose that a mutation in the CLSY1 gene in
rice influences the RdDm pathway leading to changes in
methylation profiles and gene expression patterns, causing
enhanced survival of seeds under anoxia and greater seed-
ling establishment in flooded environments. Our work fur-
thers the knowledge and understanding of pathways
influencing AG. Although the CLSY1 alleles in the GWAS
population have moderate effects, it is possible that epistasis
might influence effects of this locus, resulting in larger allelic
effects in some genetic backgrounds. We suggest that these
post-GWAS approaches can help prioritize polygenic candi-
dates for other traits and agricultural challenges.

Methods
Experimental design and screenhouse phenotyping. Counts of
germinated plants were recorded for the 2017 wet and 2018
dry season. 2,700 rice genotypes (20 seeds per genotype, to-
taling 109,440 seeds) were screened in the wet season
whereas 1,509 rice genotypes (30 seeds per genotype, 91,800
total seeds) were screened in the dry season. There are
marked differences between seasons, such as lower solar ra-
diation, higher precipitation averages, and lower tempera-
tures during the wet season (Yoshida, 1977; Yang et al.,
2008; Silva et al., 2017). The first experiment was performed
in the wet season with seeds available in the International
Rice Genebank at the International Rice Research Institute.
Subsequently, a seed increase was performed using seeds
from the control environments in the wet season. The
newly harvested seeds were used for the dry season experi-
ment. In both seasons, we used an incomplete randomized
complete block (IRCB) design (Ireland, 2010) for the control
and 8-cm flooded environment. IRCB is a partially balanced
incomplete block design that uses checks (Controls) in each
block to account for experimental variability instead of repli-
cates of each data cell (Patterson and Williams, 1976). The
rice genotypes used for checks were Ma Zhan (Red), Khao
Hlan On, IR 42, and IR 64.

Estimation of adjusted means. To determine the adjusted
means for the number of plants germinated we used the
augmented randomized block experimental design model
using the PBTools software V1.4 (http://bbi.irri.org/products).
We calculated the adjusted means for each genotype used
in flooded (AG) and control environments. The minimum
number of germinating plants was 0 and the maximum was
20 in the wet season and 30 in the dry season. Any esti-
mated mean above or below those limits was transformed
to the closest limit number. We used the adjusted means of
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plant counts to determine the percentage of germination of
the genotypes in each environment (Eq. 1). To join the per-
centage of germination in control and flooded environments
into one physiological trait we used relative germination
(Eq. 25). All downstream analyses were performed using
relative germination values.

Percentage of germination in each environment

¼ no: of plants in environment

20 Wet or 30 Dry season

� �
�100 1ð Þ

Relative germination ¼ Percentage of germination in flooded

Percentage of germination in control

� �
2ð Þ

GWAS. We integrated the relative germination data from
wet (square root transformed) and dry seasons with a
693,502 SNP database using GAPIT (Lipka et al., 2012). To
run GWAS, we used the GAPIT generated kinship matrix;
model selection flag was set to TRUE and we use seed age
as a covariate for the wet season. The GWAS results from
GAPIT in Supplemental Table S2 were corrected using
the false-discovery rate method (Lipka et al., 2012). The
Manhattan plot thresholds were graphed using GAPIT
Bonferroni cut-off values (GAPIT function code; Lipka et al.,
2012). Genotype SNP data for the 6.5 million SNPs were
downloaded from the IRRI website (https://snp-seek.irri.org/;
Mansueto et al., 2016); this SNP database was created by
IRRI from the biallelic 3kRG 29mio SNP dataset by applying
the following filtering criteria: missing calls per
sample 531% (1 sample deleted, see .irem file), missing calls
per variant 520%, and minor allele frequency per variant
41%. The SNP data were filtered by keeping only indica
genotypes and SNPs with heterozygosity values 430%, then
it was LD pruned by a 2-step procedure using PLINK v1.9
(Chang et al., 2015): (1) LD pruning with window size 10 kb,
window step: 1 SNP, R2 threshold: 0.8, followed by (2) LD
pruning with window size 500 SNPs, window step 1 SNP, R2

threshold 0.8. Two indica-focused GWAS were performed
using 1,094 rice lines in the wet season and 850 rice lines in
the dry season. Data was tested for normality prior to
running GWAS; wet season data was transformed (Square
root transformation) to fulfill normality.

Post-GWAS MAGMA. To identify candidate genes and
pathways, a generalized gene analysis of the GWAS results
from wet and dry seasons was performed using MAGMA
(de Leeuw et al., 2015). LD was considered by linking the
SNPs in 10-kb windows to the corresponding genes in those
regions from the indica reference genome (ASM465v1) using
gene models for protein-coding genes. The MAGMA-gene
analysis used correlations among local SNP markers to ag-
gregate SNPs with low to moderate effect for testing trait
associations at the level of genes (de Leeuw et al., 2015).
We performed two gene analysis with MAGMA using the
SNP-wise model flag to calculate mean SNP association
values per gene. This was done for the wet and the dry
seasons, followed by genome-wide correction for multiple

testing using permutation (de Leeuw et al., 2015). Then we
performed MAGMA meta-analysis using the weighted
Stouffer’s Z method (Stouffer et al., 1949) to combine P-val-
ues from independent statistical tests. The meta-analysis
results were used for GO and dmGWAS analysis.

GO enrichment. Singular GO enrichment analysis was
performed on the genes from MAGMA meta-analysis with a
P-adjusted value 40.01 by using the AgriGO V2.0 annota-
tion tool (Du et al., 2010; Tian et al., 2017). The GO enrich-
ment was computed using Fisher’s exact test and the
pre-calculated background genes (Rice TIGR gene model)
followed by the Yekutieli (FDR) multi-test adjustment
method. Meta-analysis results showed 483 genes significantly
associated (P 50.01) to relative germination. We used
O. sativa indica as the species and the TIGR rice gene mod-
els (Kawahara et al., 2013) as the background (30,241
genes).dmGWAS. We linked all meta-analysis permuted
P-values with a pre-built PPI network from the rice informa-
tion gateway (MH63 indica line, http://rice.hzau.edu.cn/;
Song et al., 2018) and performed a dense module search
(dmGWAS R package; Wang et al., 2015) in R V3.9.0 (Team,
2015). To find dense network modules that have signifi-
cantly associated genes, we created a network for the top
100 protein modules, selected the protein with the highest
module dense score and created a subgraph that had the
highest aggregated local maximum proportion of low P-val-
ues (Wang et al., 2015; Figure 6). The scored z-value used in
dmGWAS was developed by ranking the highly connected
subnetworks using a scoring system of protein P-values
(Ideker et al., 2002). In our analysis, this subnetwork would
be composed of modules with proteins whose genes have a
low P-corrected value from the MAGMA meta-analysis,
reflecting their association value to the AG trait. Network
visualizations and annotations were added to each protein
by importing the GO data from gramene.org using ensembl
and biomart (accessed in 2018, https://plants.ensembl.org/
Oryza_sativa/Info/Index, https://useast.ensembl.org/info/
data/biomart/index.html).

Phenotyping of mutant progeny. To phenotype the
mutants from single-seed descent, we used acrylic chambers
(44 cm � 20 cm � 19 cm) with removable tops. For all
phenotyping experiments, each chamber was a block and
each block was divided into four compartments (11 cm �
20 cm � 19 cm); these compartments were the split-plots.
In each compartment, we added 1 L of Yoshida’s solution
(Yoshida et al., 1976) in 0.3% Gelzan (Caisson Labs,
Smithfield, UT, USA) then randomized and placed 32 seeds
(�2 cm below surface of the media) of WT/Kitaake
(N = 16), and clsy1 (M1-559) or clsy1 (M2-544) independent
mutant genotypes (N = 16) in a grid of 4 � 9 cells (seeds
spaced �2 cm from each other). Two of the compartments
in each block were aerobic controls, and the other two were
flooded with 3.5 L of distilled autoclaved water. The treat-
ment positions in the chambers were swapped in each
block. Mutants 554 and 559 were phenotyped in separate
experiments, and each experiment was a randomized
split-plot design with 108 Kitaake and 108 mutant seeds.
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Phenotyping traits were day of germination and plant height
and root length by the last day of the experiment. ANOVA
was performed using R V3.9.0 (Team, 2015) on plant height
by implementing a linear mixed model using two fixed vari-
ables: genotype and treatment and two random variables as
part of the split mode: block (chamber) and split factor
(compartment).

Analysis of variance and LD analyses. To determine
whether the gene regions of interest predict trait values, we
performed ANCOVA on the phenotype data for the wet
and dry season using the first three principal components of
the 11 SNPs within the chromosomal region of interest
(Chr7: 27,578,735–27,588,520; Supplemental Table S2). Seed
age was included as a covariate in the wet season experi-
ment. In the ANCOVA, the genomic background was con-
trolled by using the first six principal components from the
whole genotype data from indica lines used for the GWAS.
Principal components for the region of interest and
genome-wide SNPs were calculated using plink V1.90
(Chang et al., 2015). To determine correlations among the
SNPs in the region of interest, we calculated the LD r2 values
for 11 SNPs (Chr7: 27,578,735–27,588,520) using plink V1.90
(Chang et al., 2015). Also, to determine correlations among
the SNPs near the region of interest, we examined the 50-kb
up- and downstream flanking regions (Chr7: 27,538,520–
27,658,520). We calculated LD r2 using plink V1.90 (Chang
et al., 2015). All the LD values were graphed using R V3.9.0
and ggplot (Team, 2015).

Genotyping of mutant progeny. Leaf samples were taken
from each plant used in the phenotyping experiments for
FN-559-S and FN-544-S. DNA was extracted using
QuickExtractTM Plant DNA Extraction Solution (Lucigen,
Wisconsin, USA) following manufacturer instructions. To ge-
notype mutant 554, we performed PCR targeting the paren-
tal gene (F: TGT TTT GTC CCG ACT TCT GA, R: GTC CAA
GCT CCT CAT CCA GT) and mutated gene regions (F: GTC
CAA GCT CCT CAT CCA GT, R: ACA GTA GAC TTT GCC
TGC CT) following PCR conditions: Step 1: 95�C for 3 min,
Step 2: 95�C for 15 s, 67�C (For mutant gene) or 57�C (For
parental gene) for 30 s and 72�C for 45 s for 45 cycles, Step
3: 72�C for 10 min. The band patterns were visualized in a
3% agarose (Genesee Scientific) gel. To genotype mutant
559, we performed PCR using the following primer set (F:
GTA AAA CGA CGG CCA GTA CAA GGA CAG ACC TGG
ATG C, R: GCA GTG TTT TCC CAG AT, M13: [FAM]GTA
AAA CGA CGG CCA GT, [HEX]GTA AAA CGA CGG CCA
GT, [ROX]GTA AAA CGA CGG CCA GT) with the M13-dye
tag system (Schuelke, 2000) and the following PCR condi-
tions: Step 1: 95�C for 3 min, Step 2: 95�C for 15 s, 58�C for
30 s and 72�C for 45 s for 45 cycles, Step 3: 72�C for 10
min. We sent the M13-dye-labeled PCR product for frag-
ment analysis (Eton, Durham, NC, USA) and detected size
differences of mutant and WT amplified genomic region by
using Free Peak ScannerTM Software v1.0.

RNA extraction, and reverse transcription quantitative PCR
analysis. Leaf samples (NM1 = 4, NWT = 6) were ground
using a ball-mill tissue grinder (Genogrinder 2000;

SpexCentriprep Inc., Metuchen, NJ, USA) for 15 s at 2,000
strokes/min under liquid nitrogen. Sample RNA was
extracted using ZymoVR following manufacturer instructions.
RNA content was measured using a Nanodrop
(ThermoFisher Scientific), and cDNA was made using High-
Capacity cDNA Reverse Transcription Kit (ABI, Foster City,
CA, USA) following manufacturer instructions. Reverse tran-
scription quantitative PCR (RT-qPCR) analyses were done
using primers for endogenous control Os11g26910 (F: ATC
CTG GCC GCG AAC TA, R: CCA CTG GTT CTC CCT GC),
methyltransferase (F: GGC ATT CGA CTT TGC CG, R: GTA
ATG GCA CTC GAG GAA C), and CLASSY1 (F: AAA TGA
CTA CAA GGA CAG ACC, R: GGT GAG GAA GCA GCT
TT). The primers were designed with Primer Express soft-
ware for RT-qPCR (version 3.0; ABI, Foster City, CA, USA).
The PCR conditions used were 95�C for 10 min, then 60
cycles of 95�C for 15 s, 60�C for 30 s, 72�C for 20 s followed
by cooling. The relative quantification values were obtained
by using LightCyclerV

R

480 Software (version 1.5.1.62;
ROCHE). Data were analyzed with the R V3.9.0 (Agricolae
and dplyr packages; Team, 2015) by using logarithmic nor-
malization transformations, then performing a multiple-
factor ANOVA, followed by a honestly significant difference
(HSD)–Tukey’s pairwise comparison test.

Small RNA-seq and RNA-seq. Whole-leaf (No. of clsy1 M1-
559 = 3 per treatment and No. of WT/Kitaake = 3 per con-
trol and flooded treatments) samples were ground using a
ball-mill tissue grinder (Genogrinder 2000; SpexCentriprep
Inc., Metuchen, NJ, USA) for 15 s at 2,000 strokes/min under
liquid nitrogen conditions. RNA was extracted from the
samples using ZymoVR following manufacturer instructions.
The RNA concentration was measured using QUBITTM RNA
HS assay kit (ThermoFisher Scientific) following the manu-
facturer instructions and RNA quality was measured using a
Nanodrop (ThermoFisher Scientific). QuantSeq 30-mRNA-
seq library (Lexogen, Vienna, Austria) preparation kit and
Small RNA-seq library (Lexogene, Vienna, Austria) prepara-
tion kit were used following the manufacturer instructions.
Libraries were sequenced using NovaSeq6000 by multiplex-
ing into one lane all the RNA-seq or small RNA-seq libraries
at Duke University genomics core facility.

Bisulfate sequencing. Whole-leaf tissue (No. of FN-559-
S = 3 per treatment and No. of WT/Kitaake = 3 per control
and flooded treatments) samples were ground using a ball-
mill tissue grinder (Genogrinder 2000; SpexCentriprep Inc.,
Metuchen, NJ, USA) for 15 s at 2,000 strokes/min under liq-
uid nitrogen conditions. DNA was extracted using the
GeneJET plant genomic DNA kit (ThermoFisher Scientific)
following the manufacturer instructions. The DNA quality
was measured using a Nanodrop (ThermoFisher Scientific)
and DNA concentration was measured using QUBITTM

DNA BR assay kit (ThermoFisher Scientific). DNA samples
were sent for quality control, library preparation, and se-
quencing to GENEWIZ. Libraries were generated using swift
accel-NGS methyl-seq DNA library Kit (Swift Biosciences)
following the manufacturer’s protocol. Raw fastq reads were
trimmed using the bbduk program from bbmap package
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(https://sourceforge.net/projects/bbmap/) to remove adapt-
ers and 10 bp from the end of reads as suggested by the
manufacturer of the library prep kits (Settings used: k = 30,
mink = 5, hdist = 2, hdist2 = 1). Trimmed reads were then
aligned to the reference genome IRGSP1.0 using bismark
0.21 (https://www.bioinformatics.babraham.ac.uk/projects/bis
mark/). Alignments were then deduplicated and methylation
information was extracted using bismark 0.21 with default
parameters and a –no_overlap switch. The CpG methylation
information was then used for downstream differential
methylation analysis using methylKit 1.8.1 default parame-
ters (http://bioconductor.org/packages/release/bioc/html/
methylKit.html), methylation sites with minimal coverage of
eight were retained and used for downstream analysis.
Differentially methylated sites kept for further analysis had a
minimum of 25% differential methylation and the P-value
corrected for false-discovery rate using sliding linear model
(SLIM; P-values to q-values; Wang et al., 2010) was 40.05.
Differential methylation analyses were annotated using
genomation 1.14.0 default parameters (http://bioconductor.
org/packages/release/bioc/html/genomation.html) with data
from EnsemblPlants release 44. Differential methylation was
calculated by subtracting control from treatment, with the
mutant used as control and the WT as treatment. The
Integrated Genome Browser (Freese et al., 2016) was used to
generate data visualization using the RAP-DB genome anno-
tation (Kawahara et al., 2013; Sakai et al., 2013).

Data analysis of bisulfite sequencing data. CpG methylation
calls (deduplicated.bismark.cov.gz file of each sample) were
used as the input for the analysis to generate all the graphs.
Data were filtered with minimum coverage 58, normalized
among samples, then merged together. The results were fur-
ther filtered with a q-value 50.05 and differential methyla-
tion level 525%. R package methylKit 1.8.1 with default
parameters (http://bioconductor.org/packages/release/bioc/
html/methylKit.html) was used for downstream differential
methylation analysis. R package genomation 1.14.0 with de-
fault parameters (http://bioconductor.org/packages/release/
bioc/html/genomation.html) was used for annotation.
Depending on the sample size for each set it will either use
Fisher’s exact or logistic regression to calculate P-values. P-
values were adjusted to q-values using the SLIM method
(Wang et al., 2010). If there were replicates, the function au-
tomatically used logistic regression. Using the significantly
DML of clsy1 (M1-559) flooded versus WT flooded compari-
son, we performed pathway analysis using gramene.org.

Small RNA-seq data analysis. Raw fastq reads were ana-
lyzed using the sRNA_snakemake_workflow (https://github.
com/boseHere/sRNA_snakemake_workflow). Using default
parameters, raw reads were trimmed using trimgalore, fol-
lowed by filtering out noncoding RNAs and chloroplast/
mitochondrial reads using bowtie (IRGSP-1.0). Reads were
aligned to the reference genome (IRGSP-1.0) using
Shortrack (Axtell, 2013; Johnson et al., 2016) using the
sRNA_snakemake_workflow parameters. The result file was
divided by sample using samtools splits flag, mapped reads
were extracted using samtools view, converted to fastq using

samtools bam2fq, retrieving quality coding for fastq from
the filtered-out plastid reads. Finally, we produced length
profiles and fastqc reports. RPKM reads results were ana-
lyzed using DESeq (https://bioconductor.org/packages/re
lease/bioc/html/DESeq.html; Anders and Huber, 2010) using
an additive model (log10(rpkm + 1)�genotype + treat-
ment). Normalized RPKMs from DESeq analysis were used
for regularized discriminant analysis (RDA; Legendre and
Legendre, 1998) in R to determine if the RPKM covaried
with the treatment or genotype variables. Using the count
data, we selected only 24-nt dice call clusters to run the
DEseq additive model on normalized count data (� geno-
type + treatment).

RNA-seq data analysis. Raw fastq reads were analyzed us-
ing bluebee FWD Rice (IRGSP-1.0) Lexogen QuantSeq 2.2.3.
Parameter settings were as follows: Trimming: bbduk v35.92
(Settings used: k = 13, ktrim=r, useshortkmers=t, mink = 5,
qtrim=r, trimq = 10, minlength = 20); Read QC: FastQC
v0.11 (Settings used: -t 8 –nogroup); Alignment: STAR
v2.5.2a (Settings used: -runThreadN 8, -outFilterType,
BySJout, -outFilterMultimapNmax 20, -alignSJoverhangMin 8,
-alignSJDBoverhangMin 1, -outFilterMismatchNmax 999,
-outFilterMismatchNoverLmax 0.6, -alignIntronMin 20, -
alignIntronMax 1000000, -alignMatesGapMax 1000000,
-outSAMattributes NH HI NM MD, -outSAMtype BAM
SortedByCoordinate); Read Indexing: samtools index v1.3;
Gene Read Counting: HTSeq-count v0.6.0 (Settings used: -m
intersection, -nonempty, -s yes, -f bam, -r pos; Mapping QC:
RSeQC v2.6.4. We ran the DEseq additive model (� geno-
type + treatment) on count data normalized by using size
factors and dispersion parameters with default settings.
These transformations take into consideration the variance
of the observed count data and its mean value (Love et al.,
2014). Gene expression differences were estimated using
DESeq default settings; this program performed for each
gene a hypothesis test to determine whether evidence is suf-
ficient to decide against the null hypothesis. For further
analysis, we used the adjusted P-value to select genes of in-
terest (Love et al., 2014). Genes differentially expressed by
genotype contrast were used for pathway analysis using
gramene.org.

Accession numbers
Sequence data for BGIOSGA026441 from O. japonica refer-
ence MSU_osa1r7 can be found using the accession num-
bers XM_015789529.1/LOC9266851 (Os07g0692401;
methyltransferase), and XM_015790931.1/LOC4344376
(Os07g0692600; CLASSY1).

Supplemental data
The following materials are available in the online version of
this article.

Supplemental Figure S1. Distribution of germination
phenotype in flooded (AG) and control environments at 21
DAS.
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Supplemental Figure S2. Meta-analysis results performed
on the MAGMA gene-to-SNP analyses from the wet and
dry seasons.

Supplemental Figure S3. Phenotype of the mutant lines
and WT under flooding conditions.

Supplemental Figure S4. Profiles of methylation and
gene expression for the two genes in the seed development
pathway.

Supplemental Figure S5. RPKM profiles of siRNA in
leaves from WT and FN-559-S under control and flooded
treatments.

Supplemental Figure S6. Profiles of methylation and
gene expression within the region of interest in chromo-
some 7.

Supplemental Material S1. Information on the linear and
RDA models including ANOVA.

Supplemental Material S2. Translation of coding region
from WT Kittake and FN-559-S.

Supplemental Table S1. Phenotypic data for all rice lines
in wet and dry seasons.

Supplemental Table S2. Phenotypic data for indica sub-
population in wet (square root of phenotype) and dry (phe-
notype) seasons including seed age for wet season.

Supplemental Table S3. Gene ontology enrichment
results determined using AgriGO from meta-analysis that
had a permuted value 40.01.

Supplemental Table S4. Methylation statistics per
sample.

Supplemental Table S5. Percentage of DML overlapping
with genome features.

Supplemental Table S6. Significantly DML using CpG
methylation events.

Supplemental Table S7. Metabolic pathway analysis (gra-
mene.org) of the 395 DML.

Supplemental Table S8. Cluster-specific differential ex-
pression of 24nt-siRNA between CLSY1 mutant and WT un-
der control and flooded conditions.

Supplemental Table S9. Expression levels of genes that
show significant differences with an adjusted P-value =
50.05.
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